RU2744539C1 - Люминесцирующее стекло - Google Patents

Люминесцирующее стекло Download PDF

Info

Publication number
RU2744539C1
RU2744539C1 RU2020119697A RU2020119697A RU2744539C1 RU 2744539 C1 RU2744539 C1 RU 2744539C1 RU 2020119697 A RU2020119697 A RU 2020119697A RU 2020119697 A RU2020119697 A RU 2020119697A RU 2744539 C1 RU2744539 C1 RU 2744539C1
Authority
RU
Russia
Prior art keywords
luminescent glass
zno
sro
bao
glass
Prior art date
Application number
RU2020119697A
Other languages
English (en)
Inventor
Влад Андреевич Кравец
Original Assignee
Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук
Priority to RU2020119697A priority Critical patent/RU2744539C1/ru
Application granted granted Critical
Publication of RU2744539C1 publication Critical patent/RU2744539C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

Люминесцирующее стекло относится к материалам квантовой электроники, оптики и может быть использовано в устройствах для отображения информации, электронно-лучевых приборах, индикаторной технике, светодиодах белого свечения, сцинтилляторах, катодо- и рентгенолюминофорах, визуализаторов альфа и бета излучения. Люминесцирующее стекло включает Bi2O3, B2O3, SiO2, Al2O3, BaO; SrO; ZnO и Eu2O3и Ag2O при следующем соотношении компонентов, мас. %: Bi2O330-35; B2O320-23; SiO215-18; Eu2O37-17; Al2O33-6; BaO 4-6; SrO 4-6; ZnO 4-7 и Ag2O 0,001-0,1. Люминесцирующее стекло характеризуется стабильной и высокой интенсивностью люминесценции ионов Eu3+на длине волны электронного перехода5D0→7F2. 1 табл. 3 пр.

Description

Изобретение относится к материалам квантовой электроники, оптики и может быть использовано в устройствах для отображения информации, в электронно-лучевых приборах, индикаторной технике, светодиодах белого свечения, сцинтилляторах, катодо- и рентгенолюминофорах, визуализаторов альфа- и бета-излучения.
Известно люминесцирующее стекло (см. патент RU 2574223, МПК С03С 4/12, опубликован 10.02.2016), содержащее в мол. %: SiO2 35,0-42,0; PbO 15,0-20,0; PbF2 27,5-32,0; CdF2 8,0-15,0; Eu2O3 0,5-1,5 и YbF3 1,0-2,5.
Известное люминесцирующее стекло характеризуется интенсивной ап-конверсионной люминесценцией, обусловленной переходом 5D07F2 иона Eu3+, и обладает свойством преобразовывать инфракрасное лазерное излучение в видимое насыщенное оранжево-красное в области длины волны λ-612 нм.
Недостатком известного люминесцирующего стекла является низкая стабильность люминесценции Ей вследствие содержания фторидов. Кроме того, стекла содержат токсичные соединения свинца PbO и PbF2 и кадмия CdF2.
Известно люминесцирующее стекло (см. патент RU 2703039, МПК С03С 4/12, опубликован 15.10.2019), содержащее (мас. %): Bi2O3 36-х; B2O3 20; CaF2 10; SiO2 8; Eu2O3 х; ZnO - остальное (3≤х≤7).
Недостатком стекла является невысокая интенсивность люминесценции Eu3+, так как содержит малое количество сооактиваторов, что снижает растворимость Eu3. Кроме того стекло включает в себя соединение CaF2, что уменьшает радиационную стойкость материала.
Известно люминесцирующее стекло (см. заявка US 2005181927, МПК С03С 8/24, опубликована 18.08.2005), совпадающее с настоящим решением по наибольшему числу существенных признаков и принятое за прототип. Стекло - прототип содержит (мас. %): Bi2O3 55-90; ZnO 4-22; B2O3 3-15; SiO2 0,5-14; Al2O3 0-4; ВаО 0-12; SrO 0-12 и Eu2O3 0,1-10.
Недостатком известного материала является невысокая интенсивность люминесценции ионов Eu3+ на длине волны 612 нм, соответствующая электронному переходу 5D07F2. Большое содержание висмута в стекле (более 55 мас. %) приводит к сильному поглощению материала в видимом диапазоне спектра и уменьшает интенсивность люминесценции Eu. Кроме того, стекла могут дополнительно содержать оксиды щелочных металлов (Li2O, Na2O и K2O), что приводит к тушению люминесценции активатора при возбуждении высокоэнергетическим излучением (альфа или бета излучение).
Задачей настоящего технического решения является создание люминесцирующего стекла, характеризующегося стабильной и высокой интенсивностью люминесценции ионов Eu3+ на длине волны 615 нм электронного перехода 5D07F2.
Поставленная задача достигается тем, что люминесцирующее стекло включает Bi2O3, B2O3, SiO2, Al2O3, BaO, SrO, ZnO; Eu2O3 и дополнительно содержит Ag2O при следующем соотношении компонентов в мас. %: Bi2O3 30-35; B2O3 20-23; SiO2 15-18; Eu2O3 7-17; Al2O3 3-6; BaO 4-6; SrO 4-6; ZnO 4-7 и Ag2O 0,001-0,1.
Соотношение настоящих составов обусловлено областью фазовой однородности люминесцентного материала, образующегося в системе SiO2 - B2O3 - Bi2O3 - Al2O3 - BaO - SrO - ZnO - Eu2O3 - Ag2O. Уменьшение содержания SiO2 ниже 14 мас. % и B2O3 ниже 20 мас. % приводит к уменьшению однородности люминесцентного материала и ухудшает его оптическое качество. Уменьшение Bi2O3, и ZnO ниже соответственно 30 и 4 нецелесообразно из-за увеличения температуры синтеза и уменьшения плотности стекла. Увеличение концентрации Bi2O3 выше 35 уменьшает прозрачность стекла в видимом спектральном диапазоне. Концентрация ZnO выше заявленных нецелесообразна, так как приведет к снижению остальных компонентов шихты. Уменьшение содержания Al2O3 ниже заявляемого приводит к уменьшению химической стойкости. Увеличение содержания Al2O3 выше заявляемого приводит к увеличению температуры спекания шихты. Указанное содержание SrO и ВаО обусловлено улучшением оптических свойств и растворимости Eu в стекле.
Увеличение концентрации Ag2O, выше заявляемого, приводит к сегрегации серебра и уменьшению молекулярных кластеров серебра, что приводит к уменьшению интенсивности люминесценции активатора. Уменьшение концентрации Ag2O ниже заявляемого нецелесообразно, т.к. это также приводит к уменьшению молекулярных кластеров серебра. Содержание Eu2O3 определяется оптимальным содержанием ионов Eu3+ в стекле, при котором не происходит концентрационного тушения и данные стекла обладают максимальным выходом люминесценции.
Введение Ag2O в стекло в указанных концентрациях, не только позволяет увеличить плотность материала, но и увеличить интенсивность люминесценции на длине волны электронного перехода 5D07F2 иона европия, за счет передачи возбуждения (сенсибилизации) молекулярными кластерами серебра ионам европия.
Настоящее люминесцирующее стекло поясняется чертежом, где в таблице приведены результаты измерения интенсивности люминесценции люминесцирующего стекла на длине волны электронного перехода 5D07F2.
Пример 1. Шихту состава в мас. %: Bi2O3 34; B2O3 23; SiO2 17; Al2O3 6; ВаО 6; SrO 6; ZnO 5; Eu2O3 7; Ag2O 0,01 (где - Eu2O3 и Ag2O добавляли сверх шихты), тщательно перемешивали и перетирали в фарфоровой ступке. В дальнейшем производили высушивание со ступенчатым нагревом (150°С, 250°С, 500°C с выдержкой 20 мин) и промежуточным перемешиванием в ступке. Скорость нагрева составляла от 6 до 7 град/мин. Варку шихты производили в корундовом тигле в окислительных условиях в муфельной электрической печи с нагревом до 1200°C с выдержкой в течение 40 минут. Полученный расплав оставляли остывать в печи до комнатной температуры. Стекла с видимыми внутренними напряжениями подвергали отжигу при 350°С для снятия напряжений. Затем стекла освобождали от тигля, отбирали оптически однородные фрагменты. Из них изготавливали плоскопараллельные образцы размером ~(5×5) мм2 и толщиной (2,5-4) мм, поверхности которых шлифовали и полировали. При исследовании люминесценции стекла в качестве источника возбуждения применяли электронный пучок катодолюминесцентной установки. Спектры были получены при диаметре электронного пучка 4 микрона, ускоряющем напряжении электронов 20 кэВ и поглощенном токе 3 нА. Плотность мощности облучения составляла ~300 Ватт/см2. Измерение интенсивности люминесценции проводили на длине волны 615 нм электронного перехода 5D07F2 иона европия. Полученное люминесцирующее стекло имело интенсивность на длине электронного перехода 5D07F2 иона европия в 1,3 раза выше, чем стекло-прототип, что показано на чертеже в таблице.
Пример 2. Шихту состава в масс %: Bi2O3 34; B2O3 23; SiO2 17; Al2O3 6; ВаО 6; SrO 6; ZnO 5; Eu2O3 10; - Ag2O 0,01 (где - Eu2O3 и Ag2O добавляли сверх шихты), готовили по технологии, описанной в примере 1. Полученное люминесцирующее стекло имеет интенсивность люминесценции на длине волны электронного перехода 5D07F2 иона европия в 1,4 раз выше, чем прототип. Спектры были получены при диаметре электронного пучка 4 микрона, ускоряющем напряжении электронов 20 кэВ и поглощенном токе 3 нА. Плотность мощности облучения составляла ~300 Ватт/см2. Результаты измерений интенсивности люминесценции Eu3+ приведены на чертеже в таблице.
Пример 3. Шихту состава в мас. %: Bi2O3 34; B2O3 23; SiO2 17; Al2O3 6; ВаО 6; SrO 6; ZnO 5; Eu2O3 10; Ag2O 0,01 (где - Eu2O3 и Ag2O добавляли сверх шихты), готовили по технологии, описанной в примере 1. Полученное люминесцирующее стекло имеет интенсивность люминесценции на длине волны электронного перехода 5D07F2 иона европия в 1,2 раз выше, чем прототип. Спектры были получены при диаметре электронного пучка 4 микрона, ускоряющем напряжении электронов 20 кэВ и поглощенном токе 3 нА. Плотность мощности облучения составляла ~300 Ватт/см2. Результаты измерений интенсивности люминесценции Eu3+ приведены на чертеже в таблице.
Как следует из полученных, данных техническим результатом изобретения является повышение интенсивности люминесценции ионов европия на длине волны электронного перехода 5D07F2. В интервале 7-17 мас. % Eu3+ интенсивность свечения люминесцирующего стекла состава в мас. %: Bi2O3 30-35; B2O3 20-23; SiO2 15-18; Eu2O3 7-17; Al2O3 3-5; ВаО 4-6; SrO 4-6; ZnO 4-7 и Ag2O 0,01 превышает интенсивность прототипа.
Figure 00000001

Claims (2)

  1. Люминесцирующее стекло, включающее Bi2O3, B2O3, SiO2, Al2O3, BaO; SrO; ZnO и Eu2O3, отличающееся тем, что дополнительно содержит Ag2O при следующем соотношении компонентов, мас. %:
  2. Bi2O3 30-35 B2O3 20-23 SiO2 15-18 Eu2O3 7-17 Al2O3 3-6 BaO 4-6 SrO 4-6 ZnO 4-7 Ag2O 0,001-0,1
RU2020119697A 2020-06-08 2020-06-08 Люминесцирующее стекло RU2744539C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020119697A RU2744539C1 (ru) 2020-06-08 2020-06-08 Люминесцирующее стекло

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020119697A RU2744539C1 (ru) 2020-06-08 2020-06-08 Люминесцирующее стекло

Publications (1)

Publication Number Publication Date
RU2744539C1 true RU2744539C1 (ru) 2021-03-11

Family

ID=74874283

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020119697A RU2744539C1 (ru) 2020-06-08 2020-06-08 Люминесцирующее стекло

Country Status (1)

Country Link
RU (1) RU2744539C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050181927A1 (en) * 2002-03-29 2005-08-18 Matsushita Electric Industrial Co., Ltd Bismuth glass composition, and magnetic head and plasma display panel including the same as sealing member
RU2543196C2 (ru) * 2009-06-24 2015-02-27 Сеул Семикондактор Ко., Лтд. Люминесцентные вещества, содержащие силикатные люминофоры, легированные eu2+
US20150197445A1 (en) * 2012-03-30 2015-07-16 Corning Incorporated Bismuth borate glass encapsulant for led phosphors
EP3050857A1 (en) * 2015-02-02 2016-08-03 Ferro Corporation Glass compositions and glass frit composites for use in optical applications
RU2018111895A (ru) * 2018-04-02 2019-10-03 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (УрФУ) Рабочее вещество для термоэкзоэлектронной дозиметрии электронного излучения
RU2703039C1 (ru) * 2018-11-14 2019-10-15 Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) Люминесцирующее оксифторидное стекло

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050181927A1 (en) * 2002-03-29 2005-08-18 Matsushita Electric Industrial Co., Ltd Bismuth glass composition, and magnetic head and plasma display panel including the same as sealing member
RU2543196C2 (ru) * 2009-06-24 2015-02-27 Сеул Семикондактор Ко., Лтд. Люминесцентные вещества, содержащие силикатные люминофоры, легированные eu2+
US20150197445A1 (en) * 2012-03-30 2015-07-16 Corning Incorporated Bismuth borate glass encapsulant for led phosphors
EP3050857A1 (en) * 2015-02-02 2016-08-03 Ferro Corporation Glass compositions and glass frit composites for use in optical applications
RU2018111895A (ru) * 2018-04-02 2019-10-03 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (УрФУ) Рабочее вещество для термоэкзоэлектронной дозиметрии электронного излучения
RU2703039C1 (ru) * 2018-11-14 2019-10-15 Федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук (БИП СО РАН) Люминесцирующее оксифторидное стекло

Similar Documents

Publication Publication Date Title
Saad et al. Ag nanoparticles induced luminescence enhancement of Eu3+ doped phosphate glasses
Kirdsiri et al. Influence of alkaline earth oxides on Eu3+ doped lithium borate glasses for photonic, laser and radiation detection material applications
US20070045555A1 (en) Glass
US5122671A (en) Terbium activated silicate luminescent glasses for use in converting x-ray radiation into visible radiation
Ichoja et al. Judd− Ofelt calculations for spectroscopic characteristics of Dy3+-activated strontium magnesium borate glass
US5108959A (en) Terbium activated borate luminescent glasses coactivated with gadolinium oxide
Kaewjaeng et al. X-ray radiation shielding of CeO2 doped borosilicate glasses and their luminescence characteristics
Kashif et al. Cool white light emission from Dy3+-doped SiO2–Bi2O3–Ga2O3–B2O3-GeO2-TeO2 glasses: Structural and spectroscopic properties
US5391320A (en) Terbium activated silicate luminescent glasses
Bueno et al. Luminescent glass design for high-energy real-time radiography
Shiratori et al. Radio-photoluminescence Properties of Heavy-element-based Alkaline Phosphate Glasses and Their Application to X-ray Imaging.
US3654172A (en) Terbium activated radioluminescent silicate glasses
Albaqawi et al. Judd-Ofelt analysis and luminescence properties of newly fabricated Dy3+ infused calcium sulfo-phospho-borate glasses for photonics applications
Limkitjaroenporn et al. The radioluminescence investigation of lead sodium borate doped with Sm3+ glass scintillator
Kaewjaeng et al. Influence of trivalent praseodymium ion on SiO2–B2O3–Al2O3–BaO–CaO–Sb2O3–Na2O–Pr2O3 glasses for X-Rays shielding and luminescence materials
US5120970A (en) X-ray image intensifier tube and x-ray conversion screen containing terbium activated silicate luminescent glasses
Du et al. Luminescence and scintillation properties of CuO-doped SiO2–B2O3–La2O3 glass
Liang et al. Structure and tunable broadband near-infrared luminescence of Cr3+ in borophosphate glass
Zanella et al. A new cerium scintillating glass for X-ray detection
CN114634312A (zh) 一种掺杂Al3+的CsPbBr3量子点玻璃陶瓷及其制备方法
Namboothiri et al. Impact of Sm3+ ions concentration on the luminescence features of aluminium incorporated tri-former glasses for photonic applications
Huang et al. Scintillating properties of gallogermanate glass scintillators doped with Tb3+/Eu3+
Rajaramakrishna et al. Synchrotron, luminescence, and XPS studies of Gd3+: Dy3+: Ce3+ tri-rare-earth oxides in borate glasses
Lakshminarayana et al. Dy3+: B2O3–Al2O3–ZnO–Bi2O3–BaO–M2O (M= Li; Na; and K) glasses: Judd–Ofelt analysis and photoluminescence investigation for WLED applications
RU2744539C1 (ru) Люминесцирующее стекло