RU2728668C1 - Ветроэнергетическая установка - Google Patents

Ветроэнергетическая установка Download PDF

Info

Publication number
RU2728668C1
RU2728668C1 RU2019121579A RU2019121579A RU2728668C1 RU 2728668 C1 RU2728668 C1 RU 2728668C1 RU 2019121579 A RU2019121579 A RU 2019121579A RU 2019121579 A RU2019121579 A RU 2019121579A RU 2728668 C1 RU2728668 C1 RU 2728668C1
Authority
RU
Russia
Prior art keywords
wind
output
sensor
unit
generator
Prior art date
Application number
RU2019121579A
Other languages
English (en)
Inventor
Вадим Зиновьевич Манусов
Насрулло Хасанзода
Original Assignee
Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" filed Critical Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет"
Priority to RU2019121579A priority Critical patent/RU2728668C1/ru
Application granted granted Critical
Publication of RU2728668C1 publication Critical patent/RU2728668C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

Изобретение относится к ветроэнергетическим установкам. Ветроэнергетическая установка содержит ветроколесо, на выходе которого расположен датчик скорости вращения вала, который является входом для ветрогенератора, выход которого соединен с датчиком активной мощности, после которого подключается датчик дополнительной активной мощности, вырабатываемой за счет среднеквадратического отклонения скорости ветра от ее математического ожидания, который является входом блока фаззификации четких величин в нечеткие лингвистические переменные вместе с датчиком скорости ветра и датчиком скорости вращения ротора, выход блока фаззификации является входом блока базы правил, а выход блока базы правил соединен с блоком дефаззификации. Изобретение направлено на повышение коэффициента использования энергии ветрового потока. 1 ил.

Description

Предлагаемое изобретение относится к области электроэнергетики и может быть использовано в ветроэнергетических установках (ВЭУ) для повышения энергоэффективности выработки мощности.
Известна ветроэнергетическая установка, (Патент RU №132142, Ветроэнергетическая установка, заявл. 21.03.2013, опубл. 10.09.2013, Бюл. №25), являющаяся прототипом предлагаемого изобретения и содержащая генератор тока с датчиком момента на валу, узел выпрямления и фильтрации, датчик частоты вращения, функциональный преобразователь, блок деления, интегратор, датчик активной мощности. Датчик частоты вращения вала ветроколеса выдает на вход функционального преобразователя сигнал Uω, пропорциональный частоте вращения вала ветроколеса. Повышение коэффициента использования энергии ветра СP заключается в том, что в установившемся режиме работы установки при постоянной скорости ветра V и постоянстве частоты вращения вала ω на выходе узла выпрямления и фильтрации устанавливается сигнал, пропорциональный моменту на валу. При изменении скорости ветра на выходе сумматора возникает сигнал Uизб, пропорциональный избыточному моменту Мизб на валу. Поэтому в выходном сигнале сумматора появляется составляющая Uизб, способствующая увеличению угла управления тиристорами выпрямителя и уменьшению момента генератора Мг, что приводит к более быстрому изменению частоты вращения вала вслед за изменением скорости ветра. По мере увеличения частоты вращения вала ветроколеса механический момент генератора растет, и при достижении нового установившегося значения частоты вращения сигнал на выходе второго сумматора становится равным нулю. Данное устройство позволяет увеличить выработку электроэнергии за счет эффективных законов регулирования при изменении скорости ветра.
Однако указанная ветроэнергетическая установка обладает следующим недостатком: скорость ветрового потока принята неизменной, то есть как некоторая детерминированная постоянная величина на интервале времени. В реальной действительности ветровой поток обладает нерегулярными случайными отклонениями (флуктуациями) от некоторого среднего значения, т.е. должна использоваться вероятностная модель, которая не учитывается в прототипе.
Мощность, вырабатываемая ветроколесом (ВК) зависит от параметров ветрового потока, площадь ометаемой поверхности, положение гондолы, углом атаки к набегающему потоку ветра и определяется зависимостью
Figure 00000001
где ρ - плотность воздуха; А - ометаемая поверхность ветроколеса (м2); V - скорость ветра (м/с); Ср - параметр, характеризующий эффективность преобразования энергии ветра в электрическую энергию и зависит от конструкции ветроколеса.
Однако, приведенная выше математическая модель (1) является детерминистической, так как она не учитывает вероятностные отклонения от среднего значения на некотором интервале времени, то есть флуктуацию. скорости ветрового потока, что имеет место в реальной действительности.
Известно, что при нелинейной зависимости между входными и выходными параметрами любой технической системы возникает смещение (сдвиг) среднего значения (математического ожидания) выходного сигнала от величины дисперсии входного сигнала. Например, при квадратичной зависимости потерь активной мощности от тока в линиях электропередачи в детерминистической постановке,
Figure 00000002
где I - действующее значение тока; R - сопротивление линии.
В вероятностной постановке задачи, то есть с учетом отклонений тока от среднего значения, определяемых дисперсии тока (DI) формула (2) является частным случаем. Новое выражение имеет вид
Figure 00000003
Подобным образом предлагается более точная зависимость между скоростью ветра, ее дисперсией и выработкой мощности ветроустановкой.
Разработка новой вероятностной модели оценки мощности, вырабатываемой ветроустановкой, выполнена через начальные и центральные моменты случайной величины скорости ветрового потока. Результирующее выражение имеет вид
Figure 00000004
где
Figure 00000005
- математическое ожидание скорости ветра.
При сравнении (1) и (4) видно, что учет дисперсии скорости ветра (DV), смещает величину вырабатываемой мощности ВЭУ в сторону большего значения. Иначе говоря, флуктуация ветрового потока позволяет увеличить вырабатываемую мощность ВЭУ, что обусловлено кубической нелинейной - зависимостью между скоростью ветра и мощностью ветроустановки.
Техническим результатом предлагаемого изобретения является повышение коэффициента использования энергии ветрового потока. На чертеже приведена структурная схема ветроэнергетической установки.
Заявленный результат достигается тем, что ветроэнергетическая установка содержит ветроколесо 1 с задатчиком 2 изменения угла атаки лопасти, датчик 3 скорости вращения вала, расположенный на выходе ветроколеса, генератор 4 электрического тока, к выходу которого подключен датчик 5 вырабатываемой генератором электрического тока активной мощности, к которому подключен датчик дополнительной вырабатываемой генератором электрического тока активной мощности, обусловленной среднеквадратическим отклонением скорости ветра 6 от ее математического ожидания, выход которого подключен к блоку фаззификации 7 регулятора нечеткого типа, блок 8 базы правил, выход которого подключен к блоку 9 дефаззификации, датчик 10 скорости ветра.
Предлагаемая установка работает следующим образом. Ветроколесо 1 вращается со скоростью (ω), измеряемой с помощью датчика 3. Генератор вырабатывает активную мощность (Р), измеряемую датчиком активной мощности 5, к выходу которого подключен датчик дополнительной вырабатываемой генератором активной мощности 6, обусловленной среднеквадратическим отклонением скорости ветра от ее математического ожидания. Выходы датчика 6, датчика скорости ветра (V) 10 и датчика скорости вращения ротора генератора (ω) 3 объединяются в блоке фаззификации 7, в котором входные четкие величины преобразуются в нечеткие лингвистические переменные. Лингвистические переменные из блока 7 поступают в блок базы правил 8, в котором каждому значению входной величины ставится в соответствие определенное значение выходной лингвистической переменной. Выходная лингвистическая переменная поступает в блок дефаззификации 9 лингвистических переменных в четкие выходные. На следующем этапе четкая выходная величина подается в задатчик 2 изменения угла атаки лопасти (α).
Использование регулятора нечеткого типа позволяет согласовать контуры регулирования мощности между собой по заранее написанным продукционным правилам, учитывающих возможные изменения параметров ветра во всех рабочих диапазонах. Иными словами, ввод датчика дополнительной активной мощности, обусловленной флуктуациями ветрового потока в контур регулирования, позволяет использовать в качестве входных величин скорость ветра и ее среднеквадратическое отклонение. Поэтому использование измеренного значения активной мощности приводит к увеличению коэффициента использования энергии ветрового потока.

Claims (1)

  1. Ветроэнергетическая установка, содержащая ветроколесо, задатчик изменения угла атаки лопасти, датчик скорости вращения вала, расположенный на выходе ветроколеса, генератор электрического тока, датчик вырабатываемой генератором электрического тока активной мощности, блок фаззификации четких величин в нечеткие лингвистические переменные, блок базы правил, блок дефаззификации, датчик скорости ветра, отличающаяся тем, что к выходу датчика вырабатываемой генератором электрического тока активной мощности добавлен датчик дополнительной вырабатываемой генератором электрического тока активной мощности, обусловленной среднеквадратическим отклонением скорости ветра от ее математического ожидания, при этом выход датчика дополнительной вырабатываемой генератором электрического тока активной мощности, выход датчика скорости ветра и выход датчика скорости вращения вала объединяются в блоке фаззификации четких величин в нечеткие лингвистические переменные, выход которого является входом блока базы правил, выход которого является входом блока дефаззификации, выход которого является входом задатчика изменения угла атаки лопасти.
RU2019121579A 2018-11-22 2018-11-22 Ветроэнергетическая установка RU2728668C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019121579A RU2728668C1 (ru) 2018-11-22 2018-11-22 Ветроэнергетическая установка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019121579A RU2728668C1 (ru) 2018-11-22 2018-11-22 Ветроэнергетическая установка

Publications (1)

Publication Number Publication Date
RU2728668C1 true RU2728668C1 (ru) 2020-07-31

Family

ID=72086092

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019121579A RU2728668C1 (ru) 2018-11-22 2018-11-22 Ветроэнергетическая установка

Country Status (1)

Country Link
RU (1) RU2728668C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656362A (en) * 1982-11-08 1987-04-07 United Technologies Corporation Blade pitch angle control for large wind turbines
SU1315646A1 (ru) * 1986-01-14 1987-06-07 Киевский Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Система управлени ветроагрегатом
SU1477944A1 (ru) * 1987-05-04 1989-05-07 Конструкторское бюро "Шторм" при Киевском политехническом институте им.50-летия Великой Октябрьской социалистической революции Система управлени ветроэлектрической установкой
SU1477942A1 (ru) * 1987-04-08 1989-05-07 Конструкторское бюро "Шторм" при Киевском политехническом институте им.50-летия Великой Октябрьской социалистической революции Система управлени ветроэлектрической установкой
RU2468251C1 (ru) * 2011-07-07 2012-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" Способ регулирования ветроэнергетической установки и устройство для его реализации
RU132142U1 (ru) * 2013-03-21 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет" Ветроэнергетическая установка

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656362A (en) * 1982-11-08 1987-04-07 United Technologies Corporation Blade pitch angle control for large wind turbines
SU1315646A1 (ru) * 1986-01-14 1987-06-07 Киевский Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Система управлени ветроагрегатом
SU1477942A1 (ru) * 1987-04-08 1989-05-07 Конструкторское бюро "Шторм" при Киевском политехническом институте им.50-летия Великой Октябрьской социалистической революции Система управлени ветроэлектрической установкой
SU1477944A1 (ru) * 1987-05-04 1989-05-07 Конструкторское бюро "Шторм" при Киевском политехническом институте им.50-летия Великой Октябрьской социалистической революции Система управлени ветроэлектрической установкой
RU2468251C1 (ru) * 2011-07-07 2012-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" Способ регулирования ветроэнергетической установки и устройство для его реализации
RU132142U1 (ru) * 2013-03-21 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский государственный технический университет" Ветроэнергетическая установка

Similar Documents

Publication Publication Date Title
Chen et al. New overall power control strategy for variable-speed fixed-pitch wind turbines within the whole wind velocity range
US4584486A (en) Blade pitch control of a wind turbine
Ofualagba et al. Wind energy conversion system-wind turbine modeling
CN105591395A (zh) 一种双馈风机虚拟惯量控制后的转速恢复方法
CN108488035B (zh) 永磁直驱风力发电机组失速和变桨混合控制方法
Bhowmik et al. Wind speed estimation based variable speed wind power generation
CN104675629A (zh) 一种变速风力发电机组的最大风能捕获方法
Kumar et al. PI/FL based blade pitch angle control for wind turbine used in wind energy conversion system
Llano et al. Control algorithms for permanent magnet generators evaluated on a wind turbine emulator test-rig
CN109356799A (zh) 一种无风速传感器风电机组功率追踪方法
Nye et al. Design and implementation of a variable speed wind turbine emulator
Yao et al. Variable speed wind turbine maximum power extraction based on fuzzy logic control
RU2728668C1 (ru) Ветроэнергетическая установка
Andrzej et al. Laboratory setup with squirrel-cage motors for wind turbine emulation
Tsitsovits et al. Dynamics of an isolated power system supplied from diesel and wind
Abdelhameed et al. Adaptive maximum power tracking control technique for wind energy conversion systems
El Mouhi et al. Active and Reactive Power Control of DFIG used in WECS using PI Controller and Backstepping
RU132142U1 (ru) Ветроэнергетическая установка
Farret et al. Active yaw control with sensorless wind speed and direction measurements for horizontal axis wind turbines
CN114876732A (zh) 一种风电机组变桨的控制方法及装置
Trinh et al. Fuzzy logic controller for maximum power tracking in PMSG-based wind power systems
Wu et al. A review of frequency regulation of DFIG-based wind farms
Chitransh et al. Comparative analysis of different configuration of generators for extraction of wind energy
Ofualagba et al. The modeling and dynamic characteristics of a variable speed wind turbine
Charafeddine et al. Rotor resistance control of a wound induction generator for wind turbine with blade actuator