RU2729277C1 - Method of producing ultrahigh-temperature ceramic material based on hafnium carbonitride - Google Patents

Method of producing ultrahigh-temperature ceramic material based on hafnium carbonitride Download PDF

Info

Publication number
RU2729277C1
RU2729277C1 RU2019143363A RU2019143363A RU2729277C1 RU 2729277 C1 RU2729277 C1 RU 2729277C1 RU 2019143363 A RU2019143363 A RU 2019143363A RU 2019143363 A RU2019143363 A RU 2019143363A RU 2729277 C1 RU2729277 C1 RU 2729277C1
Authority
RU
Russia
Prior art keywords
carried out
consolidation
mixture
temperature
mpa
Prior art date
Application number
RU2019143363A
Other languages
Russian (ru)
Inventor
Вероника Сергеевна Буйневич
Андрей Александрович Непапушев
Дмитрий Олегович Московских
Александр Сергеевич Рогачев
Александр Сергеевич Мукасьян
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2019143363A priority Critical patent/RU2729277C1/en
Application granted granted Critical
Publication of RU2729277C1 publication Critical patent/RU2729277C1/en
Priority to CN202080097439.4A priority patent/CN115151358A/en
Priority to PCT/RU2020/050295 priority patent/WO2021133226A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/23Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58028Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
    • C04B35/58035Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides based on zirconium or hafnium carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

FIELD: space technologies; material science.SUBSTANCE: method of producing ultrahigh-temperature ceramic material based on hafnium carbonitride involves preliminary mechanical activation of a mixture of initial components consisting of 96.7 wt% Hf and 3.3 wt% C in high-energy ball planetary mill, subsequent self-propagating high-temperature synthesis (SHS) of the prepared mixture Hf and C and consolidation of synthesized powders. Preliminary mechanical treatment is carried out for 5–10 minutes at ratio of weight of balls to mass of mixture 20:1–40:1 and rotation speed of planetary disc 694–900 rpm, then SHS is carried out in reactor in nitrogen atmosphere 0.1–0.8 MPa. Initiation of self-sustaining exothermic reaction is carried out by incandescent tungsten spiral. Consolidation of synthesized hafnium carbonitride powder is performed by spark plasma sintering method, at that, argon atmosphere is created and sintered sample is passed pulse current from 1,000–5,000 A at load 30–70 MPa, consolidation temperature and holding time are 1,900–2,200 °C and 2–10 minutes, respectively.EFFECT: considerable reduction of power inputs and synthesis time of the material.1 cl, 6 dwg, 1 ex

Description

Изобретение относится к области ракетно-космической техники и материаловедения, в частности, к разработке сверхвысокотемпературных материалов (Тпл≥3000°С) на основе гафния (Hf), которые могут быть использованы для протекции наиболее теплонагруженных узлов (воздушно-реактивные двигатели, носовые обтекатели, острые передние кромки крыльев) гиперзвуковых летательных аппаратов (ГЛА), а также могут быть применены в атомной промышленности.The invention relates to the field of rocket and space technology and materials science, in particular, to the development of ultra-high-temperature materials (T PL ≥3000 ° C) based on hafnium (Hf), which can be used to protect the most heat-loaded units (air-jet engines, nose cones , sharp leading edges of the wings) of hypersonic aircraft (GLA), and can also be used in the nuclear industry.

При изготовлении подобного рода материалов для эксплуатации в условиях сверхвысоких температур (выше 2000°С) необходимо обеспечить сочетание ключевых свойств: эффективный отвод тепла, высокая стойкость к окислению, тугоплавкость. Наибольший интерес представляют бинарные и тройные нестехиометрические соединения, а именно: карбиды, нитриды и карбонитриды, переходных металлов IVB и VB групп, в том числе гафния. Получение таких нестехиометрических соединений является непростой задачей из-за трудности регулирования количества азота и/или углерода в системе, а также из-за высоких температур плавления основных компонентов.In the manufacture of materials of this kind for operation at ultra-high temperatures (above 2000 ° C), it is necessary to ensure a combination of key properties: effective heat dissipation, high resistance to oxidation, and refractoriness. Of greatest interest are binary and ternary nonstoichiometric compounds, namely: carbides, nitrides and carbonitrides of transition metals of IVB and VB groups, including hafnium. The preparation of such non-stoichiometric compounds is not an easy task due to the difficulty of controlling the amount of nitrogen and / or carbon in the system, and also because of the high melting points of the main components.

Известен способ получения нитридов переходных металлов, который включает в себя приготовление смеси, содержащей оксид азотируемого металла, порошок азотируемого металла (Hf, Ti, Nb, Zr) и азид щелочного металла, например, азид натрия, формовку образцов, воспламенение образцов при помощи вольфрамовой спирали в атмосфере азота. Данный способ позволяет получать порошки нитридов металлов с выходом нитрида не менее 96% и содержанием азота не меньше 7,17%. (RU 2256604, С01В 21/076, 20.07.2005)There is a known method of obtaining transition metal nitrides, which includes the preparation of a mixture containing a nitrided metal oxide, a nitrided metal powder (Hf, Ti, Nb, Zr) and an alkali metal azide, for example, sodium azide, forming samples, igniting the samples using a tungsten coil in a nitrogen atmosphere. This method makes it possible to obtain powders of metal nitrides with a nitride yield of at least 96% and a nitrogen content of at least 7.17%. (RU 2256604, С01В 21/076, 20.07.2005)

Недостатками данного способа получения материалов являются отсутствие 100% выхода продукта реакции, использование не только порошков, но и их оксидов, что приводит к значительному удорожанию процесса, а также невозможность варьирования количества азота в соединении.The disadvantages of this method of obtaining materials are the absence of 100% yield of the reaction product, the use of not only powders, but also their oxides, which leads to a significant increase in the cost of the process, as well as the impossibility of varying the amount of nitrogen in the compound.

Известен способ получения карбонитрида титана, который включает в себя высокотемпературный синтез титансодержащих соединений в атмосфере азота в ходе магниетермического восстановления смеси тетрахлорида титана и тетрахлорэтилена в соотношении 4,5-5,1 в температурном интервале от 1010°С до 1080°С. Данный способ позволяет получать титансодержащие соединения, в том числе карбонитрид титана, с минимальным содержанием примесей. (RU 2175021, С22В 34/12, С22В 5/04, С01В 31/30, С01В 21/076, 20.10.2001)A known method for producing titanium carbonitride, which includes high-temperature synthesis of titanium-containing compounds in a nitrogen atmosphere in the course of magnesium-thermal reduction of a mixture of titanium tetrachloride and tetrachlorethylene in a ratio of 4.5-5.1 in the temperature range from 1010 ° C to 1080 ° C. This method makes it possible to obtain titanium-containing compounds, including titanium carbonitride, with a minimum content of impurities. (RU 2175021, С22В 34/12, С22В 5/04, С01В 31/30, С01В 21/076, 20.10.2001)

Недостатками данного способа являются невозможность варьирования соотношения C/N по всему диапазону состава, наличие свободного углерода в синтезированном соединении, необходимость использования металла-восстановителя, а также высокая энергозатратность, связанная с поддержанием высоких температур, необходимых для синтеза.The disadvantages of this method are the impossibility of varying the C / N ratio over the entire composition range, the presence of free carbon in the synthesized compound, the need to use a reducing metal, as well as the high energy consumption associated with maintaining the high temperatures required for the synthesis.

Наиболее близким аналогом к заявляемому материалу и способу его получения является способ получения карбидов, нитридов, карбонитридов тугоплавких металлов, который включает в себя смешивание окисла тугоплавкого металла, например, HfO2, ZrO2 или TiO2, с неметаллом, например, с сажей или кальцийсодержащим соединением CaC2, Ca3N2, CaCN2, добавление восстанавливающего металла - кальция, синтез в трубообразном реакторе в атмосфере аргона при температуре от 450 до 800°С, удаление образовавшегося оксида кальция СаО путем растворения в соляной или уксусной кислотах (RU 2225837, С01В 31/30, С01В 21/06, B22F 3/23, 20.03.2004).The closest analogue to the claimed material and the method for its production is a method for producing carbides, nitrides, carbonitrides of refractory metals, which includes mixing an oxide of a refractory metal, for example, HfO 2 , ZrO 2 or TiO 2 , with a non-metal, for example, with soot or calcium-containing compound CaC 2 , Ca 3 N 2 , CaCN 2 , addition of a reducing metal - calcium, synthesis in a pipe-like reactor in an argon atmosphere at a temperature of 450 to 800 ° C, removal of the formed calcium oxide CaO by dissolving in hydrochloric or acetic acids (RU 2225837, С01В 31/30, С01В 21/06, B22F 3/23, 03/20/2004).

Недостатками данного способа получения материалов являются наличие оксида восстанавливающего металла, который необходимо удалять из полученного соединения, энергозатратность, связанная с нагревом трубообразного реактора до температур 450-800°С.The disadvantages of this method of obtaining materials are the presence of a reducing metal oxide, which must be removed from the resulting compound, energy consumption associated with heating the pipe-like reactor to temperatures of 450-800 ° C.

Техническим результатом предлагаемого изобретения является упрощение, значительное уменьшение энергозатрат и времени синтеза материала, в части материала, а также возможность получение компактного керамического материала нестехиометрического состава.The technical result of the proposed invention is to simplify, significantly reduce energy consumption and synthesis time of the material, in terms of material, as well as the possibility of obtaining a compact ceramic material of non-stoichiometric composition.

Технический результат достигается тем, что смесь исходных компонентов Hf и С подвергают предварительной механической активации в высокоэнергетической шаровой планетарной мельнице, затем осуществляют самораспространяющийся высокотемпературный синтез (СВС) подготовленной смеси Hf и С и консолидируют синтезированные порошки. Предварительная механическая активация осуществляется в течение 5-10 минут при соотношении массы шаров к массе смеси 20:1-40:1 и скорости вращения планетарного диска 694-900 об/мин, затем проводится СВС в реакторе в атмосфере азота 0,1-0,8 МПа, инициирование самоподдерживающейся экзотермической реакции осуществляется за счет раскаленной вольфрамовой спирали, консолидация синтезированного порошка карбонитрида гафния осуществляется методом искрового плазменного спекания, при этом в камере создают атмосферу азота и через спекаемый образец пропускают импульсный ток от 1000-5000 А при нагрузке 30-70 МПа, температура консолидации и время выдержки составляют 1900-2200°С и 2-10 минут соответственно.The technical result is achieved by the fact that the mixture of the initial components Hf and C is subjected to preliminary mechanical activation in a high-energy planetary ball mill, then self-propagating high-temperature synthesis (SHS) of the prepared mixture of Hf and C is carried out and the synthesized powders are consolidated. Preliminary mechanical activation is carried out for 5-10 minutes at the ratio of the mass of balls to the mass of the mixture 20: 1-40: 1 and the rotation speed of the planetary disk 694-900 rpm, then SHS is carried out in the reactor in a nitrogen atmosphere of 0.1-0, 8 MPa, the initiation of a self-sustaining exothermic reaction is carried out due to a hot tungsten spiral, the consolidation of the synthesized hafnium carbonitride powder is carried out by the method of spark plasma sintering, while a nitrogen atmosphere is created in the chamber and a pulse current from 1000-5000 A is passed through the sintered sample at a load of 30-70 MPa , the consolidation temperature and the holding time are 1900-2200 ° C and 2-10 minutes, respectively.

Консолидированный сверхвысокотемпературный материал, полученный вышеизложенным способом, представляет собой керамический материал со следующими свойствами: карбонитрид гафния состава HfC0,5Nx, где х варьируются в зависимости от давления азота в камере СВС реактора, с относительной плотностью 95,8-98,7%, твердостью по Виккерсу 20,3-21,3 ГПа и трещинностойкостью 3,1-4,7 МПа м1/2.The consolidated ultra-high-temperature material obtained by the above method is a ceramic material with the following properties: hafnium carbonitride of the composition HfC 0.5 N x , where x varies depending on the nitrogen pressure in the SHS reactor chamber, with a relative density of 95.8-98.7% , Vickers hardness 20.3-21.3 GPa and fracture toughness 3.1-4.7 MPa m 1/2 .

В качестве исходных компонентов для получения сверхвысокотемпературных керамических материалов на основе карбонитрида гафния для протекции наиболее теплонагруженных узлов гиперзвуковых летательных аппаратов используются порошки металлов Hf (порошок гафния) марки ГФМ-1 (ТУ 48-4-176-85 (97)) и С (порошок сажи) П804Т (ТУ 38-1154-88), а также газообразный азот (ГОСТ 9293-74).Powders of metals Hf (hafnium powder) grade GFM-1 (TU 48-4-176-85 (97)) and C (powder) are used as initial components for the production of ultra-high-temperature ceramic materials based on hafnium carbonitride for the protection of the most heat-loaded units of hypersonic aircraft. soot) P804T (TU 38-1154-88), as well as gaseous nitrogen (GOST 9293-74).

Предварительная механическая активация (МА), включающая в себя размол и перемешивание исходных порошков гафния и сажи, осуществляют в высокоэнергетической планетарной шаровой мельнице «Активатор-2S». МА осуществляется в стальных барабанах при помощи стальных шаров в течение 5-10 минут при частоте вращения водила 694-900 об/мин, соотношении массы мелющих шаров к массе порошка 20:1-40:1. МА исходных смесей проводят в атмосфере аргона, давлении которого в барабанах составляет 0,4 МПа. В ходе МА образуются новые поверхности без оксидов, происходит равномерное распределение частиц, а также увеличивается площадь контакта между реагентами, что приводит к ускорению реакции между ними. Предварительная МА является первым этапом предлагаемого способа.Preliminary mechanical activation (MA), which includes grinding and mixing of the initial hafnium and soot powders, is carried out in a high-energy planetary ball mill "Activator-2S". MA is carried out in steel drums using steel balls for 5-10 minutes at a carrier speed of 694-900 rpm, the ratio of the mass of grinding balls to the mass of powder 20: 1-40: 1. MA of the initial mixtures is carried out in an argon atmosphere, the pressure of which in the drums is 0.4 MPa. During MA, new surfaces without oxides are formed, a uniform distribution of particles occurs, and the contact area between the reagents increases, which leads to an acceleration of the reaction between them. Preliminary MA is the first stage of the proposed method.

На втором этапе после предварительной МА активированную порошковую смесь Hf+0,5С подвергают СВС в лабораторном реакторе в атмосфере азота, с целью получения карбонитрида гафния HfC0,5Ny. Давление газа в реакторе при этом составляет 0,1-0,8 МПа.At the second stage, after preliminary MA, the activated powder mixture Hf + 0.5C is subjected to SHS in a laboratory reactor under nitrogen atmosphere in order to obtain hafnium carbonitride HfC 0.5 N y . The gas pressure in the reactor is 0.1-0.8 MPa.

Состав получаемых соединений, а именно значение х, варьируется в зависимости от от давления азота в реакторе.The composition of the compounds obtained, namely the value of x, varies depending on the nitrogen pressure in the reactor.

На третьем этапе способа синтезированные нестехиометрический порошок HfC0,5Ny консолидируют на установке искрового плазменного спекания (ИПС) Spark Plasma Sintering - Labox 650, SinterLand, Япония.At the third stage of the method, the synthesized non-stoichiometric powder HfC 0.5 N y is consolidated in a Spark Plasma Sintering (SP) unit - Labox 650, SinterLand, Japan.

Метод ИПС основан на совместном воздействии высокой температуры и осевого давления при одновременном пропускании импульсов постоянного электрического тока большой амплитуды (до 5000 А) через спекаемый материал и графитовую матрицу, в которой он находится. Импульсный ток способствует равномерному прогреву образца и минимальному воздействию на микроструктуру. Консолидацию осуществляют под нагрузкой 30-70 МПа, при этом время выдержки и температура спекания составляют 2-10 минут и 1900-2200°С соответственно.The IPC method is based on the combined effect of high temperature and axial pressure while simultaneously passing high-amplitude DC electric current pulses (up to 5000 A) through the sintered material and the graphite matrix in which it is located. The pulsed current promotes uniform heating of the sample and minimal impact on the microstructure. Consolidation is carried out under a load of 30-70 MPa, with the holding time and sintering temperature being 2-10 minutes and 1900-2200 ° C, respectively.

Обязательной частью каждого этапа является контроль качества получаемых образцов, который осуществляется как визуальным осмотром, так и при помощи аппаратурных методик.An obligatory part of each stage is quality control of the samples obtained, which is carried out both by visual inspection and by means of instrumental techniques.

Для исследования микроструктуры и фазового состава синтезированных порошков и консолидированных порошков использовались методы растровой электронной микроскопии (РЭМ), рентгеновской дифракции (рентгенофазовый анализ (РФА)) и др. Для консолидированных сверхвысокотемпературных керамик на основе нестехиометрического карбонитрида гафния также осуществлялся контроль пористости, твердости, трещинностойкости, микроструктуры.To study the microstructure and phase composition of the synthesized powders and consolidated powders, methods of scanning electron microscopy (SEM), X-ray diffraction (X-ray phase analysis (XRD)), etc. were used. microstructure.

Сущность способа подтверждается примерами.The essence of the method is confirmed by examples.

Пример 1Example 1

Исходные компоненты Hf и С смешивают в мольном соотношении 2:1 (96,7 масс. % Hf и 3,3 масс. % С). Подготовленную смесь исходных компонентов подвергают предварительной механической активации, в ходе которой происходит перемешивание, измельчение и очистка поверхностей реагентов от оксидов, в планетарной шаровой мельнице в атмосфере аргона, давление которого составляет 0,4 МПа, при частоте вращения мельницы 900 об/мин при соотношении массы шаров к массе порошка 20:1. Использовались шары диаметром 6 мм. Время предварительной механической активации 10 минут.The starting components Hf and C are mixed in a 2: 1 molar ratio (96.7 wt% Hf and 3.3 wt% C). The prepared mixture of the initial components is subjected to preliminary mechanical activation, during which there is mixing, grinding and cleaning the surfaces of the reagents from oxides, in a planetary ball mill in an argon atmosphere, the pressure of which is 0.4 MPa, at a mill speed of 900 rpm with a mass ratio balls to a powder mass of 20: 1. Balls 6 mm in diameter were used. The pre-mechanical activation time is 10 minutes.

Полученную реакционную порошковую смесь подвергают СВС в реакторе при давлении азота 0,1 МПа. Инициируют самоподдерживающуюся экзотермическую реакцию посредствам раскаленной вольфрамовой спирали. В результате получают порошок карбонитрида гафния.The resulting reaction powder mixture is subjected to SHS in a reactor at a nitrogen pressure of 0.1 MPa. A self-sustaining exothermic reaction is initiated by means of an incandescent tungsten coil. As a result, a hafnium carbonitride powder is obtained.

Синтезированный порошок консолидируют, используя метод ИПС. Для этого порошок размещают в цилиндрической графитовой матрице и фиксируют между двумя пуансонами, в тоже время являющимися электродами, затем матрицу помещают в рабочее пространство установки ИПС, в камере создают атмосферу азота, затем через спекаемый образец пропускают импульсный электрический ток. При этом к образцу прикладывают нагрузку в 50 МПа. Консолидацию осуществляют при температуре 1900°С и времени выдержки 2 минуты. Скорость нагрева до температуры спекания составляет 100°С/мин. В результате получают образцы в форме дисков диаметром 15-50 мм и толщиной 2-10 мм.The synthesized powder is consolidated using the IPA method. To do this, the powder is placed in a cylindrical graphite matrix and fixed between two punches, which at the same time are electrodes, then the matrix is placed in the working space of the IPA unit, a nitrogen atmosphere is created in the chamber, then a pulsed electric current is passed through the sintered sample. In this case, a load of 50 MPa is applied to the sample. Consolidation is carried out at a temperature of 1900 ° C and a holding time of 2 minutes. The heating rate to the sintering temperature is 100 ° C / min. As a result, samples are obtained in the form of disks with a diameter of 15-50 mm and a thickness of 2-10 mm.

Сверхвысокотемпературный материал имеет следующие характеристики: относительная плотность 95,8%, твердость по Виккерсу - 20,3 ГПа, трещинностойкость - 3,1 МПа м1/2.The ultrahigh-temperature material has the following characteristics: relative density 95.8%, Vickers hardness - 20.3 GPa, fracture toughness - 3.1 MPa m 1/2 .

Claims (1)

Способ получения сверхвысокотемпературного керамического материала на основе карбонитрида гафния, включающий предварительную механическую активацию смеси исходных компонентов Hf и С, взятых в количестве 96,7 мас. % Hf и 3,3 мас. % С, в высокоэнергетической шаровой планетарной мельнице, последующий самораспространяющийся высокотемпературный синтез (СВС) подготовленной смеси Hf и С и консолидацию синтезированных порошков, отличающийся тем, что предварительную механическую обработку осуществляют в течение 5-10 минут при соотношении массы шаров к массе смеси 20:1-40:1 и скорости вращения планетарного диска 694-900 об/мин, затем проводят СВС в реакторе в атмосфере азота 0,1-0,8 МПа, инициирование самоподдерживающейся экзотермической реакции осуществляют за счет раскаленной вольфрамовой спирали, консолидацию синтезированного порошка карбонитрида гафния осуществляют методом искрового плазменного спекания, при этом в камере создают атмосферу аргона и через спекаемый образец пропускают импульсный ток от 1000-5000 А при нагрузке 30-70 МПа, температура консолидации и время выдержки составляют 1900-2200°С и 2-10 минут соответственно.A method for producing an ultra-high-temperature ceramic material based on hafnium carbonitride, including preliminary mechanical activation of a mixture of the starting components Hf and C, taken in an amount of 96.7 wt. % Hf and 3.3 wt. % C, in a high-energy planetary ball mill, the subsequent self-propagating high-temperature synthesis (SHS) of the prepared mixture of Hf and C and the consolidation of the synthesized powders, characterized in that the preliminary mechanical treatment is carried out for 5-10 minutes at a ball to mixture mass ratio of 20: 1 -40: 1 and the rotation speed of the planetary disk 694-900 rpm, then SHS is carried out in the reactor in a nitrogen atmosphere of 0.1-0.8 MPa, the initiation of a self-sustaining exothermic reaction is carried out due to a red-hot tungsten spiral, the consolidation of the synthesized hafnium carbonitride powder is carried out by the method of spark plasma sintering, while an argon atmosphere is created in the chamber and a pulse current from 1000-5000 A is passed through the sintered sample at a load of 30-70 MPa, the consolidation temperature and holding time are 1900-2200 ° C and 2-10 minutes, respectively.
RU2019143363A 2019-12-24 2019-12-24 Method of producing ultrahigh-temperature ceramic material based on hafnium carbonitride RU2729277C1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2019143363A RU2729277C1 (en) 2019-12-24 2019-12-24 Method of producing ultrahigh-temperature ceramic material based on hafnium carbonitride
CN202080097439.4A CN115151358A (en) 2019-12-24 2020-10-26 Method for manufacturing ultrahigh-temperature ceramic material based on hafnium carbide and hafnium carbonitride
PCT/RU2020/050295 WO2021133226A1 (en) 2019-12-24 2020-10-26 Method for fabrication of ultra-high-temperature ceramic material based on hafnium carbide and carbonitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019143363A RU2729277C1 (en) 2019-12-24 2019-12-24 Method of producing ultrahigh-temperature ceramic material based on hafnium carbonitride

Publications (1)

Publication Number Publication Date
RU2729277C1 true RU2729277C1 (en) 2020-08-05

Family

ID=72085640

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019143363A RU2729277C1 (en) 2019-12-24 2019-12-24 Method of producing ultrahigh-temperature ceramic material based on hafnium carbonitride

Country Status (3)

Country Link
CN (1) CN115151358A (en)
RU (1) RU2729277C1 (en)
WO (1) WO2021133226A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115806277A (en) * 2021-09-15 2023-03-17 中南大学 Novel preparation method of ultrahigh-melting-point hafnium carbonitride powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110845238A (en) * 2019-11-29 2020-02-28 中南大学 Long-time ablation-resistant ultrahigh-melting-point nitrogen-containing carbide ultrahigh-temperature ceramic and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU417245A1 (en) * 1972-08-09 1974-02-28
RU2225837C2 (en) * 1998-03-16 2004-03-20 СЕП Бьенвэню - Лакост Method of preparing powder-like complex ceramic materials based on refractory alloys
US6793875B1 (en) * 1997-09-24 2004-09-21 The University Of Connecticut Nanostructured carbide cermet powders by high energy ball milling
CN103979974A (en) * 2014-05-14 2014-08-13 西北工业大学 Preparation method of C/SiC-HfB2-HfC ultrahigh-temperature ceramic-based composite material
RU2614006C1 (en) * 2015-12-14 2017-03-22 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Method for producing nanoceramics by method of combining self-propagating high-temperature synthesis and spark plasma sintering
CN107601508A (en) * 2017-09-12 2018-01-19 江苏理工学院 A kind of hafnium carbide nano material and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215945A (en) * 1988-09-20 1993-06-01 The Dow Chemical Company High hardness, wear resistant materials
US5756410A (en) * 1997-02-27 1998-05-26 The Dow Chemical Company Method for making submicrometer transition metal carbonitrides
CN100528806C (en) * 2007-02-06 2009-08-19 复旦大学 Method of preparing zirconium diboride/aluminum-ferric trioxide composite powder
CN101468918B (en) * 2007-12-28 2012-06-20 北京有色金属研究总院 High purity zirconium boride / hafnium boride and preparation of superhigh temperature ceramic target material
WO2010085006A1 (en) * 2009-01-20 2010-07-29 The Industry & Academic Cooperation In Chungnam National University (Iac) Fabrication method of nano-sized metal carbide powder using self-propagating high-temperature synthesis
CN103253669B (en) * 2013-05-17 2015-07-08 航天材料及工艺研究所 Method for preparing HfC powder at low temperature by carbothermic method
KR101633448B1 (en) * 2014-12-18 2016-06-24 한국기계연구원 A HfC Powder and A Manufacturing method of the same
CN104671245B (en) * 2015-02-28 2017-02-22 武汉理工大学 Preparation method of hafnium carbide nano-powder
CN105732043A (en) * 2016-03-01 2016-07-06 郑州大学 Method for preparing hafnium carbide ceramic powder body by using fused salt under assistance of carbon thermal reduction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU417245A1 (en) * 1972-08-09 1974-02-28
US6793875B1 (en) * 1997-09-24 2004-09-21 The University Of Connecticut Nanostructured carbide cermet powders by high energy ball milling
RU2225837C2 (en) * 1998-03-16 2004-03-20 СЕП Бьенвэню - Лакост Method of preparing powder-like complex ceramic materials based on refractory alloys
CN103979974A (en) * 2014-05-14 2014-08-13 西北工业大学 Preparation method of C/SiC-HfB2-HfC ultrahigh-temperature ceramic-based composite material
RU2614006C1 (en) * 2015-12-14 2017-03-22 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Method for producing nanoceramics by method of combining self-propagating high-temperature synthesis and spark plasma sintering
CN107601508A (en) * 2017-09-12 2018-01-19 江苏理工学院 A kind of hafnium carbide nano material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115806277A (en) * 2021-09-15 2023-03-17 中南大学 Novel preparation method of ultrahigh-melting-point hafnium carbonitride powder

Also Published As

Publication number Publication date
CN115151358A (en) 2022-10-04
WO2021133226A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
Locci et al. Effect of ball milling on simultaneous spark plasma synthesis and densification of TiC–TiB2 composites
Raihanuzzaman et al. Powder refinement, consolidation and mechanical properties of cemented carbides—An overview
RU2729277C1 (en) Method of producing ultrahigh-temperature ceramic material based on hafnium carbonitride
Panov Nanostructured sintered WC–Co hard metals
Xia et al. Structure formation in the combustion synthesis of Al2O3–TiC composites
Mukasyan Combustion synthesis of silicon carbide
Ma et al. In-situ TiC-Ti5Si3-SiC composite coatings prepared by plasma spraying
Mukasyan et al. Ceramics from self-sustained reactions: Recent advances
Hossein-Zadeh et al. Microstructure investigation of V2AlC MAX phase synthesized through spark plasma sintering using two various sources V and V2O5 as the starting materials
Song et al. Influences of the pre-oxidation time on the microstructure and flexural strength of monolithic B4C ceramic and TiB2-SiC/B4C composite ceramic
Zarezadeh Mehrizi et al. Reaction Pathways of Nanocomposite Synthesized in-situ from Mechanical Activated Al–C–TiO 2 Powder Mixture
Pramono et al. The aluminum based composite produced by self propagating high temperature synthesis
XU et al. Microstructure and mechanical properties of Ti–43Al–9V alloy fabricated by spark plasma sintering
RU2614006C1 (en) Method for producing nanoceramics by method of combining self-propagating high-temperature synthesis and spark plasma sintering
Abdel-Karim et al. Fabrication and characterization of HfB2-based composites in the presence of TiC and CNT
RU2414991C1 (en) Method of producing ceramic articles with nanostructure
US4731349A (en) Process of producing alumina-titanium carbide ceramic body
Lotfi Elevated temperature oxidation behavior of HVOF sprayed TiB2 cermet coating
Petukhov et al. Reactive electric-discharge sintering of TiN-TiB 2
Pandey et al. Mechanical, structural and oxidation behavior of ultra high-temperature ceramic Ti–B–Si hard composite
Gaffet et al. Mechanical milling
Marych et al. Features of structure, phase composition and properties of hotforged high-entropy alloys of Ti-Cr-Fe-Ni-C system
Syzonenko et al. High-energy synthesis of metalomatric composites hardened by max phases of Ti-Al-C system
Lisyanskiy et al. The use of high-energy shock wave treatment as pre-activation of sintering high-entropy solid solutions of transition metal borides and carbides
Lu et al. Effects of Al2O3 content on densification, microstructure, mechanical properties and oxidation resistance of TaC-Al2O3 composites