RU2722525C1 - Адаптивное управление процессами аддитивного производства в реальном масштабе времени с использованием машинного обучения - Google Patents

Адаптивное управление процессами аддитивного производства в реальном масштабе времени с использованием машинного обучения Download PDF

Info

Publication number
RU2722525C1
RU2722525C1 RU2019141479A RU2019141479A RU2722525C1 RU 2722525 C1 RU2722525 C1 RU 2722525C1 RU 2019141479 A RU2019141479 A RU 2019141479A RU 2019141479 A RU2019141479 A RU 2019141479A RU 2722525 C1 RU2722525 C1 RU 2722525C1
Authority
RU
Russia
Prior art keywords
data
algorithm
machine learning
learning algorithm
control
Prior art date
Application number
RU2019141479A
Other languages
English (en)
Inventor
Эдвард МЕХР
Тим ЭЛЛИС
Джордан НУН
Original Assignee
Релативити Спэйс, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Релативити Спэйс, Инк. filed Critical Релативити Спэйс, Инк.
Application granted granted Critical
Publication of RU2722525C1 publication Critical patent/RU2722525C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/12Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/18Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • G06N20/10Machine learning using kernel methods, e.g. support vector machines [SVM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/02Computing arrangements based on specific mathematical models using fuzzy logic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/351343-D cad-cam
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45165Laser machining
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49011Machine 2-D slices, build 3-D model, laminated object manufacturing LOM
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49017DTM desktop manufacturing, prototyping
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49018Laser sintering of powder in layers, selective laser sintering SLS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/490233-D printing, layer of powder, add drops of binder in layer, new powder
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Human Computer Interaction (AREA)
  • Pure & Applied Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Laser Beam Processing (AREA)
  • General Factory Administration (AREA)
  • Feedback Control In General (AREA)

Abstract

Изобретение относится к способу и системе управления процессом нанесения для изготовления изделий произвольной формы после проектирования или процессом соединения после проектирования. Технический результат заключается в управлении изготовлением изделия. Способ включает предоставление входной проектной геометрии для объекта, набора данных для обучения, датчиков, которые выдают данные в реальном масштабе времени для свойств объекта, когда объект физически изготавливается, и предоставление процессора, запрограммированного для прогнозирования оптимального набора параметров управления технологическим процессом для инициации процесса нанесения для изготовления изделий произвольной формы или процесса соединения, который получают с использованием алгоритма машинного обучения, удаления шумов из данных о свойствах объекта, выданных датчиками, до включения их в алгоритм машинного обучения, предоставления в масштабе реального времени классификации обнаруженных дефектов объекта и предоставления команд для осуществления процесса нанесения для изготовления изделий произвольной формы после проектирования или процесса соединения после проектирования, чтобы изготовить объект. 2 н. и 17 з.п. ф-лы, 25 ил.

Description

ОПИСАНИЕ
Ссылка на родственную заявку
[1] Согласно настоящей заявке испрашивается приоритет в соответствии с заявкой на выдачу патента США №15/604,473, поданной 24 мая 2017 года, которая посредством ссылки полностью включается в настоящий документ.
Предшествующий уровень техники настоящего изобретения
[2] Процессы аддитивного производства представляют собой способы производства, позволяющие изготавливать функциональные сложные изделия послойно без использования литейных форм и штампов. Несмотря на последние достижения в области способов и устройств, используемых для различных типов аддитивного производства, по-прежнему существует необходимость в способах, обеспечивающих быструю оптимизацию и настройку параметров управления процессом, используемых в ответ на изменения технологических параметров и параметров окружающей среды, а также для повышения качества изготавливаемых изделий. Раскрыты способы и системы, предназначенные для проведения автоматизированной классификации дефектов объектов с использованием алгоритмов машинного обучения. Кроме того, раскрыты способы и системы для осуществления адаптивного управления в реальном масштабе времени процессами нанесения для изготовления изделий произвольной формы или процессами соединения, включая процессы аддитивного производства или сварки, для повышения выхода, производительности и качества технологического процесса.
Сущность изобретения
[3] Предлагаются способы адаптивного управления в реальном масштабе времени процессом нанесения для изготовления изделий произвольной формы или процессом соединения, причем указанные способы предусматривают: а) предоставление входной проектной геометрии для объекта; b) предоставление набора данных для обучения, причем набор данных для обучения содержит данные моделирования процесса, данные характеризации процесса, данные контроля в процессе изготовления, данные контроля после изготовления или их любую комбинацию для нескольких проектных геометрий или их частей, таких же или отличающихся от входной проектной геометрии стадии (а); с) предоставление прогнозируемого оптимального набора или последовательности из одного или более параметров управления технологическим процессом для изготовления объекта, причем прогнозируемый оптимальный набор из одного или более параметров управления технологическим процессом получают, используя алгоритм машинного обучения, обученный с использованием набора данных для обучения стадии (b); и d) осуществление процесса нанесения для изготовления изделий произвольной формы или процесса соединения, чтобы изготовить объект, причем данные характеризации процесса в реальном масштабе времени используют как входные данные для алгоритма машинного обучения для корректировки одного или более параметров управления технологическим процессом в реальном масштабе времени.
[4] Согласно некоторым вариантам осуществления стадии (b)-(d) выполняют итерационно, и в набор данных для обучения включают данные характеризации процесса, данные контроля в процессе изготовления, данные контроля после изготовления для каждой итерации или их любую комбинацию. Согласно некоторым вариантам осуществления процесс нанесения для изготовления изделий произвольной формы или процесс соединения представляет собой стереолитографию (SLA), цифровую оптическую обработку (DLP), моделирование методом наплавления нити (FDM), выборочное лазерное спекание (SLS), выборочное лазерное сплавление (SLM) или электронно-лучевую плавку (ЕВМ) или процесс сварки. Согласно некоторым вариантам осуществления процесс нанесения для изготовления изделий произвольной формы представляет собой процесс нанесения для изготовления изделий произвольной формы с переходом из жидкой фазы в твердую. Согласно некоторым вариантам осуществления процесс нанесения для изготовления изделий произвольной формы с переходом из жидкой фазы в твердую представляет собой процесс нанесения с использованием лазера и металлической проволоки. Согласно некоторым вариантам осуществления данные моделирования процесса получают путем выполнения анализа методом конечных элементов (FEA), анализа методом конечных объемов (FVA), анализа методом конечных разностей (FDA), расчетов вычислительной гидрогазодинамики (CFD) или их любой комбинации. Согласно некоторым вариантам осуществления один или более параметров управления технологическим процессом, подлежащих прогнозированию или управлению, включают скорость нанесения материала, скорость перемещения аппарата для нанесения, скорость изменения ускорения аппарата для нанесения, направление перемещения аппарата для нанесения, местоположение аппарата для нанесения как функция времени (траектория перемещения инструмента), угол аппарата для нанесения относительно направления нанесения, угол свеса в намеченной геометрии, интенсивность теплового потока в материал при нанесении, размер и форма поверхности теплового потока, расход и угол потока защитного газа, температуру плиты основания, контроль окружающей температуры на протяжении процесса нанесения, температуру осаждаемого материала до нанесения, установку тока или напряжения в аппарате резистивного нагрева, частоту или амплитуду напряжения в аппарате индукционного нагрева, выбор осаждаемого материала, соотношение осаждаемых материалов по объему или массе, если используются более одного осаждаемого материала, или их любую комбинацию. Согласно некоторым вариантам осуществления данные моделирования процесса содержат прогноз средней массовой или пиковой температуры нанесенного материала, скорости охлаждения нанесенного материала, химического состава нанесенного материала, состояния разделения составляющих в нанесенном материале, геометрического свойства нанесенного материала, интенсивности теплового потока из материала при нанесении, электромагнитного излучения из осаждаемого материала, акустической эмиссии из осаждаемого материала или их любой комбинации как функции набора указанных входных параметров управления технологическим процессом. Согласно некоторым вариантам осуществления данные характеризации процесса содержат результат измерения средней массовой или пиковой температуры нанесенного материала, скорости охлаждения нанесенного материала, химического состава нанесенного материала, состояния разделения составляющих в нанесенном материале, геометрического свойства нанесенного материала, скорости нанесения материала, скорости перемещения аппарата для нанесения, местоположения (траектории перемещения инструмента) аппарата для нанесения, угла аппарата для нанесения относительно направления нанесения, индикатора состояния аппарата для нанесения, угла свеса в нанесенной геометрии, угла свеса в намеченной геометрии, интенсивности теплового потока в материал при нанесении, интенсивности теплового потока из материала при нанесении, электромагнитного излучения из осаждаемого материала, акустической эмиссии из осаждаемого материала, удельной электропроводности осаждаемого материала, удельной теплопроводности осаждаемого материала, дефекта геометрии изготавливаемого объекта или их любой комбинации. Согласно некоторым вариантам осуществления данные контроля в процессе изготовления или данные контроля после изготовления содержат данные визуального контроля или контроля с помощью машинного зрения чистоты обработки поверхности, визуального контроля или контроля с помощью машинного зрения на предмет поверхностных трещин и пор, испытания механических свойств, таких как прочность, твердость, пластичность, усталость, испытания химических свойств, таких как состав, разделение составляющих материалов, методики характеризации дефектов, такой рентгеновская дифракция или рентгенография, компьютерная томография, ультразвуковая визуализация, измерений с помощью решетки датчиков вихревых токов или термографии или их любой комбинации. Согласно некоторым вариантам осуществления алгоритм машинного обучения содержит алгоритм обучения с учителем, алгоритм неконтролируемого обучения, алгоритм обучения с частичным привлечением учителя, алгоритм усиленного обучения, алгоритм глубокого обучения или их любую комбинацию. Согласно некоторым вариантам осуществления алгоритм машинного обучения представляет собой алгоритм искусственной нейронной сети, алгоритм регрессии Гауссова процесса, алгоритм дерева логистической модели, алгоритм случайного леса, алгоритм нечеткого классификатора, алгоритм дерева решений, алгоритм иерархической кластеризации, алгоритм обучения методом k-средних, алгоритм нечеткой кластеризации, алгоритм машинного обучения с использованием глубинной машины Больцмана, алгоритм глубокой сверточной нейронной сети, алгоритм глубокой рекуррентной нейронной сети или их любую комбинацию. Согласно некоторым вариантам осуществления алгоритм машинного обучения содержит искусственную нейронную сеть. Согласно некоторым вариантам осуществления искусственная нейронная сеть содержит входной слой (уровень), выходной слой (уровень) и по меньшей мере 1 скрытый слой (уровень). Согласно некоторым вариантам осуществления искусственная нейронная сеть содержит входной слой (уровень), выходной слой (уровень) и по меньшей мере 5 скрытых слоев (уровней). Согласно некоторым вариантам осуществления искусственная нейронная сеть содержит входной слой (уровень), выходной слой (уровень) и по меньшей мере 10 скрытых слоев (уровней). Согласно некоторым вариантам осуществления количество узлов во входном слое (уровне) составляет по меньшей мере 10. Согласно некоторым вариантам осуществления количество узлов во входном слое (уровне) составляет по меньшей мере 100. Согласно некоторым вариантам осуществления количество узлов во входном слое (уровне) составляет по меньшей мере 1000. Согласно некоторым вариантам осуществления по меньшей мере один поток данных характеризации процесса предоставляют в алгоритм машинного обучения с частотой по меньшей мере 10 Гц. Согласно некоторым вариантам осуществления по меньшей мере один поток данных характеризации процесса предоставляют в алгоритм машинного обучения с частотой по меньшей мере 100 Гц. Согласно некоторым вариантам осуществления по меньшей мере один поток данных характеризации процесса предоставляют в алгоритм машинного обучения с частотой по меньшей мере 1000 Гц. Согласно некоторым вариантам осуществления один или более параметров управления технологическим процессом корректируют с частотой по меньшей мере 10 Гц. Согласно некоторым вариантам осуществления один или более параметров управления технологическим процессом регулируют с частотой по меньшей мере 100 Гц. Согласно некоторым вариантам осуществления один или более параметров управления технологическим процессом регулируют с частотой по меньшей мере 1000 Гц. Согласно некоторым вариантам осуществления способ реализуют с использованием одной интегрированной системы, содержащей аппарат для нанесения, датчик и процессор. Согласно некоторым вариантам осуществления способ реализуют с использованием распределенной блочной системы, содержащей первый аппарат для нанесения, первый датчик и первый процессор, причем первый аппарат для нанесения, первый датчик и первый процессор выполнены с возможностью совместного использования обучающих данных и/или данных характеризации процесса в реальном масштабе времени через локальную вычислительную сеть (LAN), интранет, экстранет или интернет. Согласно некоторым вариантам осуществления набор данных для обучения находится в интернетовском облаке. Согласно некоторым вариантам осуществления совместное использование данных первым аппаратом для нанесения, первым датчиком и первым процессором обеспечивают путем использования алгоритма сжатия данных, алгоритма извлечения элементов данных или алгоритма снижения размерности данных. Согласно некоторым вариантам осуществления набор данных для обучения совместно используют и обновляют с использованием данных из нескольких аппаратов для нанесения и датчиков, выполненных с возможностью совместного использования данных через локальную вычислительную сеть (LAN), интранет, экстранет или интернет. Согласно некоторым вариантам осуществления набор данных для обучения дополнительно содержит данные характеризации процесса, данные контроля в процессе изготовления, данные контроля после изготовления или их любую комбинацию, полученные опытным оператором при ручной корректировке входных параметров управления технологическим процессом. Согласно некоторым вариантам осуществления как часть обучения алгоритма машинного обучения алгоритм машинного обучения методом случайной выборки выбирает значения в пределах указанного диапазона для каждого из набора из одного или более параметров управления технологическим процессом и вводит результирующие данные моделирования процесса, данные характеризации процесса, данные контроля в процессе изготовления, данные контроля после изготовления или их любую комбинацию в набор данных для обучения для улучшения обученной модели, которая соотносит значения параметров управления технологическим процессом с результатами процесса.
[5] Предлагаются также системы для управления процессом нанесения для изготовления изделий произвольной формы или процессом соединения, причем указанные системы содержат: а) первый аппарат для нанесения, причем указанный аппарат для нанесения способен изготавливать объект на основании входной проектной геометрии; Ь) один или более датчиков характеризации процесса, причем указанные один или более датчиков характеризации процесса выдают данные в реальном масштабе времени для одного или более технологических параметров или свойств объекта; и с) процессор, запрограммированный (i) на создание прогнозируемого оптимального набора из одного или более входных параметров управления технологическим процессом, и (ii) для корректировки одного или более параметров управления технологическим процессом в реальном масштабе времени на основании потока данных характеризации процесса в реальном масштабе времени, выданных одним или более датчиками характеризации процесса, причем прогнозы и корректировки получают с использованием алгоритма машинного обучения, обученного с использованием набора данных для обучения.
[6] Согласно некоторым вариантам осуществления система дополнительно содержит компьютерное запоминающее устройство, в котором хранятся программное обеспечение алгоритма машинного обучения, данные из одного или более датчиков характеризации процесса, прогнозируемые или откорректированные значения одного или более параметров управления технологическим процессом, набор данных для обучения или их любая комбинация. Согласно некоторым вариантам осуществления первый аппарат для нанесения, один или более датчиков характеризации процесса и процессор включены в одну интегрированную систему. Согласно некоторым вариантам осуществления первый аппарат для нанесения, один или более датчиков характеризации процесса и процессор выполнены как модули распределенной системы, совместно использующие обучающие данные и/или данные характеризации процесса в реальном масштабе времени через локальную вычислительную сеть (LAN), интранет, экстранет или интернет. Согласно некоторым вариантам осуществления набор данных для обучения находится в облаке сети интернет и совместно используется и обновляется с использованием данных из нескольких аппаратов для нанесения и датчиков, выполненных с возможностью совместного использования данных через локальную вычислительную сеть (LAN), интранет, экстранет или интернет. Согласно некоторым вариантам осуществления набор данных для обучения содержит данные моделирования процесса, данные характеризации процесса, данные контроля в процессе изготовления, данные контроля после изготовления или их любую комбинацию для нескольких объектов, которые являются такими же или отличаются от объекта стадии (а). Согласно некоторым вариантам осуществления один или более датчиков характеризации процесса представляют собой датчики температуры, датчики положения, датчики движения, датчики касания/приближения, акселерометры, профилометры, угломеры, датчики изображения и системы машинного видения, датчики удельной электропроводности, датчики удельной теплопроводности, тензометрические датчики, твердомеры, устройства рентгеновской дифракции или рентгенографии, устройства компьютерной томографии, устройства ультразвуковой визуализации, решетки датчиков вихревых токов, термографы, индикаторы состояния аппарата для нанесения или их любую комбинацию. Согласно некоторым вариантам осуществления один или более датчиков характеризации процесса представляют собой по меньшей мере один лазерный интерферометр, систему машинного видения или датчик, обнаруживающий электромагнитное излучение, отраженное, рассеянное, поглощенное, пропущенное или излученное объектом. Согласно некоторым вариантам осуществления система машинного видения конструктивно исполнена как система на основе света в видимой части спектра, используемая для измерения размеров объекта. Согласно некоторым вариантам осуществления система машинного видения конструктивно исполнена как система на основе света в видимой части спектра, используемая для измерения чистоты обработки поверхности объекта. Согласно некоторым вариантам осуществления система машинного видения конструктивно исполнена как система на основе света в инфракрасной части спектра, используемая для измерения температуры объекта или теплового потока внутри объекта. Согласно некоторым вариантам осуществления система машинного видения конструктивно исполнена как система на основе рентгеновской дифракции, используемая для измерения свойств материала объекта. Согласно некоторым вариантам осуществления один или более параметров управления технологическим процессом, подлежащих прогнозированию или регулированию, включают скорость нанесения материала, скорость перемещения аппарата для нанесения, скорость изменения ускорения аппарата для нанесения, направление перемещения аппарата для нанесения, угол аппарата для нанесения относительно направления нанесения, интенсивность теплового потока в материал при нанесении, размер и форму поверхности теплового потока, расход и угол потока защитного газа, температуру аппарата для нанесения, контроль окружающей температуры на протяжении процесса нанесения, температуру осаждаемого материала до нанесения, установку тока или напряжения в аппарате резистивного нагрева, частоту или амплитуду напряжения в аппарате индукционного нагрева, выбор осаждаемого материала, соотношение осаждаемых материалов по объему или массе, если используются более одного осаждаемого материала, или их любую комбинацию. Согласно некоторым вариантам осуществления алгоритм машинного обучения содержит алгоритм обучения с учителем, алгоритм неконтролируемого обучения, алгоритм обучения с частичным привлечением учителя, алгоритм усиленного обучения, алгоритм глубокого обучения или их любую комбинацию. Согласно некоторым вариантам осуществления алгоритм машинного обучения содержит алгоритм искусственной нейронной сети. Согласно некоторым вариантам осуществления искусственная нейронная сеть содержит входной слой (уровень), выходной слой (уровень) и по меньшей мере 5 скрытых слоев (уровней). Согласно некоторым вариантам осуществления количество узлов во входном слое (уровне) составляет по меньшей мере 100. Согласно некоторым вариантам осуществления по меньшей мере один поток данных характеризации процесса предоставляются в алгоритм машинного обучения с частотой по меньшей мере 100 Гц. Согласно некоторым вариантам осуществления один или более параметров управления технологическим процессом регулируются с частотой по меньшей мере 100 Гц.
[7] Предлагаются способы автоматизированной классификации дефектов объекта, причем указанные способы предусматривают: а) предоставление набора данных для обучения, причем набор данных для обучения содержит данные моделирования процесса изготовления, данные характеризации процесса изготовления, данные контроля в процессе изготовления, данные контроля после изготовления или их любую комбинацию для нескольких проектных геометрий, таких же или отличающихся от таковой объекта; Ь) предоставление одного или более датчиков, причем указанные один или более датчиков выдают данные в реальном масштабе времени для одного или более свойств объекта; с) предоставление процессора, запрограммированного на проведение классификации обнаруженных дефектов объекта с использованием алгоритма машинного обучения, обученного с использованием набора данных для обучения стадии (а), причем данные в реальном масштабе времени из одного или более датчиков выдают как входные данные для алгоритма машинного обучения, и эти данные позволяют корректировать классификацию обнаруженных дефектов объекта в реальном масштабе времени.
[8] Согласно некоторым вариантам осуществления способ дополнительно предусматривает удаление шумов из данных о свойствах объекта, выданных одним или более датчиками, до включения их в алгоритм машинного обучения. Согласно некоторым вариантам осуществления шумы из данных о свойствах объекта удаляют с использованием алгоритма усреднения сигнала, алгоритма сглаживающего фильтра, алгоритма фильтра Калмана, алгоритма нелинейного фильтра, алгоритма минимизации полной вариации или их любой комбинации. Согласно некоторым вариантам осуществления один или более датчиков выдают данные об электромагнитном излучении, отраженном, рассеянным, поглощенным, пропущенным или излученным объектом. Согласно некоторым вариантам осуществления один или более датчиков содержат или представляют собой датчики изображения или системы машинного видения. Согласно некоторым вариантам осуществления электромагнитное излучение представляет собой излучение в ультрафиолетовой, видимой или инфракрасной области спектра. Согласно некоторым вариантам осуществления один или более датчиков выдают данные об акустической или механической энергии, отраженной, рассеянной, поглощенной, пропущенной или излученной объектом. Согласно некоторым вариантам осуществления для увеличения контраста между нормальными и дефектными элементами объекта используют вычитание эталонного набора данных. Согласно некоторым вариантам осуществления один или более датчиков выдают данные об удельной электропроводности или удельной теплопроводности объекта. Согласно некоторым вариантам осуществления алгоритм машинного обучения содержит или представляет собой алгоритм обучения с учителем, алгоритм неконтролируемого обучения, алгоритм обучения с частичным привлечением учителя, алгоритм усиленного обучения, алгоритм глубокого обучения или их любую комбинацию. Согласно некоторым вариантам осуществления по меньшей мере один из указанных одного или более датчиков выдает данные как входные данные для алгоритма машинного обучения с частотой по меньшей мере 100 Гц. Согласно некоторым вариантам осуществления классификацию обнаруженных дефектов объекта корректируют с частотой по меньшей мере 100 Гц. Согласно некоторым вариантам осуществления обнаруженные дефекты объекта классифицируют с использованием метода опорных векторов (SVM), искусственной нейтронной сети (ANN) или экспертной обучающей системы на основе дерева решений. Согласно некоторым вариантам осуществления дефекты объекта обнаруживают как различия между данными о свойствах объекта и эталонным набором данных, превышающие установленный порог, и классифицируют с использованием алгоритма метода опорных векторов (SVM) для одного класса или автокодировщика. Согласно некоторым вариантам осуществления дефекты объекта обнаруживают и классифицируют с использованием алгоритма машинного неконтролируемого обучения метода опорных векторов (SVM) для одного класса, автокодировщика, кластеризации или ближайших k-соседей (kNN) и набора данных для обучения, содержащего данные о свойствах объекта для дефектных и бездефектных объектов.
[9] Предлагаются способы адаптивного управления в реальном масштабе времени процессом нанесения для изготовления изделий произвольной формы или процессом соединения, причем указанные способы предусматривают: а) предоставление входной проектной геометрии для объекта; b) предоставление набора данных для обучения, причем набор данных для обучения содержит данные моделирования процесса, данные характеризации процесса, данные контроля в процессе изготовления, данные контроля после изготовления, или их любую комбинацию для нескольких проектных геометрий или их частей, таких же или отличающихся входной проектной геометрии стадии (а); с) предоставление набора или последовательности из одного или более параметров управления технологическим процессом для инициирования процесса нанесения для изготовления изделий произвольной формы или процесса соединения, чтобы изготовить объект; и d) осуществление процесса нанесения для изготовления изделий произвольной формы или процесса соединения, чтобы изготовить объект, причем данные характеризации процесса в реальном масштабе времени используют как входные данные для алгоритма машинного обучения, обученного с использованием набора данных для обучения стадии (b), для настройки одного или более параметров управления технологическим процессом в реальном масштабе времени. Согласно некоторым вариантам осуществления получают также прогнозируемый оптимальный набор или последовательность одного или более параметров управления технологическим процессом для инициирования процесса нанесения для изготовления изделий произвольной формы или процесса соединения, используя алгоритм машинного обучения.
Включение посредством ссылки
[10] Все публикации, патенты, и заявки на выдачу патента, упоминаемые в настоящем описании, ссылкой полностью включены в настоящее описание в такой же степени, как если бы каждая отдельная публикация, каждый отдельный патент или каждая отдельная заявка на выдачу патента были конкретно и отдельно указаны как полностью включенные ссылкой в настоящее описание. В случае противоречия между термином в настоящем описании и термином, включенным ссылкой, преимущественную силу имеет термин в настоящем описании.
Краткое описание фигур
[11] Новые признаки настоящего изобретения подробно изложены в прилагаемой формуле изобретения. Лучшее понимание признаков и преимуществ настоящего изобретения будет получено из последующего подробного описания, в котором изложены иллюстративные варианты осуществления, в которых используются принципы настоящего изобретения, а также из прилагаемых фигур, где:
[12] на фиг. 1 представлена схематическая иллюстрация системы на основе машинного обучения, предназначенной для осуществления адаптивного управления в реальном масштабе времени процессами нанесения для изготовления изделий произвольной формы, например, процессами аддитивного производства;
[13] на фиг. 2 представлена принципиальная схема иллюстративной установки для процесса нанесения материала, например, процесса нанесения с использованием лазера и металлической проволоки, в соответствии с некоторыми вариантами настоящего изобретения;
[14] на фиг. 3А-С представлены схематические иллюстрации преобразования САПР-дизайна для трехмерного объекта в непрерывный, спирально намотанный «двухмерный» слой (конечной толщины) и связанной спиральной траектории перемещения инструмента (фиг. 3А), или последовательности расположенных друг над другом «двухмерных» слоев и связанных кругообразных послойных траекторий передвижения инструмента (фиг. 3В) для нанесения материала с использованием процесса аддитивного производства. На фиг. 3С представлена иллюстрация траектории перемещения инструмента для роботизированного инструмента нанесения и моделирования результирующего объекта, изготовленного с использованием процесса аддитивного производства;
[15] на фиг. 4А-С представлены примеры данных FEA-моделирования для моделирования зоны плавления для нанесения с использованием лазера и металлической проволоки; на фиг. 4А представлен вид в изометрии трехмерных данных с цветным кодированием FEA-моделирования для жидкой фракции материала в зоне плавления, осаждаемого процессом нанесения с использованием лазера и металлической проволоки. На фиг. 4В представлен разрез данных FEA-моделирования для жидкой фракции материала в зоне плавления. На фиг. 4С представлен разрез трехмерных данных с цветным кодированием FEA-моделирования для статической температуры материала в зоне плавления;
[16] на фиг. 5 представлена блок-схема одного не ограничивающего объем изобретения примера конкретного типа системы аддитивного производства, т.е. системы нанесения с использованием лазера и металлической проволоки;
[17] на фиг. 6А-В представлен один не ограничивающий объем изобретения пример контроля признаков в процессе изготовления с использованием интерферометрии. На фиг. 6А представлена схематическая иллюстрация лучей лазера, используемых для зондирования геометрии подачи проволоки и зоны плавления, с наложенным фотоснимком процесса нанесения с использованием лазера и металлической проволоки.
На фиг. 6В представлены профили поперечного сечения (т.е. профили высоты по ширине нанесения) подачи проволоки (сплошная линия; пик) и ранее нанесенного слоя (сплошная линия; плечи) и результирующей зоны плавления (пунктирная ось). Размер по оси абсцисс (ширина) показан в произвольных единицах. Размер по оси ординат (высота) показан в миллиметрах относительно фиксированной точки отсчета ниже слоя нанесения;
[18] на фиг. 7А-С представлен один не ограничивающий объем изобретения пример выделения признаков в процессе изготовления из изображений процесса нанесения с использованием лазера и металлической проволоки, полученных с использованием системы машинного видения. На фиг. 7А представлен поток необработанных изображений, полученный из системы машинного видения. На фиг. 7В представлено обработанное изображение после удаления шумов, фильтрования и применения алгоритмов обнаружения краев. На фиг. 1С представлено обработанное изображение после применения алгоритма выделения признаков;
[19] на фиг. 8 представлен цикл «прогноз действия - вознаграждение» для алгоритма усиленного обучения в соответствии с некоторыми вариантами осуществления настоящего изобретения;
[20] на фиг. 9 представлена конструкция функции вознаграждения, основанная на контроле действий, выбираемых человеком-оператором в управляемым вручную процессе нанесения;
[21] на фиг. 10 представлена схематическая иллюстрация искусственной нейронной сети в соответствии с некоторыми вариантами осуществления настоящего изобретения, и примеры входа (входов) входного и выходного слоя (слоев) и выхода (выходов) нейронной сети, используемых для обеспечения адаптивного управления в реальном масштабе времени процессом нанесения аддитивного производства;
[22] на фиг. 11 представлена схематическая иллюстрация функциональных возможностей одного узла в слое (уровне) искусственной нейронной сети;
[23] на фиг. 12 представлена схематическая иллюстрация интегрированной системы, содержащей используемый для аддитивного производства аппарат для нанесения, системы машинного видения и/или другие инструменты контроля за ходом технологического процесса, инструменты моделирования процесса, инструменты контроля после изготовления и процессор для выполнения алгоритма машинного обучения, использующего данные машинного видения и/или инструментов контроля за ходом технологического процесса, инструментов моделирования процесса, инструментов контроля после изготовления или их любой комбинации для обеспечения адаптивного управления в реальном масштабе времени процессом нанесения;
[24] на фиг. 13 представлена схематическая иллюстрация распределенной системы, содержащей используемые для аддитивного производства аппарат для нанесения, системы машинного видения и/или другие инструменты контроля за ходом технологического процесса, инструменты моделирования процесса, инструменты контроля после изготовления и процессор для прогона алгоритма машинного обучения, использующий данные машинного видения и/или инструментов контроля за ходом технологического процесса, инструментов моделирования процесса, инструментов контроля после изготовления или их любой комбинации для обеспечения адаптивного управления в реальном масштабе времени процессом нанесения. Согласно некоторым вариантам осуществления разные компоненты или модули системы могут физически располагаться в разных рабочих зонах и/или рабочих местах и могут связываться через локальную вычислительную сеть (LAN), интранет, экстранет или интернет, и при этом разные модули могут совместно использовать технологические данные (например, обучающие данные, данные моделирования процесса, данные управления процессом и данные контроля после изготовления) и управляющие команды процесса и обмениваться ими;
[25] на фиг. 14 представлен один не ограничивающий объем изобретения пример процесса выделения признаков и сжатия данных без учителя;
[26] на фиг. 15 представлен ожидаемый результат для одного не ограничивающего объем изобретения примера процесса неконтролируемого машинного обучения для классификации дефектов объекта;
[27] на фиг. 16А-С представлен пример выделения признаков изображения после процесса и корреляции с действиями во время изготовления. На фиг. 16А представлено изображение детали после завершения процесса построения. На фиг. 16В представлен результат контроля после построения (снимок компьютерной томографии). На фиг. 16С представлено изображение снимка компьютерной томографии на фиг. 16В после автоматизированного выделения признаков; автоматизированное выделение признаков позволяет коррелировать признаки детали с действиями во время построения.
Подробное описание изобретения
[28] Предлагаются способы автоматизированной классификации дефектов объекта, например, для объектов, изготовленных с использованием процесса аддитивного производства или процесса сварки, причем указанные способы предусматривают: а) предоставление набора данных для обучения, причем набор данных для обучения содержит данные моделирования процесса изготовления, данные характеризации процесса изготовления, данные контроля в процессе изготовления, данные контроля после изготовления или их любую комбинацию для нескольких проектных геометрий объекта, которые являются такими же или отличающимися от объекта; b) предоставление одного или более датчиков, причем указанные один или более датчиков выдают данные в реальном масштабе времени об одном или более свойствах объекта; с) предоставление процессора, запрограммированного на проведение классификации обнаруженных дефектов объекта с использованием алгоритма машинного обучения, обученного с использованием набора данных для обучения стадии (а), причем данные в реальном масштабе времени из одного или более датчиков выдают как входные данные для алгоритма машинного обучения, и эти данные позволяют корректировать классификацию обнаруженных дефектов объекта в реальном масштабе времени. Предлагаются также системы, предназначенные для проведения автоматизированной классификации дефектов объекта.
[29] Предлагаются способы адаптивного управления в реальном масштабе времени процессом аддитивного производства или сварки, предусматривающие: а) предоставление входной проектной геометрии для объекта; b) предоставление набора данных для обучения, причем набор данных для обучения содержит данные моделирования процесса, данные характеризации процесса, данные контроля в процессе изготовления, данные контроля после изготовления или их любую комбинацию для нескольких проектных геометрий, таких же или отличающихся от входной проектной геометрии стадии (а), или для любой их части; с) предоставление прогнозируемого оптимального набора/последовательности одного или более параметров управления технологическим процессом для изготовления объекта, причем прогнозируемый оптимальный набор одного или более параметров управления технологическим процессом получают, используя алгоритм машинного обучения, обученный с использованием набора данных для обучения стадии (b); и d) осуществление процесса аддитивного производства или сварки для изготовления объекта, причем данные характеризации процесса в реальном масштабе времени используют как входные данные для алгоритма машинного обучения для настройки одного или более параметров управления технологическим процессом в реальном масштабе времени. Описаны также системы, предназначенные для реализации этих способов, как схематически проиллюстрировано на фиг. 1. Как показано на фиг. 1, согласно некоторым вариантам осуществления предлагаемые способы адаптивного управления в реальном масштабе времени процессами аддитивного производства или сварки могут реализовывать с использованием распределенной системы, в которой, например, разные компоненты или модули системы могут физически располагаться в разных рабочих зонах или разных рабочих местах или в разных географических местоположениях, и данные моделирования процесса, данные характеризации процесса, данные контроля в процессе изготовления, данные контроля после изготовления и/или команды адаптивного управления процессом совместно используют и обменивают между местоположениями посредством телекоммуникационной сети или сети интернет.
[30] В значении, в каком они используются в настоящем описании, термины «процесс нанесения» и «процесс нанесения для изготовления изделий произвольной формы» могут означать любой из целого ряда процессов нанесения для изготовления изделий произвольной формы с переходом из жидкой фазы в твердую, процессов нанесения для изготовления твердотельных изделий произвольной формы с переходом из одной твердой фазы в другую, процессов аддитивного производства, процессов сварки и т.п. Согласно некоторым вариантам осуществления предлагаемые способы и системы могут применяться к любым из целого ряда процессов аддитивного производства, включая, но без ограничения, моделирование методом наплавления нити (FDM), выборочное лазерное спекание (SLS) или выборочное лазерное сплавление (SLM), более подробно описанные ниже. Согласно некоторым предпочтительным вариантам осуществления процесс аддитивного производства может представлять собой процесс нанесения для изготовления изделий произвольной формы с переходом из жидкой фазы в твердую, например, процесс нанесения с использованием лазера и металлической проволоки, или процесс сварки, например процесс лазерной сварки.
[31] Согласно некоторым вариантам осуществления данные моделирования процесса могут включать в набор данных для обучения, используемый алгоритмом машинного обучения, что позволяет осуществлять автоматизированную классификацию дефектов объекта, прогнозирование оптимальных наборов или последовательностей параметров управления технологическим процессом, корректировку параметров управления технологическим процессом в реальном масштабе времени или их любую комбинацию. Например, такие инструменты моделирования процесса, как анализ методом конечных элементов (FEA), могут использовать для моделирования процесса изготовления объекта или его конкретной части, например, признака, из любого из целого ряда материалов для изготовления в зависимости от указанного набора параметров управления технологическим процессом. Согласно некоторым вариантам осуществления инструменты моделирования процесса могут использовать для прогнозирования оптимального набора или последовательности параметров управления технологическим процессом для изготовления указанного объекта или признака объекта.
[32] Согласно некоторым вариантам осуществления данные характеризации процесса могут включать в набор данных для обучения, используемый алгоритмом машинного обучения, что позволяет осуществлять автоматизированную классификацию дефектов объекта, прогнозирование оптимальных наборов или последовательностей параметров управления технологическим процессом, корректировку параметров управления технологическим процессом в реальном масштабе времени или их любую комбинацию. Например, данные характеризации процесса могут выдаваться любым из целого ряда датчиков или системами машинного видения, что подробнее описывается ниже. Согласно некоторым вариантам осуществления данные характеризации процесса могут подавать в алгоритм машинного обучения для обновления параметров управления технологическим процессом аппарата для аддитивного производства в реальном масштабе времени.
[33] Согласно некоторым вариантам осуществления данные контроля в процессе изготовления или данные контроля после изготовления могут включаться в набор данных для обучения, используемый алгоритмом машинного обучения, что позволяет осуществлять автоматизированную классификацию дефектов объекта, прогнозирование оптимальных наборов или последовательностей параметров управления технологическим процессом, корректировку параметров управления технологическим процессом в реальном масштабе времени или их любую комбинацию. Например, данные контроля в процессе изготовления или после изготовления могут содержать данные визуальных или основанных на машинном видении измерений размеров объекта, чистоты обработки поверхности, числа поверхностных трещин или пор и т.д., что подробнее описывается ниже. Согласно некоторым вариантам осуществления данные контроля в процессе изготовления (например, данные автоматизированной классификации дефектов) могут использоваться алгоритмом машинного обучения для определения набора или последовательности корректировок параметров управления технологическим процессом, при которых (корректировках) будут выполнять корректирующее действие, например, для корректировки размера или толщины слоя, чтобы устранить дефект при первом обнаружении. Согласно некоторым вариантам осуществления данные контроля в процессе изготовления (например, данные автоматизированной классификации дефектов) могут использоваться алгоритмом машинного обучения для посылки оператору сигнала предупреждения или ошибки или, необязательно, для автоматического прекращения процесса нанесения, например, процесса аддитивного производства.
[34] Согласно некоторым вариантам осуществления набор данных для обучения обновляется дополнительными данными моделирования процесса, данными характеризации процесса, данными контроля в процессе изготовления, данными контроля после изготовления или их любой комбинацией после каждой итерации процесса аддитивного производства, который осуществляют итерационно. Согласно некоторым вариантам осуществления набор данных для обучения дополнительно содержит данные характеризации процесса, данные контроля в процессе изготовления, данные контроля после изготовления или их любую комбинацию, созданные опытным оператором при ручной регулировке входных параметров управления технологическим процессом для процесса аддитивного производства для изготовления указанного набора объектов или деталей или при ручной регулировке параметров управления технологическим процессом в ответ на изменения технологических параметров или переменных окружающей среды для поддержания указанного качества изготавливаемых объектов или деталей. Согласно некоторым вариантам осуществления набор данных для обучения может содержать данные моделирования процесса, данные характеризации процесса, данные контроля в процессе изготовления, данные контроля после изготовления или их любую комбинацию, собранные с нескольких аппаратов аддитивного производства, работающих последовательно или параллельно.
[35] Для реализации предлагаемых способов автоматизированной классификации дефектов объекта и адаптивного управления процессами аддитивного производства или сварки может использоваться целый ряд алгоритмов машинного обучения, известных специалистам в данной области техники. Примеры включают в себя, кроме прочего, алгоритмы искусственной нейронной сети, алгоритмы регрессии Гауссова процесса, алгоритмы на основе нечеткой логики, алгоритмы дерева решений и т.д., подробнее описанные ниже. Согласно некоторым вариантам осуществления могут использоваться более одного алгоритма машинного обучения. Например, автоматизированная классификация дефектов объекта может реализовываться с использованием одного типа алгоритма машинного обучения, а адаптивное управление процессом в реальном масштабе времени - с использованием другого типа алгоритма машинного обучения. Согласно некоторым вариантам осуществления для реализации предлагаемых способов и систем могут использоваться гибридные алгоритмы машинного обучения, содержащие признаки и свойства, взятые из двух, трех, четырех, пяти или более алгоритмов машинного обучения.
[36] Согласно некоторым вариантам осуществления предлагаемые способы автоматизированной классификации дефектов объекта и адаптивного управления в реальном масштабе времени могут реализовывать с использованием таких компонентов, как, например, аппарат аддитивного производства и/или сварочный аппарат, мониторы или датчики управления процессом, системы машинного видения и/или инструменты контроля после изготовления, которые находятся в одной конкретной рабочей зоне и объединены в автономные системы. Согласно некоторым вариантам осуществления предлагаемые способы могут реализовывать с использованием модульных компонентов, например, аппарата аддитивного производства и/или сварочного аппарата, мониторов или датчиков управления процессом, систем машинного видения и/или инструментов контроля после изготовления, распределенных по разным рабочим зонам и/или разным рабочим местам и связанных через локальную вычислительную сеть (LAN), интранет, экстранет или интернет, и при этом разные модули могут совместно использовать технологические данные (например, обучающие данные, данные моделирования процесса, данные управления процессом и данные контроля после изготовления) и управляющие команды процесса и обмениваться ими. Согласно некоторым вариантам осуществления несколько аппаратов аддитивного производства и/или сварки связаны с одной распределенной системой, и при этом технологические данные совместно используются двумя или более системами управления аппаратами аддитивного производства и/или сварки и используются для обновления набора данных для обучения для всей распределенной системы.
[37] Предлагаемые способы и системы автоматизированной классификации дефектов объекта и адаптивного управления в реальном масштабе времени аппаратами аддитивного производства и/или сварки могут обеспечивать быструю оптимизацию и корректировку параметров управления технологическим процессом, что используется в ответ на изменения технологических параметров или параметров окружающей среды, а также повышение выхода технологического процесса, его производительности и качества изготавливаемых деталей. Эти способы и системы применимы к изготовлению деталей в целом ряде разных областей техники, включая, кроме прочего, автомобильную, аэрокосмическую промышленность, производство медицинского оборудования и бытовой электроники и т.д.
Термины и определения
[38] Если им не даны иные определения, все технические термины, используемые в настоящем описании, имеют то же значение, которое обычно придается им специалистом в данной области техники. В значении, в каком они используются в настоящем описании и прилагаемой формуле изобретения, формы единственного числа включают множественное число, если контекст четко не диктует иначе. Если не указано иначе, союз «или» предназначен охватывать сочетание союзов «и/или».
[39] В значении, в каком он используется в настоящем описании, термин «процесс нанесения для изготовления изделий произвольной формы» может означать любой из целого ряда процессов нанесения для изготовления изделий произвольной формы с переходом из жидкой фазы в твердую, процессов нанесения для изготовления изделий произвольной формы с переходом из одной твердой фазы в другую, процессов аддитивного производства, сварочных процессов и т.п.
[40] В значении, в каком он используется в настоящем описании, термин «процесс соединения» может означать любой из целого ряда процессов сварки.
[41] В значении, в каком он используется в настоящем описании, термин «поток данных» означает непрерывный или прерывный ряд или последовательность аналоговых сигналов или сигналов с цифровым кодированием (например, сигналов напряжения, токовых сигналов, данных изображения, содержащих пространственно-кодированные данные об интенсивности и/или длины волны света и т.д.), используемых для передачи и приема информации.
[42] В значении, в каком он используется в настоящем описании, термин «технологическое окно» означает диапазон значений параметров управления технологическим процессом, в котором конкретный технологический процесс изготовления дает определенный результат. В некоторых случаях технологическое окно может иллюстрироваться графиком зависимости между выходом технологического процесса и несколькими параметрами управления технологическим процессом, центральная область которого указывает диапазон значений параметров, в котором процесс «ведет себя хорошо», а внешние границы определяют области, в которых процесс становится нестабильным или выдает неблагоприятный результат.
[43] В значении, в каком он используется в настоящем описании, термин «машинное обучение» означает любой из целого ряда алгоритмов искусственного интеллекта или программного обеспечения, используемых для проведения обучения с учителем, неконтролируемого обучения, обучения с подкреплением или их любой комбинации.
[44] В значении, в каком он используется в настоящем описании, термин «реальный масштаб времени» означает скорость, с какой данные датчиков получают, обрабатывают и/или используют в контуре обратной связи с алгоритмом машинного обучения для обновления классификации дефектов объекта или для обновление набора или последовательности параметров управления технологическим процессом в ответ на изменения одного или более потоков входных технологических данных, содержащих данные моделирования процесса, данные характеризации процесса, данные контроля в процессе изготовления, данные контроля после изготовления или их любую комбинацию.
Процессы аддитивного производства
[45] Термин «аддитивное производство» означает ряд универсальных технологий изготовления для быстрого прототипирования и изготовления изделий, позволяющих преобразовывать цифровые 3D-модели (файлы САПР) в трехмерные объекты путем нанесения нескольких тонких слоев материала в соответствии с последовательностью двухмерных карт поперечного сечения для нанесения. Аддитивное производство может также именоваться как «прямое цифровое изготовление», «изготовление твердотельных изделий произвольной формы», «изготовление изделий произвольной формы с переходом из жидкой фазы в твердую» или «трехмерная печать (3D-печать)», и может включать нанесение материала в ряде разных состояний, включая жидкость, порошок и плавленый материал. Используя способы аддитивного производства, можно обрабатывать самые различные материалы, включая металлы, сплавы, керамику, полимеры, композиты, легкие структуры и многофазные материалы. Одним из важных преимуществ процессов аддитивного производства является меньшее число стадий изготовления, требуемых для преобразования виртуальной конструкции в готовое (или почти готовое) к использованию изделие. Еще одним важным преимуществом является способность изготавливать изделия сложных форм, которые нелегко изготовить с использованием традиционных технологий механической обработки, экструзии или литья.
[46] Конкретные примеры технологий аддитивного производства, к которым могут быть применены раскрытые способы классификации дефектов объектов и адаптивного управления технологическим процессом, включают, кроме прочего, процессы (лазерной) стереолитографии (SLA), цифровой оптической обработки (DLP), моделирования методом наплавления нити (FDM), выборочного лазерного спекания (SLS), выборочного лазерного сплавления (SLM) или электронно-лучевой плавки (ЕВМ).
[47] (Лазерная) стереолитография (SLA). В процессе (лазерной) стереолитографии емкость с отверждаемым УФ-излучением жидким полимером используется в комбинации с лучом сканирующего лазера для отверждения по одному тонкому слою полимера за раз в соответствии с двумерным паттерном экспозиции. Когда один слой готов, подложка или основание, на котором он отвержден, опускается чуть ниже в емкость, и отверждается другой слой. Платформа построения повторяет цикл стадий отверждения слоя и опускания, пока изделие не будет готово. Количество времени, необходимое для каждого цикла процесса, зависит от площади поперечного сечения изделия и требуемого пространственного разрешения. Ко времени, когда изделие готово, оно полностью погружено в отвержденный полимер. Затем оно извлекается из емкости и необязательно может дополнительно отверждаться в ультрафиолетовой печи.
[48] Цифровая оптическая обработка (DLP). Цифровая оптическая обработка -вариант стереолитографии, в котором ванна с жидким полимером подвергается воздействию света из DLP-проектора (например, который использует одно или более цифровых устройств с решеткой микрозеркал) в условиях безопасного света. DLP-проектор проецирует изображение 3D-модели на жидкий полимер. Подверженный воздействию света жидкий полимер затвердевает, и плита построения опускается, и жидкий полимер снова подвергается воздействию света. Процесс повторяется до тех пор, пока 3D-объект не будет готов, и из ванны не сольется жидкость, открыв отвержденную модель. 3D-печать при цифровой оптической обработке отличается быстротой, и объекты могут печататься с более высоким разрешением, чем в некоторых других технологиях.
[49] Моделирование методом наплавления нити (FDM). Моделирование методом наплавления нити - это одна из наиболее распространенных форм 3D-печати, иногда называемая также производством методом наплавления нити (FFF). FDM-принтеры могут печатать, используя самые разные пластики или полимеры, и обычно печатают с опорным материалом. FDM-принтеры используют экструзионные головки, перегревающие подаваемую пластиковую нить до такой степени, что она становится жидкой, и затем выталкивают материал наружу тонким слоем для медленного изготовления объекта в послойном процессе.
[50] Выборочное лазерное спекание (SLS). Выборочно используется лазер для совместной плавки материала слой за слоем. Слой порошка подается на платформу построения и нагревается лазером (а иногда и спрессовывается), так что он плавится без прохождения через жидкое состояние. После того как один слой порошка готов, снова подается и нагревается другой слой порошка. Процесс не требует опорного материала, поскольку остающийся материал удерживает его в нужном положении. После того как изделие готово, его извлекают из слоя порошка и очищают от любого лишнего материала.
[51] Выборочное лазерное сплавление (SLM). Выборочное лазерное сплавление -это вариант выборочного лазерного спекания и прямого лазерного спекания металлов (DMLS) (см. Yap, et al. (2015), "Review of Selective Laser Melting: Materials and Applications", Applied Physics Reviews 2:041101). Для плавки и сплавления металлических порошков используется лазер высокой мощности. Изделие печатается путем выборочной плавки и сплавления порошков в слоях и между ними. Эта технология - технология прямой записи, хорошо зарекомендовавшая себя при производстве изделий почти сетчатой формы (т.е. изготовленных изделий, очень близких к окончательной (сетчатой) форме, благодаря чему уменьшается необходимость в финишной обработке поверхности и значительно уменьшаются расходы на производство) с относительной плотностью до 99,9%. Это позволяет процессу печатать функциональные изделия с почти полной плотностью. Последние разработки в областях волоконной оптики и высокомощных лазеров позволили с помощью технологии SLM обрабатывать разные металлические материалы, такие как медь, алюминий и вольфрам, и открыли возможности для исследований использования в технологии SLM керамических и композитных материалов.
[52] Электронно-лучевая плавка (ЕВМ). Электронно-лучевая плавка - это технология аддитивного производства, подобная выборочному лазерному сплавлению. При использовании технологии ЕВМ изделия изготавливают плавкой порошка металла слой за слоем с использованием в качестве источника энергии электронных излучателей в условиях высокого вакуума. В отличие от технологий спекания, как ЕВМ, так и SLM добиваются полной плавки порошка металла. Этот способ на основе порошкового слоя позволяет получать непосредственно из порошка металла металлические изделия полной плотности, имеющие характеристики целевого материала. Аппарат ЕВМ считывает данные с 3D-модели САПР и укладывает последовательные слои порошкового материала. Эти слои сплавляются с использованием управляемого компьютером электронного луча для печати изделий слой за слоем. Процесс происходит в вакууме, что делает его пригодным для изготовления изделий с использованием реакционноспособных материалов с высокой аффинностью к кислороду, например, титана. Процесс протекает при более высоких температурах, чем многие другие технологии (до 1000°С), что может приводить к отличиям фазоообразования посредством кристаллизации и твердофазного преобразования. Исходный порошок обычно предварительно легируется, а не представляет собой смесь. По сравнению с SLM и DMLS, технология ЕВМ обычно имеет более высокую скорость печати благодаря ее более высокой плотности энергии и способу сканирования.
Нанесение с использованием лазера и металлической проволоки
[53] Согласно одному предпочтительному варианту осуществления процессы аддитивного производства и системы, к которым могут применяться предлагаемые способы классификации дефектов и адаптивного управления, относятся к нанесению с использованием лазера и металлической проволоки. Основной процесс при нанесении с использованием лазера и металлической проволоки - образование валиков нанесенного материала (которых для образования одного слоя может потребоваться несколько) с использованием лазерного источника высокой мощности и аддитивного материала в виде металлической проволоки (см.
Figure 00000001
(2012), Monitoring and Control of Robotized Laser Metal-Wire Deposition, Ph.D. Thesis, Department of Signals and Systems, Chalmers University of Technology,
Figure 00000002
Sweden). Лазер создает зону плавления на материале подложки, в которую подается и в которой плавится металлическая проволока, образуя металлургическую связь с подложкой. При перемещении лазерной головки и механизма подачи проволоки, т.е. инструмента нанесения (или сварки), относительно подложки, при затвердевании образуется валик. Относительным перемещением инструмента нанесения и подложки можно управлять с помощью, например, шестиосевого промышленного робота. Образование нанесенного слоя показано на фиг. 2, что подробнее описано ниже.
[54] Перед тем, как начать нанесение, обычно необходимо выбрать набор технологических параметров и соответственно настроить оборудование. Важные параметры управления технологическим процессом для нанесения с использованием лазера и металлической проволоки включают настройку мощности лазера, скорость подачи проволоки и скорость перемещения. Эти параметры управляют подводимой энергией, скоростью нанесения и профилем поперечного сечения наносимого слоя, т.е. шириной и высотой слоя. Высота (или толщина) нанесенного слоя определяется количеством проволоки, подаваемой в зону плавления, относительно скорости перемещения и мощность лазера. После того как номинальная мощность лазера, скорость перемещения и скорость подачи проволоки установлены, возможно, потребуется задать дополнительные параметры, например, ориентацию подачи проволоки относительно луча лазера и подложки для данной скорости перемещения. Тщательная подгонка этих параметров необходима для достижения стабильного нанесения на плоскую поверхность.
[55] Примеры параметров управления технологическим процессом, которые могут потребоваться для достижения стабильного нанесения равномерных валиков материала на плоской поверхности, включают, но без ограничения, следующие параметры.
[56] Мощность лазера. Один из основных параметров управления технологическим процессом. Настройка мощности лазера определяет максимальную подводимую энергию. В зависимости от размера луча лазера и скорости перемещения мощность лазера управляет также размером зоны плавления и, следовательно, шириной нанесенного валика.
[57] Распределение мощности лазера. Этот параметр влияет на динамику зоны плавления. Примеры разных распределений мощности лазера (или профиля луча), не ограничивающие объем изобретения, включают ступенчатое и Гауссово распределения.
[58] Угол между лучом лазера и проволокой или лучом лазера и подложкой. Эти параметры влияют на технологическое окно и действительную подводимую мощность. Угол между лучом лазера и подаваемой проволокой влияет на чувствительность процесса нанесения к изменениям скорости подачи проволоки и вариациям расстояния между мундштуком для проволоки и подложкой. Угол между лучом лазера и подложкой влияет на отражение луча лазера от поверхности подложки, и, следовательно, количество поглощенной энергии.
[59] Размер и форма луча лазера. Эти параметры управляют размером и формой зоны плавления (вместе с мощностью лазера и скоростью перемещения). Обычным является использование кольцевой формы луча, хотя используются и прямоугольные формы (например, в случае диодных лазеров). Размер выбирается с учетом требуемой ширины валика.
[60] Фокусное расстояние луча лазера. Этот параметр управляет тем, как луч лазера коллимирован на поверхности подложки. Следовательно, оно влияет на чувствительность процесса нанесения к вариациям расстояния между фокусной линзой и подложкой.
[61] Длина волна лазера. Этот параметр управляет поглощением луча лазера нанесенным материалом. Для металлов поглощение излечения лазера варьирует в зависимости от длины волны (и конкретных материалов).
[62] Скорость подачи проволоки. Еще один из основных параметров управления технологическим процессом. Скорость подачи проволоки влияет на количество массы, нанесенной в единицу времени. Скорость подачи проволоки влияет, главным образом, на высоту валика и должна выбираться в зависимости от мощности лазера и скорости перемещения.
[63] Диаметр проволоки. Этот параметр должен выбираться в соответствии с размером луча лазера для обеспечения надлежащего плавления и гибкого процесса.
[64] Угол между проволокой и подложкой. Этот параметр влияет на плавление проволоки и тем самым и на стабильность процесса нанесения. В должных условиях передача металла между проволокой и зоной плавления происходит плавно и непрерывно. Использование неправильного угла между проволокой и подложкой может привести к тому, что либо процесс передачи металла дает в результате глобулярное нанесение, например, как последовательность капель на поверхности подложки, либо при вхождении в зону плавления проволока может все еще находиться в твердом состоянии. Использование более крутого угла уменьшает чувствительность к направлению нанесения, но в то же время приводит к меньшему технологическому окну допустимых скоростей подачи проволоки.
[65] Положение кончика проволоки относительно зоны плавления. Этот параметр также влияет на скорость плавления проволоки и тем самым на стабильность процесса.
[66] Вылет проволоки. Этот параметр обычно не столь критичен, как угол проволоки или положение кончика проволоки, но может потребоваться регулировать расстояние вылета в зависимости от ожидаемых условий нанесения. Он влияет, главным образом, на чувствительность процесса к изменениям высоты между мундштуком для проволоки и подложкой.
[67] Защитный газ. Использование защитного газа может отражаться на степени, в какой в слой нанесения вносятся загрязняющие вещества и/или дефекты. Согласно некоторым вариантам осуществления могут регулироваться состав, расход и/или угол падения.
[68] Направление подачи. Этот параметр определяет, с какого направления проволока входит в зону плавления, и тем самым влияет на плавление проволоки и, таким образом, на процесс передачи металла. Разные выборы направления подачи изменяют диапазон допустимых скоростей подачи проволоки, которые могут использоваться. В некоторых случаях оно может влиять и на форму нанесенного валика.
[69] Скорость перемещения. Еще один из основных параметров управления технологическим процессом; скорость перемещения влияет на количество материала, наносимое на единицу длины, и подводимую энергию на единицу длину. При более низких скоростях перемещения процесс нанесения обычно стабильнее, если температура нанесенного материала не становится слишком высокой. При высоких скоростях перемещения могут получаться меньшие подводимые мощности для одного и того же количества материала, нанесенного на единицу длины. Однако более критическими становятся ускорение системы управления перемещением и точность пути.
[70] Стабильность процесса. Надлежащая настройка параметров управления технологическим процессом, описанных выше, влияет на скорость передачи металла между твердой проволокой и зоной плавления, что является важным для стабильности процесса нанесения. Как правило, есть три пути, какими может наноситься металлическая проволока: путем глобулярной (каплевидной) передачи, равномерной передачи или путем погружения (т.е. неполное плавление проволоки до входа в зону плавления). Стабильный процесс нанесения обеспечивает лишь равномерная передача.
[71] Если аппарат для нанесения настроен так, что кончик проволоки проводит слишком много времени в луче лазера (например, при выборе угла подачи, слишком крутого относительно других параметров управления технологическим процессом), он достигнет температуры плавления до входа в зону плавления. Передача металла между твердой проволокой и зоной плавления могла бы затем растянуться до точки, в которой поверхностное натяжение больше не может поддерживать поток металла, в результате чего происходят образование и разделение вызванных поверхностным натяжением сферических капель. Этот тип нанесения приводит к очень неравномерным формам валика и некачественному процессу нанесения. После того как глобулярная передача началась, прервать ее обычно трудно. Физический контакт между кончиком расплавленной проволоки и зоной плавления должен быть повторно установлен, и параметры управления технологическим процессом должны быть откорректированы до соответствующих значений.
[72] Альтернативно, если угол подачи проволоки тщательно отрегулирован так, что проволока плавится вблизи пересечения с зоной плавления, будет происходить равномерная передача металла из твердой проволоки в жидкий металл зоны плавления. Полученные в результате валики нанесенного металла будут иметь гладкую поверхность и стабильную металлургическую связь с подложкой.
[73] Еще один способ расплавить проволоку - путем передачи тепла из зоны плавления, т.е. путем погружения проволоки в зону плавления. Необходимо принять меры предосторожности, чтобы отрегулировать скорость подачи проволоки до значения, достаточно низкого относительно скорости плавления, обеспечиваемой тепловой энергией в зоне плавления, чтобы проволока полностью плавилась. Неполное плавление может привести, например, к дефектам несплавления. Следует отметить, что дефекты несплавления могут возникать даже при низких скоростях подачи проволоки, при которых полученные в результате валики более или менее неотличимы от нормальных нанесений валиков.
[74] Настройка технологических параметров. Параметры управления технологическим процессом, описанные выше, настраиваются в зависимости от выбора материала и подводимой мощности, требуемой для плавления материала, которая в свою очередь определяется, исходя из требуемой скорости нанесения, ограничений деформаций, вязкости материала и имеющейся мощности лазера и размеров пятна луча. Эти факторы выдвигают требование к настройкам мощности лазера, скорости перемещения и скорости подачи проволоки. Луч лазера предпочтительно должен быть максимально ортогональным к зоне плавления для минимизации отражения, но вместе с тем следует избегать обратного отражения в оптическую систему. Положение кончика проволоки относительно зоны плавления должно регулироваться с учетом выбранного количества материала, наносимого за единицу времени. Если используется конфигурация передней подачи, и скорость нанесения низкая, проволока должна входить в зону плавления ближе к переднему краю. Изменение этого параметра влияет, главным образом, на максимальную и минимальную скорости подачи проволоки для выбранных мощности лазера и скорости перемещения. Параметром, тесно связанным с положением кончика проволоки, является угол между проволокой и подложкой. Если этот угол мал, возможными могли бы быть высокие скорости подачи проволоки, поскольку погружение может использоваться лучшим образом. Однако для экстремальных скоростей подачи проволоки осуществима лишь передняя подача. Это ограничивает выбор сложных путей нанесения, таких как зигзагообразный или спиральный. Для того чтобы уменьшить чувствительность процесса нанесения к направлению подачи и тем самым обеспечить возможность произвольных паттернов нанесения, угол между проволокой и подложкой необходимо увеличить. Однако повышенная гибкость в части допустимых паттернов нанесения зачастую достигается за счет меньшего технологического окна.
[75] Многослойное нанесение. Как уже отмечалось, достижение стабильного нанесения одного валика материала на плоской подложке требует тщательной настройки параметров управления технологическим процессом. Однако в конечном итоге цель заключается в построении трехмерных деталей, т.е. в нанесении слоем нескольких смежных валиков и повторении нанесения для нескольких слоев. Переход от нанесения одного валика к построению трехмерной детали зачастую не прост. На точную форму отдельных слоев влияют несколько дополнительных факторов, например, паттерн нанесения, расстояние между соседними валиками, быстродействие системы управления перемещением и точность пути. Зависимость между этими факторами и их влияние на результирующий слой сложны и трудно предсказуемы, что усложняет настройку параметров управления технологическим процессом, требуемую для достижения данного расчетного признака нанесения, например, высоты слоя. Еще одним примером фактора, усложняющего построение трехмерных деталей, является потенциальное повышение локальной температуры детали вследствие аккумулирования тепла, что необходимо учитывать при многослойном нанесении. Тепло в наносимой детали может аккумулироваться, например, из-за слишком коротких пауз между нанесениями смежных слоев.
[76] Дополнительные неопределенности, возникающие при построении трехмерных деталей, могут создавать проблему с точки зрения стабильности процесса. Например, если оценка высоты слоя, которая должна быть достигнута, неточна, зависимость между положением кончика проволоки и подложкой будет отличаться от той, которая ожидалась для первоначально настроенных технологических параметров. Как результат, процесс нанесения может перейти от равномерной передачи расплавленной проволоки либо в режим глобулярного нанесения, либо в режим погружения проволоки. Следовательно, пока процесс нанесения не будет достаточно понятным и/или жестко управляться, что размеры отдельных слоев можно было точно прогнозировать, построение трехмерных деталей может требовать непрерывного оперативного контроля и/или корректировки параметров управления технологическим процессом.
Трудности оптимизации процессов аддитивного производства
[77] Некоторые из трудностей, рассмотренных выше в контексте нанесения с использованием лазера и металлической проволоки, применимы также к других процессам аддитивного производства (см. Guessasma, et al., (2015) "Challenges of Additive Manufacturing Technologies from Optimisation Perspective", Int. J. Simul. Multisci. Des. Optim. 6, A9). Первую трудность представляет генерирование траекторий передвижения инструмента из трехмерных САПР-моделей. Большинство технологий аддитивного производства основываются на процессе послойного изготовления и, начиная с трехмерного представления детали (т.е. с мозаичной версии фактической поверхности детали) и заканчивая стратегией двухмерного построения, могут вносить ошибки. Эта проблема является особенно доминирующей в методах капельной 3D-печати, поскольку в результате процесса послойного нанесения во всех направлениях построения в сплавленном материале могут появиться разрывы непрерывности, которые могут привести к размерной неточности, неприемлемой финишной обработке и структурным и механическим анизотропиям. Анизотропия может возникнуть и при развитии конкретного гранулометрического состава, например, при нанесении с лазерным плавлением или дуговой сварке металлов. Уменьшение анизотропии может иногда достигаться выбором соответствующей ориентации построения виртуальной конструкции.
[78] Кроме того, различия между виртуальной конструкцией и изготовленным объектом иногда могут быть значительными из-за конечного пространственного разрешения, имеющегося в используемой оснастке аддитивного производства, или из-за усадки детали при отвердевании нанесенного материала, что может вызвать как изменения размера, так и деформацию детали. Рассмотрим, например, моделирование методом наплавления нити, для которого траектория перемещения инструмента содержит ряд путей нитей конечного размера. Это имеет три основных последствия для изготовленного объекта: (i) внутренние структурные признаки не могут хорошо захватываться в зависимости от их размера; (ii) разрывы непрерывности могут появиться в зависимости от локальной кривизны; и (iii) состояние чистоты обработки поверхности может быть неприемлемым из-за грубых профилей, возникающих из-за сплавления нескольких нитей.
[79] Одним из последствий процесса изготовления с разрывами непрерывности и других проблем, связанных с ошибками процесса аддитивного производства, является пористость. Оценке эффекта пористости в напечатанных деталях посвящены многие технические публикации. Одним конкретным последствием является то, что пористость может ухудшить механические характеристики детали, например, из-за уменьшения жесткости при повышенном уровне пористости или из-за более низкой механической прочности при растяжении вследствие развития усиленного пористостью повреждения в виде микротрещин. Следует отметить, что пористость не всегда может рассматриваться как отрицательное последствие процессов аддитивного производства, поскольку в некоторых случаях применения она может использоваться, например, для повышения проницаемости.
[80] Еще одним типом дефекта, встречающимся в некоторых процессах аддитивного производства, является присутствие опорного материала, захваченного между внутренними поверхностями. Опорный материал иногда требуется, чтобы в процессе печати усилить хрупкие напечатанные структуры. Хотя эти материалы обычно выбираются с ограниченным прилипанием к нанесенным материалам, неполное удаление, приводящее к остаточным количествам опорного материала в детали, может способствовать, например, повышению массы детали и измененному распределению несущей способности, что в свою очередь может изменить характеристики детали относительно ожидаемых характеристик, основанных на первоначальной конструкции. Кроме того, неоптимизированное нанесение опорного материала может отразиться на состоянии чистоты поверхности детали, расходе материала, времени изготовления и т.д. В литературе описаны различные стратегии, направленные на уменьшение зависимости процессов аддитивного производства от использования опорных материалов. Эти стратегии могут варьировать в зависимости от геометрии детали и выбора материала для нанесения.
Процессы сварки
[81] Согласно некоторым вариантам осуществления предлагаемые способы классификации дефектов управления технологическим процессом вместо процессов и аппарата аддитивного производства или в комбинации с ними могут применяться к процессам сварки и сварочному аппарату. Примеры процессов сварки и сварочного аппарата, которые могут использоваться вместе с предлагаемыми способами и системами управления технологическим процессом включают, но без ограничения, процессы и аппарат сварки лазерным лучом, процессы и аппарат сварки плавящимся электродом в среде инертного газа (именуемой также дуговой сваркой плавящимся электродом в среде инертного газа), процессы и аппарат сварки вольфрамовым электродом в среде инертного газа и т.п.
[82] Сварка лазерным лучом (LBW). Способ сварки, используемый для соединения металлических компонентов, которые необходимо соединять с высокими скоростями сварки, тонкими и малыми сварными швами и низкой температурной деформацией. Лазерный луч представляет собой узконаправленный источник тепла, обеспечивающий узкие, глубокие сварные швы и высокие скорости сварки. Высокие скорости сварки, автоматизированная работа и способность реализовать управление с обратной связью качеством сварки в процессе сварки делают лазерную сварку широко распространенным способом соединения в современном промышленном производстве. Примеры автоматизированных крупномасштабных применений включают использование в автомобильной промышленности для сварки кузовов автомобилей. Другие применения включают выполнение мелких, непористых швов в медицинской технике, точную точечную сварку в электронной или ювелирной промышленности и сварку при изготовлении инструментов и моделей.
[83] Сварка плавящимся электродом в среде инертного газа. Процесс дуговой сварки, в котором электрод из непрерывной сплошной проволоки подается через сварочный пистолет и в сварочную ванну, соединяющей два основных материала. Через сварочный пистолет подает и защитный газ, защищающий сварочную ванну от загрязнения, отсюда и название сварка «плавящимся электродом в среде инертного газа». Сварка плавящимся электродом в среде инертного газа обычно используется для соединения тонких и средней толщины листов металла.
[84] Сварка вольфрамовым электродом в среде инертного газа. Сварка вольфрамовым электродом в среде инертного газа (называемая также дуговой сваркой вольфрамовым электродом в среде инертного газа) - это процесс, в котором для подачи тока в сварочную дугу используется нерасходуемый вольфрамовый электрод. Вольфрам и сварочная ванна защищаются и охлаждаются инертным газом, которым обычно является аргон. Сварка вольфрамовым электродом в среде инертного газа обычно обеспечивает несколько более аккуратный и более контролируемый шов, чем сварка плавящимся электродом в среде инертного газа.
Преобразование 3D файлов САПР в слои и траектории перемещения инструмента
[85] Автоматизированное проектирование. Первая стадия в типичном процессе нанесения для изготовления изделий произвольной формы, таком как процесс аддитивного производства, - создание трехмерной модели объекта, подлежащего изготовлению, с использованием пакета программного обеспечения системы автоматизированного проектирования (САПР). Может использоваться любой из целого ряда имеющихся на рынке пакетов программного обеспечения САПР, включая, но без ограничения, SolidWorks (компании Dassault Systemes SolidWorks Corporation, г. Уолтем, штат Массачусетс, США), Autodesk Fusion 360 (компании Autodesk, Inc., г. Сан-Рафаэль, штат Калифорния, США), Autodesk Inventor (компании Autodesk, Inc., г. Сан-Рафаэль, штат Калифорния, США), РТС Creo Parametric (г. Нидхэм, штат Массачусетс, США), и т.п.
[86] Преобразование в файл формата STL. После того как модель САПР готова, ее обычно преобразовывают в файл стандартного формата STL (стереолитография) (известный также как формат файла «стандартный язык треугольника» или «стандартный язык тесселирования»), первоначально разработанного компанией 3D Systems (г. Рок-Хилл, штат Южная Каролина, США). Этот формат файла поддерживается многими другими пакетами программного обеспечения и широко используется для быстрого прототипирования, 3D-печати и автоматизированных систем управления технологическим процессом (АСУ ТП). STL-файлы описывают лишь геометрию поверхности трехмерного объекта без какого-либо представления цвета, текстуры или иных обычных атрибутов САПР-модели. В файле типа ASCII STL САПР-модель представлена с использованием треугольных граней, описываемых координатами X/Y/Z трех вершин (упорядоченных по правилу правой руки) и единичным вектором для указания нормального направления, указывающего наружу от грани (см. Ding, et al. (2016), "Advanced Design for Additive Manufacturing: 3D Slicing and 2D Path Planning", Chapter lin New Trends in 3D Printing, I. Shishkovsky, Ed., Intech Open).
[87] Слайсинг (разделение на слои) STL-модели для создания слоев. После того как STL-файл создан, для разделения STL-модели на последовательность слоев в соответствии с направлением построения используются алгоритмы однонаправленного или многонаправленного слайсинга. Способами равномерного слайсинга создают слои, имеющие постоянную толщину. Точность деталей, изготовленных в процессе аддитивного производства, могут иногда повышать путем изменения толщины слоев. Обычно, чем меньше толщина слоя, тем выше достижимая точность. С толщиной нарезанных слоев тесно связана и скорость нанесения материала. Таким образом, способами адаптивного слайсинга STL-модель нарезают с переменной толщиной. При этом подходе, основанном на геометрии поверхности модели, автоматически регулируют толщину слоя для повышения точности изготовленной детали или сокращения времени построения.
[88] Как уже отмечалось, во многих процессах аддитивного производства используют слайсинг 3D-модели САПР на несколько двухмерных слоев, имеющих либо постоянную, либо адаптивную толщину, причем слои находятся один над другим в одном направлении построения. Однако при изготовлении деталей сложных форм стратегии однонаправленного слайсинга обычно обладают тем недостатком, что требуют включения поддерживающих структур для изготовления свисающих элементов. Необходимость наносить поддерживающие структуры приводит к большему времени построения, большим отходам материала и большей (а иногда и дорогостоящей) постобработки для удаления поддерживающих структур. Некоторые технологии аддитивного производства позволяют наносить материал в нескольких направлениях построения. Использование многонаправленного нанесения помогает устранить или значительно уменьшить потребность в поддерживающих структурах при изготовлении объектов сложных форм. Одной из главных проблем, связанных с многонаправленным аддитивным производством, является разработка надежных алгоритмов, позволяющих автоматически разделять любую 3D-модель на множество слоев, которые отвечают требованиям к послойному нанесению с отсутствием поддерживающих структур и столкновений. В технической литературе описан ряд стратегий достижения этой цели (см., например, Ding, et al. (2016), "Advanced Design for Additive Manufacturing: 3D Slicing and 2D Path Planning", Chapter lin New Trends in 3D Printing, I. Shishkovsky, Ed., Intech Open).
[89] Планирование траектории перемещения инструмента. Еще одной важной стадией в процессе нанесения для изготовления изделий произвольной формы или аддитивном производстве является разработка стратегий формирования траектории перемещения инструмента на основании слоев, идентифицированных алгоритмом слайсинга. Планирование траектории перемещения инструмента для процессов порошкового аддитивного производства, в которых используются мелкие, статистически распределенные частицы, в некоторой степени независимо от сложности геометрии. Однако на планирование траектории перемещения инструмента для процессов аддитивного производства, в которых используются более крупные, иногда грубые валики нанесенного материала, сложность геометрии может оказывать непосредственное влияние. Кроме того, траектория перемещения инструмента при нанесении может влиять на свойства нанесенного материала (высота и ширина валика, чистота обработки поверхности и т.д.). В технической литературе описан целый ряд стратегий планирования траектории перемещения инструмента, включая, но без ограничения, использование растровых траекторий передвижения инструмента, зигзагообразных траекторий передвижения инструмента, контурных траекторий передвижения инструмента, некоторых траекторий передвижения инструмента, гибридных траекторий передвижения инструмента, непрерывных траекторий передвижения инструмента, гибридных и непрерывных траекторий передвижения инструмента, траекторий передвижения инструмента на основе преобразования к срединным осям (МАТ) и адаптивных траекторий передвижения инструмента на основе МАТ.
[90] Растровые траектории перемещения инструмента. Технология траекторий передвижения инструмента с растровым сканированием основана на направлении планарного луча в одном направлении. При использовании этого подхода двухмерные области данного слоя заполняют путем нанесения нескольких валиков материала, имеющих конечную ширину. Обычно используемый в производственных системах аддитивного производства, этот подход отличается простотой реализации и подходит для использования с почти любой произвольной границей.
[91] Зигзагообразные траектории перемещения инструмента. Полученное из растрового подхода, формирование зигзагообразных траекторий движения инструмента является наиболее распространенным способом, используемым в производственных системах аддитивного производства. По сравнению с растровым подходом зигзагообразный подход значительно сокращает число прохождений траекторий передвижения инструмента (и, следовательно, время построения), требуемое для заполнения геометрии линия за линией путем объединения отдельных параллельных линий в одно непрерывное зигзагообразное прохождение. Как и в случае растрового подхода, точность контура детали иногда низкая из-за ошибок дискретизации на любом крае, не параллельном направлению движения инструмента.
[92] Контурные траектории перемещения инструмента. Контурные траектории перемещения инструмента, еще один часто используемый способ формирования траектории перемещения, помогают решать отмеченную выше проблему точности геометрического контура за счет следования граничным контурам детали. В литературе описаны различные виды «контурных карт» для разработки оптимальных траекторий перемещений инструмента для деталей, содержащих, главным образом, сложные формы, которые могут также иметь отверстия или «островки» (изолированные части модели в данном слое).
[93] Спиральные траектории перемещения инструмента. Спиральные пути перемещения инструмента широко применяется при обработке на станке с ЧПУ, например, для двухмерного фрезерования глубоких выемок (т.е. удаления материала внутри произвольно выбранной границы на плоской поверхности заготовки до указанной глубины). Этот способ используют также в процессах аддитивного производства для устранения проблем границ зигзагообразной траектории перемещения инструмента, но обычно он подходит только для некоторых специальных геометрических моделей.
[94] Гибридные траектории перемещения инструмента. Гибридные траектории перемещения инструмента имеют некоторые признаки более чем одного подхода. Например, иногда разрабатывают комбинацию контурной и зигзагообразной траекторий перемещения инструмента как для выполнения требований к геометрической точности детали, так и для повышения общей эффективности построения.
[95] Непрерывные траектории перемещения инструмента. Цель подходов с формированием непрерывных траекторий перемещения инструмента - заполнить слой нанесения, используя одну непрерывную траекторию перемещения, т.е. траекторию перемещения инструмента, позволяющую заполнить всю область без пересечения самой себя. Этот подход оказался особенно эффективным для уменьшения усадки в некоторых процессах изготовления с использованием аддитивного производства. Однако этот подход зачастую требует частых изменений направления траектории перемещения, что для некоторых процессов нанесения может быть неприемлемым. Кроме того, в случае большой площади, подлежащей заполнению, и высокого требования к точности требуемое время построения может быть неприемлемо продолжительным. Кроме того, высоко извилистые траектории передвижения инструмента могут привести к чрезмерной аккумуляции тепла в определенных зонах детали, тем самым вызывая недопустимую деформацию детали.
[96] Гибридные непрерывные траектории перемещения инструмента. Разработаны стратегии формирования траекторий передвижения инструмента, сочетающие в себе преимущества зигзагообразных и непрерывных траекторий перемещения инструмента. В этих подходах двухмерную геометрию вначале раскладывают на множество монотонных многоугольников. Затем для каждого монотонного многоугольника формируют зигзагообразную кривую. Наконец, множество замкнутых зигзагообразных кривых объединяют в интегрированную непрерывную извилистую траекторию. Недавно разработан еще один паттерн непрерывной траектории перемещения, сочетающий в себе преимущества зигзагообразных, контурных и непрерывных траекторий перемещения инструмента.
[97] Траектории перемещения инструмента на основе преобразования к срединным осям (МАТ). При этой альтернативной технологии формирования траекторий перемещения инструмента используют преобразование геометрии детали к срединным осям (МАТ) для получения смещенных кривых, начиная со средины и двигаясь наружу вместо начала с границы слоя и заполнения в средину. Срединная ось объекта задается из всех точек, имеющих более одной ближайшей точки на границе объекта. В двух измерениях, например, срединная ось подмножества S окружностей, ограниченных плоской кривой С, представляет собой геометрическое место центров всех окружностей в подмножестве S, пересекающееся по касательной с кривой С в двух или более точках. Срединная ось простого многоугольника представляет собой древовидный остов, ветви которого являются вершинами многоугольника. Срединная ось вместе со связанной функцией радиуса максимально вписанных окружностей называется преобразованием к срединным осям (МАТ). Преобразование к срединным осям представляет собой описатель полной формы, который может использоваться для воспроизведения формы первоначальной области.
[98] Это подход используется для расчета траекторий перемещения инструмента, которые позволяют полностью заполнять внутреннюю область геометрии слоя и предотвращают образование пропусков за счет нанесения избыточного материала снаружи границы, который впоследствии можно удалить постобработкой. Традиционные паттерны контурных траекторий перемещения, направление которых - снаружи вовнутрь, часто используются для механической обработки резанием, в то время как траектории перемещения инструмента на основе МАТ, начинающиеся изнутри и проходящие наружу, зачастую больше подходят для аддитивного производства деталей без пустот. Основные стадии формирования траекторий перемещения инструмента на основе MAT: (i) расчет срединной оси; (ii) разложении геометрии на одну или более областей или доменов, причем каждый домен ограничен частью срединной оси и контуром границы; (iii) формирование траектории перемещения инструмента для каждого домена путем смещения от контура срединной оси к соответствующему контуру границы с соответствующим отстоянием по высоте. Смещение повторяется до полного покрытия домена; и (iv) повторение стадии (iii) для каждого домена для формирования множества траекторий перемещения замкнутого контура, предпочтительно, без стартстопных последовательностей. Планирование траекторий перемещения на основе МАТ часто используется, например, с системами дуговой сварки и особенно предпочтительно для беспустотного аддитивного производства.
[99] Адаптивные траектории перемещения инструмента на основе МАТ. При традиционных контурных траекториях перемещения инструмента часто образуются пропуски или пустоты. Планирование траекторий перемещения на основе МАТ было внедрено для предотвращения образования внутренних пустот при нанесении и на данный момент расширено для построения сложных геометрий. Как уже отмечалось, траектории перемещения инструмента на основе МАТ формируются путем смещения срединной оси геометрии от центра к границе слоя. И хотя траектории перемещения инструмента на основе МАТ и уменьшают образование внутренних пустот, это достигается за счет создания разрывов непрерывности траектории перемещения и нанесения излишнего материала на границе слоя. Постобработка для удаления излишних материалов и повышения размерной точности детали требует дополнительного времени и повышает себестоимость. Как для традиционных контурных траекторий перемещения инструмента, так и для траекторий перемещения инструмента на основе МАТ, отстояние по высоте, т.е. расстояние между следующей траекторией перемещения при нанесении и предыдущей траекторией перемещения при нанесении, поддерживают постоянным. Для некоторых геометрий деталей добиться одновременно высокой размерной точности и беспустотного при использовании траекторий перемещения инструмента с постоянным отстоянием по высоте невозможно. С другой стороны, некоторые процессы аддитивного производства, такие как процессы подачи проволоки аддитивного производства, способны обеспечивать разную ширину нанесенного валика в слое путем варьирования параметров управления технологическим процессом, таких как скорость перемещения и скорость подачи проволоки, при поддерживании постоянной высоты нанесения. При планировании адаптивных траекторий перемещения инструмента на основе МАТ используют непрерывно варьирующие отстояния по высоте путем регулирования технологических параметров таким образом, чтобы при данной траектории перемещения инструмента наносить валики переменной ширины. Алгоритмы планирования адаптивных траекторий перемещения инструмента на основе МАТ способны обеспечивать автоматическое формирование типов траекторий перемещения с варьирующими отстояниеми по высоте путем анализа геометрии деталей для достижения более высокого качества деталей (беспустотное нанесение), точности на границе и эффективного использования материала.
[100] Программное обеспечение формирования траекторий перемещения инструмента. Примеры программного обеспечения формирования траекторий перемещения включают Repetier (компании Hot-World, GmbH, Германия) и CatalystEx (компания Stratasys Inc. г. Иден-Прери, штат Миннесота, США).
[101] На фиг. 3А-С представлены схематические иллюстрации преобразования САПР-дизайна для трехмерного объекта в непрерывный, спирально намотанный «двухмерный» слой (конечной толщины) и связанной спиральной траектории перемещения инструмента (фиг. 3А), или последовательности расположенных друг над другом «двухмерных» слоев и связанных кругообразных послойных траекторий передвижения инструмента (фиг. 3В) для нанесения материала с использованием процесса аддитивного производства. На фиг. 3С представлена иллюстрация траектории перемещения инструмента для роботизированного инструмента нанесения и моделирования результирующего объекта, изготовленного с использованием процесса аддитивного производства. Моделирование траектории перемещения инструмента и детали с использованием пакета программного обеспечения, такого как Octopuz (одноименной компании, г. Джупитер, штат Флорида, США), выполняют до проведения процесса нанесения в реальной системе нанесения. В некоторых случаях в процессе нанесения в прогнозируемую оптимальную траекторию перемещения инструмента могут локально вносить изменения в ответ на сигналы замкнутой системы управления с обратной связью. В некоторых случаях траекторию перемещения инструмента могут перестраивать, исходя из геометрии изготовленной детали после того, как процесс нанесения завершен.
Инструменты моделирования процесса
[102] Согласно некоторым вариантам осуществления предлагаемых способов и систем адаптивного управления технологическим процессом инструменты моделирования процесса могут использоваться для моделирования процесса нанесения для изготовления изделий произвольной формы (или процесса соединения) и/или получения оценок оптимальных наборов (и/или последовательностей) настроек (и корректировок) параметров управления технологическим процессом. Может использоваться любой из целого ряда инструментов моделирования процесса, известных специалистам в данной области техники, включая, но без ограничения, анализ методом конечных элементов (FEA), анализ методом конечных объемов (FVA), анализ методом конечных разностей (FDA), расчеты вычислительной гидрогазодинамики (CFD) или их любую комбинацию. Согласно некоторым вариантам осуществления предлагаемых способов и систем данные моделирования процесса по результатам прошлого изготовления используются как часть набора данных для обучения, используемых для «обучения» алгоритма машинного обучения, используемого для осуществления управления технологическим процессом.
[103] Анализ методом конечных элементов (FEA). Анализ методом конечных элементов (именуемый также конечноэлементым методом) - это численный метод решения технических задач и задач математической физики, например, для использования при расчете конструкций или изучениях теплопередачи, потока жидкости или газа, массопереноса и электромагнитного потенциала. Аналитическое решение этого типа задач обычно требует решения граничных задач с использованием дифференциальных уравнений с частными производными, которые могут быть решаемыми или нерешаемыми. Метод конечных элементов с использованием вычислительной техники позволяет формулировать эту задачу как систему алгебраических уравнений, решение которых дает приблизительные значения неизвестных параметров в дискретном числе точек в интересуемой геометрии или области. Задачу, подлежащую решению, подразделяют (дискретизируют) на меньшие, более простые составляющие (т.е. конечные элементы) для упрощения уравнений, описывающих поведение системы. Затем относительно простые уравнения, моделирующие отдельные конечные элементы, собирают в более крупную систему уравнений, моделирующую задачу в целом. Численные методы, взятые из вариационного анализа, используют для аппроксимации решения системы уравнений путем минимизации функции сопутствующей ошибки. Анализ методом конечных элементов часто используют для прогнозирования, как продукт будет реагировать при воздействии на него сил реального мира, например, напряжения (сила на единицу площади или единицу длины), вибрация, тепло, поток жидкости или газа или иные физические воздействия.
[104] Как уже отмечалось, согласно некоторым вариантам осуществления предлагаемых способов адаптивного управления технологическим процессом анализ методом конечных элементов могут использовать для моделирования процесса нанесения и/или получения оценок оптимальных наборов и/или последовательностей настроек и корректировок параметров управления технологическим процессом. Примеры параметров процесса нанесения, которые могут оценивать с помощью анализа методом конечных элементов (или иных методов моделирования) включают, но без ограничения, прогноз средней массовой или пиковой температуры нанесенного материала, скорости охлаждения нанесенного материала, химического состава нанесенного материала, состояния разделения составляющих в нанесенном материале, геометрического свойства нанесенного материала, угла свеса в нанесенной геометрии, интенсивности теплового потока из материала при нанесении, электромагнитного излучения из осаждаемого материала, акустической эмиссии из осаждаемого материала или их любой комбинации как функции набора указанных входных параметров управления технологическим процессом. Поскольку параметры управления технологическим процессом, используемые как входные данные для расчета, могут корректироваться для определения, как они влияют на смоделированный процесс нанесения, для получения оценок оптимальных наборов и/или последовательностей настроек и корректировок параметров управления технологическим процессом может применяться итерационное использование процесса моделирования.
[105] Анализ методом конечных объемов (FVA). Анализ методом конечных объемов (именуемый также конечно-объемным методом) - это еще один численный метод, связанный с анализом методом конечных элементов, который используют для решения дифференциальных уравнений с частными производными, особенно возникающих из законов физического сохранения. При анализе конечно-объемным методом используют объемное интегральное формулирование задачи с конечным набором разделительных объемов для дискретизации уравнений, представляющих первоначальную задачу. Анализ методом конечных объемов обычно используют, например, для дискретизации уравнений вычислительной гидрогазодинамики.
[106] Анализ методом конечных разностей (FDA). Анализ методом конечных разностей (именуемый также конечно-разностным методом) - это еще один численный метод решения дифференциальных уравнений путем аппроксимации их разностными уравнениями, в которых конечные разности аппроксимируют производные.
[107] Вычислительная гидрогазодинамика (CFD). Вычислительная гидрогазодинамика относится к использованию прикладной математики, физики и программного обеспечения для вычислений (например, программного обеспечения для анализа методом конечных элементов) для визуализации, как протекает газ или жидкость в ответ на приложенное давление, или для визуализации, как газ или жидкость влияет на объекты, мимо которых он или она протекает. Вычислительная гидрогазодинамика основывается на решении уравнений Навье-Стокса, описывающих, как увязаны между собой скорость, давление, температура и плотность движущейся текучей среды. Анализ на основе CFD используют в целом ряде отраслей промышленности и случаев применения, например, вычислительная гидрогазодинамика использована для управления на основе прогнозирующих моделей для управления температурой плавления при заливке пластмассы в форму под давлением методом впрыска.
[108] На фиг. 4А-С приведены примеры данных FEA-моделирования для моделирования зоны плавления для нанесения с использованием лазера и металлической проволоки; на фиг. 4А приведен вид в изометрии трехмерных данных с цветным кодированием FEA-моделирования для жидкой фракции материала в зоне плавления, осаждаемого процессом нанесения с использованием лазера и металлической проволоки. Металл пребывает в полностью жидком состоянии в положении, в котором кончик проволоки сливается с зоной плавления и переходит во все менее жидкие фракции по мере того, как затвердевает дальше от положения проволоки. На фиг. 4В приведен разрез данных FEA-моделирования для жидкой фракции материала в зоне плавления. На фиг. 4С приведен разрез трехмерных данных с цветным кодированием FEA-моделирования для статической температуры материала в зоне плавления. В точке, в которой луч лазера падает на кончик проволоки, температура имеет максимальное значение (в этом примере приблизительно 2900 К или 2626°С) и асимметрично распределяется по траектории перемещения аппарата для нанесения, причем более высокие температуры имеет материал сразу же за кончиком проволоки.
Параметры управления технологическим процессом
[109] Согласно некоторым вариантам осуществления предлагаемых способов адаптивного управления технологическим процессом один или более параметров управления технологическим процессом нанесения для изготовления изделий произвольной формы (или параметров управления технологическим процессом соединения) могут настраиваться и/или корректироваться в реальном масштабе времени посредством использования алгоритма машинного обучения, обрабатывающего данные контроля в реальном масштабе времени процесса нанесения или сварки, например, данные из системы машинного видения или из системы измерений с использованием лазерной интерферометрии, и использующего эту информацию для настройки одного или более параметров управления технологическим процессом с целью повышения эффективности технологического процесса и/или качества изготавливаемой детали.
[110] В целом, типы параметров управления технологическим процессом, которые могут настраиваться и/или корректироваться системой адаптивного управления технологическим процессом, будут варьировать в зависимости от конкретного типа используемого процесса нанесения для изготовления изделий произвольной формы, аддитивного производства или сварки. Примеры параметров управления технологическим процессом, которые могут настраиваться и/или корректироваться, включают, но без ограничения, скорость нанесения материала, скорость перемещения аппарата для нанесения, скорость изменения ускорения аппарата для нанесения, направление перемещения аппарата для нанесения, местоположение аппарата для нанесения как функция времени (т.е. траектория перемещения инструмента), угол аппарата для нанесения относительно направления нанесения, угол свеса в намеченной геометрии, интенсивность теплового потока в материал при нанесении, размер и форма поверхности теплового потока, расход и угол потока защитного газа, температура плиты основания, на которую наносится материал, окружающая температура на протяжении процесса нанесения, температура осаждаемого материала до нанесения, уставка тока или напряжения в аппарате резистивного нагрева, частота или амплитуда напряжения в аппарате индукционного нагрева, выбор осаждаемого материала, соотношение осаждаемых материалов по объему или массе, если используются более одного осаждаемого материала, или их любую комбинацию.
[111] Как показано выше, примеры параметров управления технологическим процессом для процесса нанесения с использованием лазера и металлической проволоки, которые могут настраиваться и/или корректироваться предлагаемыми системами адаптивного управления технологическим процессом, включают, но без ограничения, мощность лазера, распределение мощности лазера (или профиль луча), угол между лучом лазера и проволокой или лучом лазера и подложкой, размер и форму луча лазера, фокусное расстояние луча лазера, длину волны лазера, скорость подачи проволоки, диаметр проволоки, угол между проволокой и подложкой, положение кончика проволоки относительно зоны плавления, вылет проволоки, настройки защитного газа, направление подачи и скорость перемещения.
[112] Согласно некоторым вариантам осуществления предлагаемых способов и системы адаптивного управления технологическим процессом один или более параметров управления технологическим процессом могут настраиваться и/или корректироваться посредством алгоритма машинного обучения, используемого для выполнения процесса управления. Согласно некоторым вариантам осуществления число разных параметров управления технологическим процессом, подлежащих настройке и/или корректировке, может быть по меньшей мере 1, по меньшей мере 2, по меньшей мере 3, по меньшей мере 4, по меньшей мере 5, по меньшей мере 10, по меньшей мере 15 или по меньшей мере 20. Специалистам в данной области техники ясно, что число разных параметров управления технологическим процессом, подлежащих настройке и/или корректировке предлагаемыми способами и системами управления технологическим процессом, может иметь любое промежуточное значение в этом диапазоне, например, 12 параметров управления технологическим процессом.
Инструменты контроля заходом технологического процесса
[113] Согласно некоторым вариантам осуществления предлагаемых способов и систем адаптивного управления технологическим процессом один или более инструментов контроля за ходом технологического процесса могут использоваться для получения данных в реальном масштабе времени о технологических параметрах или свойствах изготавливаемого объекта, причем те и другие данные далее по тексту будут именоваться «данными характеризации процесса». Согласно некоторым вариантам осуществления предлагаемых способов и систем данные характеризации процесса по результатам прошлого изготовления используются как часть набора данных для обучения, используемых для «обучения» алгоритма машинного обучения, используемого для осуществления управления технологическим процессом. Согласно некоторым вариантам осуществления данные характеризации процесса в реальном масштабе времени (или данные «в ходе процесса») подаются в алгоритм машинного обучения, чтобы он мог адаптивно корректировать один или более параметров управления технологическим процессом в реальном масштабе времени.
[114] Может использоваться любой из целого ряда инструментов контроля за ходом технологического процесса, известных специалистам в данной области техники, включая, но без ограничения, датчики температуры, датчики положения, датчики движения, датчики касания/приближения, акселерометры, профилометры, угломеры, датчики изображения и системы машинного видения, датчики удельной электропроводности, датчики удельной теплопроводности, тензометрические датчики, твердомеры, устройства рентгеновской дифракции или рентгенографии, устройства компьютерной томографии, устройства ультразвуковой визуализации, решетки датчиков вихревых токов, термографы, индикаторы состояния аппарата для нанесения или их любую комбинацию. Согласно некоторым вариантам осуществления датчики характеризации процесса могут содержать один или более датчиков, обнаруживающих электромагнитное излучение, отраженное, рассеянное, поглощенное, пропущенное или излученное объектом. Согласно некоторым вариантам осуществления датчики характеризации процесса могут содержать один или более датчиков, выдающих данные об акустической или механической энергии, отраженной, рассеянной, поглощенной, пропущенной или излученной объектом.
[115] Путем использования соответствующих датчиков, измерительных инструментов и/или систем машинного видения может контролироваться (с целью выдачи данных характеризации процесса) любой из целого ряда технологических параметров, включая, но без ограничения, измерение средней массовой или пиковой температуры нанесенного материала, скорости охлаждения нанесенного материала, химического состава нанесенного материала, состояния разделения составляющих в нанесенном материале, геометрического свойства нанесенного материала (например, локальная кривизна напечатанной детали), скорости нанесения материала, скорости перемещения аппарата для нанесения, местоположения (траектории перемещения инструмента) аппарата для нанесения, угла аппарата для нанесения относительно направления нанесения, индикатора состояния аппарата для нанесения, угла свеса в нанесенной геометрии, угла свеса в намеченной геометрии, интенсивности теплового потока в материал при нанесении, интенсивности теплового потока из материала при нанесении, электромагнитного излучения из осаждаемого материала, акустической эмиссии из осаждаемого материала, удельной электропроводности осаждаемого материала, удельной теплопроводности осаждаемого материала, дефекта геометрии изготавливаемого объекта или их любой комбинации.
[116] Предлагаемые способы и системы для адаптивного управления технологическим процессом могут включать использование любого числа и любой комбинации датчиков или инструментов контроля за ходом технологического процесса. Например, согласно некоторым вариантам осуществления предлагаемая система адаптивного управления процессом нанесения может содержать по меньшей мере 1, по меньшей мере 2, по меньшей мере 3, по меньшей мере 4, по меньшей мере 5, по меньшей мере 6, по меньшей мере 7, по меньшей мере 8, по меньшей мере 9 или по меньшей мере 10 датчиков или инструментов контроля за ходом технологического процесса. Согласно некоторым вариантам осуществления один или более датчиков или инструментов контроля за ходом технологического процесса могут выдавать данные в алгоритм управления технологическим процессом с частотой обновления по меньшей мере 0,1 Гц, 1 Гц, 5 Гц, 10 Гц, 20 Гц, 30 Гц, 40 Гц, 50 Гц, 60 Гц, 70 Гц, 80 Гц, 90 Гц, 100 Гц, 250 Гц, 500 Гц, 750 Гц, 1000 Гц, 2500 Гц, 5000 Гц, 10000 Гц или выше. Специалистам в данной области техники ясно, что один или более датчиков или инструментов контроля за ходом технологического процесса могут выдавать данные с частотой обновления, имеющей любое промежуточное значение в этом диапазоне, например, около 225 Гц.
[117] Лазерная интерферометрия. Одним конкретным примером инструмента контроля за ходом процесса нанесения для изготовления изделий произвольной формы или процесса соединения, который может использоваться, например, вместе с системой нанесения с использованием лазера и металлической проволоки, служит лазерный интерферометр, предназначенный для точного измерения в ходе процесса размеров детали, изменений показателя преломления и/или неровностей поверхности. Лазерное излучение из одиночного источника расщепляется на два луча, следующих отдельными оптическими путями, пока повторно не сольются после передачи или отражения одного из лучей образцом, например, изготавливаемой деталью, для получения интерференции. Полученные в результате интерференционные полосы дают точную информацию о разнице длины оптического пути для этих двух лучей и, следовательно, дают точные результаты измерения размеров детали, перемещений, неровностей поверхности и т.д. Интерферометры способны измерять размеры или перемещения с нанометровой точностью.
[118] На фиг. 5 представлен один не ограничивающий объем изобретения пример системы нанесения с использованием лазера и металлической проволоки, содержащей контроллер робота, силовой агрегат лазера, блок подачи проволоки и защитного газа, предварительный подогреватель проволоки, регулятор параметров окружающей среды, базу данных телеметрии (для передачи и регистрации команд управления технологическим процессом, посланных в систему нанесения, и обработки данных контроля, считанных из системы нанесения), программируемый логический контроллер (координирующий всю работу компонентов системы), а также лазерный интерферометр. Лазерный интерферометр обеспечивает обратную связь в реальном масштабе времени по свойствам зоны плавления. Согласно некоторым вариантам осуществления система нанесения может дополнительно содержать программирующее устройство процессора, предназначенное для использования алгоритма машинного обучения, например, искусственную нейронную сеть, для адаптивного управления процессом нанесения металла. Согласно некоторым вариантам осуществления система нанесения может также содержать системы машинного видения или другие инструменты контроля для контроля технологических параметров и/или для обеспечения автоматизированной классификации дефектов изделия (после построения или в ходе процесса) и может включать этот контроль технологических параметров или классификацию дефектов для использования алгоритмом машинного обучения при прогнозировании следующего действия (действий) процессом нанесения.
[119] На фиг. 2 представлена схематическое изображение иллюстративной установки для процесса нанесения материала, например, процесса нанесения с использованием лазера и металлической проволоки, в соответствии с некоторыми вариантами осуществления настоящего изобретения. Луч лазера падает на металлическую проволоку для создания в точке пересечения зоны плавления и нанесения материала на подложку. Материал зоны плавления затем затвердевает для образования нового слоя при перемещении лазера и подачи проволоки (т.е. печатной головки) относительно подложки. Проволока защищается от переносимых воздухом загрязняющих веществ с помощью оболочки защитного газа. Как показано на примере данных моделирования с использованием анализа методом конечных элементов, представленных на фиг. 4С, тепло распространяется из положения зоны плавления через лежащую ниже подложку (или ранее нанесенные слои) асимметрично вследствие поступательного движения печатной головки относительно подложки. В области, называемой зоной сплавления, вновь нанесенный слой образует металлургическую связь с подложкой (или ранее нанесенными слоями). В некоторых случаях распространение тепла через вновь нанесенный слой к подложке (или ранее нанесенным слоям) может отразиться на свойствах материала в области, называемой зоной, подверженной воздействию тепла. Кроме того, процесс затвердевания может вызвать в нанесенном слое металлургические дефекты, такие как поры и трещины. Количество и тип возникающих дефектов зависят от количества подведенного тепла, времени, прошедшего при повышенных температурах, геометрии напечатанной детали и присутствия загрязняющих веществ возле зоны плавления.
[120] На фиг. 6А-В представлено использование лазерной интерферометрии для контроля свойств зоны плавления и слоя нанесения в процессе нанесения с использованием лазера и металлической проволоки. На фиг. 6А представлен микроснимок процесса нанесения в местоположении, в котором луч лазера падает на металлическую проволоку. Вертикальными линиями показано положение луча зонда интерферометра при его использовании для контроля профиля высоты подачи проволоки и ранее нанесенного слоя и результирующей зоны плавления. На фиг. 6В представлены примеры профилей поперечного сечения (т.е. профилей высоты по ширине нанесения) подачи проволоки, ранее нанесенного слоя и зоны плавления, измеренных с использованием лазерной интерферометрии, в положении подачи проволоки (сплошная линия; пик указывает проволоку, а плечи - высоту ранее нанесенного слоя), и зоны плавления (пунктирная линия). Размер по оси абсцисс (ширина) показан в произвольных единицах. Размер по оси ординат (высота) показан в миллиметрах относительно фиксированной точки отсчета ниже слоя нанесения. Согласно некоторым вариантам осуществления предлагаемых способов адаптивного управления технологическим процессом эти данные контроля технологического процесса в реальном масштабе времени могут использоваться процессором, выполняющим алгоритм машинного обучения, для корректировки (корректировок) одного или более параметров управления технологическим процессом с целью повышения, например, размерной точности слоя, чистоты обработки поверхности слоя и/или улучшения адгезионных свойств и/или общей эффективности процесса нанесения.
[121] Согласно некоторым вариантам осуществления лазерная интерферометрия может использоваться для контроля размеров и/или свойств зоны плавления, нанесенного слоя за зоной плавления или других признаков изготавливаемой детали в одном или более положениях на детали. Согласно некоторым вариантам осуществления лазерная интерферометрия может использоваться для контроля размеров и/или свойств изготавливаемой детали в по меньшей мере 1, по меньшей мере 2, по меньшей мере 3, по меньшей мере 4, по меньшей мере 5, по меньшей мере 6, по меньшей мере 7, по меньшей мере 8, по меньшей мере 9 или по меньшей мере 10 разных положениях на детали. Согласно некоторым вариантам осуществления данные лазерной интерферометрии для размеров и/или других свойств детали могут обновляться с частотой по меньшей мере 0,1 Гц, 1 Гц, 5 Гц, 10 Гц, 20 Гц, 30 Гц, 40 Гц, 50 Гц, 60 Гц, 70 Гц, 80 Гц, 90 Гц, 100 Гц, 250 Гц, 500 Гц, 750 Гц, 1000 Гц, 2 500 Гц, 5000 Гц, 10000 Гц, 25000 Гц, 50000 Гц, 100000 Гц, 150000 Гц, 200000 Гц, 250000 Гц или выше. Специалистам в данной области техники ясно, что скорость, с которой могут обновляться данные интерферометрии, может иметь любое промежуточное значение в этом диапазоне, например, около 800 Гц.
[122] Системы машинного видения. Еще одним конкретным примером инструмента контроля процесса нанесения для изготовления деталей произвольных форм или процесса соединения, который может использоваться, например, совместно с системой нанесения с использованием лазера и металлической проволоки, служит машинное видение. Системы машинного видения обеспечивают основанный на визуализации автоматический контроль и анализ для целого ряда случаев применения при производственном контроле, управлении технологическим процессом и управлении роботом и могут содержать любой или любую из целого ряда датчиков изображения или камер, источников света или систем освещения, и дополнительные оптические компоненты визуализации, а также процессоры и программное обеспечение для обработки изображений.
[123] На фиг. 7А-С представлено выделение признаков в процессе изготовления из изображений процесса нанесения с использованием лазера и металлической проволоки, полученных с использованием системы машинного видения. На фиг. 7А представлено необработанное изображение (например, один кадр изображения, взятый из потока данных со скоростью видео) зоны плавления рядом с кончиком проволоки. На фиг. 7В представлено обработанное изображение после удаления шумов, фильтрования и применения алгоритмов обнаружения краев. На фиг. 7С представлено обработанное изображение после применения алгоритма выделения признаков, используемого для определения, например, угла проволоки относительно плиты для построения и высоты (толщины) нового слоя. Системы машинного видения и связанная с ними способность обработки изображений позволяет контролировать детали процесса нанесения в реальном масштабе времени.
[124] Согласно некоторым вариантам осуществления одна или более систем машинного видения могут использоваться с предлагаемыми способами и системами адаптивного управления технологическим процессом для получения и обработки одиночных изображений. Согласно некоторым вариантам осуществления одна или более систем машинного видения могут использоваться с предлагаемыми способами и системами адаптивного управления технологическим процессом для получения и обработки последовательности из одного или более изображений через определенные промежутки времени. Согласно многим вариантам осуществления одна или более систем машинного видения могут использоваться с предлагаемыми способами и системами адаптивного управления технологическим процессом для получения и обработки данных изображений со скоростью видео. Как правило, данные изображений, выдаваемые одной или более системами машинного видения, могут получаться и/или обрабатываться с частотой по меньшей мере 0,1 Гц, 1 Гц, 5 Гц, 10 Гц, 20 Гц, 30 Гц, 40 Гц, 50 Гц, 60 Гц, 70 Гц, 80 Гц, 90 Гц, 100 Гц, 250 Гц, 500 Гц, 750 Гц, 1000 Гц, 2500 Гц, 5000 Гц или выше. Специалистам в данной области техники ясно, что скорость, с которой могут получаться и/или обрабатываться данные изображений, может иметь любое промежуточное значение в этом диапазоне, например, 95 Гц.
[125] Согласно некоторым вариантам осуществления одна или более систем машинного видения, используемых с предлагаемыми способами и системами адаптивного управления технологическим процессом, могут предназначаться для получения изображений на конкретных длинах волн (или в конкретных диапазонах длин волн) или в разных режимах формирования изображений. Например, согласно некоторым вариантам осуществления одна или более систем машинного видения могут предназначаться для получения изображений в области рентгеновского излучения, ультрафиолетовой, видимой, ближней инфракрасной, инфракрасной, терагерцовой областях, СВЧ-диапазоне или радиодиапазоне электромагнитного спектра или их любой комбинации. Согласно некоторым вариантам осуществления одна или более систем машинного видения могут предназначаться для получения флуоресцирующих изображений (например, если диапазон длин волн для света возбуждения отличается от такового для собранного света испускания флуоресценции). Согласно некоторым вариантам осуществления одна или более систем машинного видения могут предназначаться для получения изображений на основе когерентного комбинационного рассеяния (например, изображений на основе вынужденного комбинационного рассеяния или антистоксова комбинационного рассеяния) для обеспечения безмаркерной химической визуализации нанесенного слоя и изготавливаемой детали.
Инструменты контроля и автоматизированная классификация дефектов после построения
[126] Предлагаются способы и системы автоматизированной классификации дефектов объекта, используемые для выявления и характеризации дефектов в изготовленных деталях. Подход основан на использовании алгоритма машинного обучения для обнаружения и классификации дефектов, причем алгоритм машинного обучения обучается с использованием набора обучающих данных, содержащего данные контроля после изготовления, предоставленные квалифицированным оператором, и/или данные контроля, выданные любым из целого ряда инструментов автоматизированного контроля, известных специалистам в данной области техники. Предлагаемые способы и системы автоматизированной классификации дефектов объекта могут применяться к любому из целого ряда процессов нанесения для изготовления деталей произвольных форм или соединения, известных специалистам в данной области техники. Согласно некоторым вариантам осуществления предлагаемые способы и системы автоматизированной классификации дефектов объекта могут использоваться строго для контроля новых деталей после построения. Согласно некоторым вариантам осуществления они могут использоваться в ходе процесса для передачи данных характеризации процесса в реальном масштабе времени в алгоритм машинного обучения, используемый для осуществления управления технологическим процессом, чтобы один или более параметров управления технологическим процессом можно было корректировать в реальном масштабе времени. Согласно некоторым вариантам осуществления предлагаемые способы и системы автоматизированной классификации дефектов объекта могут использоваться как в ходе процесса для выдачи данных характеризации процесса в реальном масштабе времени, так и для контроля после построения. Согласно некоторым вариантам осуществления данные автоматизированной классификации дефектов, полученные в ходе процесса, могут использоваться алгоритмом машинного обучения для определения набора или последовательности корректировок параметров управления технологическим процессом, при которых (корректировках) будут выполнять корректирующее действие, например, для корректировки размера или толщины слоя, чтобы устранить дефект при первом обнаружении. Согласно некоторым вариантам осуществления автоматизированная классификация дефектов в ходе процесса может использоваться алгоритмом машинного обучения для посылки оператору сигнала предупреждения или ошибки или, необязательно, для автоматического прекращения процесса нанесения, например, процесса аддитивного производства. Согласно некоторым вариантам осуществления, будучи обученной, система автоматизированной классификации дефектов не требует дополнительного пользовательского ввода (например, дополнительного ввода от квалифицированного оператора или контролера) для обнаружения и классификации дефектов в ходе процесса и/или после построения.
[127] Способы автоматизированной классификации дефектов объекта обычно будут предусматривать: а) предоставление набора данных для обучения, причем набор данных для обучения содержит данные моделирования процесса изготовления, данные характеризации процесса изготовления и/или данные контроля после изготовления или их любую комбинацию для нескольких проектных геометрий, таких же или отличающихся от проектной геометрии объекта; b) предоставление одного или более датчиков, причем один или более датчиков выдают данные в реальном масштабе времени для одного или более свойств объекта; с) предоставление процессора, запрограммированного на проведение классификации обнаруженных дефектов объекта с использованием алгоритма машинного обучения, обученного с использованием набора данных для обучения стадии (а), причем данные в реальном масштабе времени из одного или более датчиков выдают как входные данные для алгоритма машинного обучения, и эти данные позволяют корректировать классификацию обнаруженных дефектов объекта в реальном масштабе времени.
[128] Наборы данных для обучения. Как уже отмечалось, набор данных для обучения может содержать данные моделирования процесса изготовления, данные характеризации процесса изготовления, данные контроля после изготовления (включая данные контроля, предоставленные квалифицированным оператором, и/или данные контроля, выданные любым из целого ряда инструментов автоматизированного контроля) или их любую комбинацию по результатам прошлых изготовлений нескольких проектных геометрий, таких же или отличающихся от проектной геометрии объекта, изготавливаемой в данный момент. Один или более наборов данных для обучения могут использоваться для обучения алгоритма машинного обучения, используемого для обнаружения и классификации дефектов. В некоторых случаях тип данных, включенных в набор данных для обучения, может варьировать в зависимости от конкретного типа используемого алгоритма машинного обучения, что будет подробнее рассмотрено ниже. Например, в случае экспертной системы (или экспертной обучающей системы (ЭОС)) набор данных для обучения может содержать, главным образом, данные классификации дефектов, предоставленные квалифицированным оператором или техником по результатам визуального выявления и классификации дефектов объекта для одного и того же типа детали или для ряда разных деталей, имеющих некоторый общий набор признаков. В некоторых случаях набор данных для обучения может обновляться в реальном масштабе времени данными о дефектах объекта и данными о классификации объекта при ее выполнении в данной системе. В некоторых случаях обучающие данные могут обновляться данными о дефектах объекта и данными о классификации объекта, взятыми из нескольких систем автоматизированной классификации.
[129] Согласно некоторым вариантам осуществления набор данных для обучения может содержать данные моделирования процесса, данные характеризации процесса, данные контроля в процессе изготовления, данные контроля после изготовления или их любую комбинацию. Согласно некоторым вариантам осуществления набор данных для обучения может содержать один тип данных, выбранный из группы, состоящей из данных моделирования процесса, данных характеризации процесса, данных контроля в процессе изготовления и данных контроля после изготовления. Согласно некоторым вариантам осуществления набор данных для обучения может содержать комбинацию любых двух или любых трех типов данных, выбранных из группы, состоящей из данных моделирования процесса, данных характеризации процесса, данных контроля в процессе изготовления и данных контроля после изготовления. Согласно некоторым вариантам осуществления набор данных для обучения может содержать все эти типы данных, т.е. данные моделирования процесса, данные характеризации процесса, данные контроля в процессе изготовления и данные контроля после изготовления.
[130] Измерение свойств объекта. Для контроля за ходом технологического процесса в целом могут использоваться любые из целого ряда датчиков или иных инструментов контроля, включая некоторые из перечисленных выше. Согласно некоторым вариантам осуществления один или более датчиков (например, датчики изображения или системы машинного видения) выдают данные об электромагнитном излучении, отраженном, рассеянном, поглощенном, пропущенном или излученном объектом. Согласно некоторым вариантам осуществления электромагнитное излучение представляет собой рентгеновское излучение, излучение в ультрафиолетовой, видимой, ближней инфракрасной или инфракрасной областях спектра. Согласно некоторым вариантам осуществления один или более датчиков выдают данные об акустической энергии, отраженной, рассеянной, поглощенной, пропущенной или излученной объектом. Согласно некоторым вариантам осуществления один или более датчиков выдают данные об удельной электропроводности или удельной теплопроводности объекта. Согласно некоторым вариантам осуществления один или более датчиков могут выдавать данные в процессор, запрограммированный для проведения классификации обнаруженных дефектов объекта с использованием алгоритма машинного обучения при скорости обновления по меньшей мере 0,1 Гц, 1 Гц, 5 Гц, 10 Гц, 20 Гц, 30 Гц, 40 Гц, 50 Гц, 60 Гц, 70 Гц, 80 Гц, 90 Гц, 100 Гц, 250 Гц, 500 Гц, 750 Гц, 1000 Гц, 2 500 Гц, 5000 Гц, 10000 Гц или выше. Специалистам в данной области техники ясно, что один или более датчиков или инструментов контроля за ходом технологического процесса могут выдавать данные с частотой обновления, имеющей любое промежуточное значение в этом диапазоне, например, около 400 Гц.
[131] Согласно одному предпочтительному варианту осуществления предлагаемые способы и системы автоматизированной классификации дефектов объекта могут реализовываться с использованием датчиков изображения и/или систем машинного видения. Затем могут использовать автоматизированную обработку захваченных изображений для контроля любых из ряда свойств объекта, например, размеров (габаритных размеров или размеров конкретных признаков), углов признаков, площадей признаков, чистоты обработки поверхности (например, степени отражения света, числа ямок и/или царапин на единицу площади) и т.п. Согласно некоторым вариантам осуществления свойства объекта, такие как местные чрезмерно высокие температуры, которые могут связываться с дефектами или образованием дефектов в напечатанных или сваренных деталях, могут контролировать с помощью камер, работающих на длинах волн в инфракрасной и видимой областях спектра.
[132] Удаление шумов из данных датчиков. Согласно некоторым вариантам осуществления способы автоматизированной классификации дефектов могут дополнительно предусматривать удаление шумов из данных о свойствах объекта, выданных одним или более датчиками, до передачи этих данных в алгоритм машинного обучения. Примеры алгоритмов обработки данных, подходящих для использования при удалении шумов из данных о свойствах объекта, выданных одним или более датчиками, включают, но без ограничения, алгоритмы усреднения сигнала, алгоритмы сглаживающего фильтра, алгоритмы фильтра Калмана, алгоритмы нелинейного фильтра, алгоритмы минимизации полной вариации или их любую комбинацию.
[133] Вычитание эталонных наборов данных. Согласно некоторым вариантам осуществления предлагаемых способов автоматизированной классификации дефектов для увеличения контраста между нормальными и дефектными элементами объекта могут использовать вычитание эталонного набора данных из данных датчиков, тем самым обеспечивая обнаружение и классификацию дефектов. Например, эталонный набор данных может содержать данные датчика, записанные одним или более датчиками для идеального бездефектного иллюстративного объекта, подлежащего изготовлению. В случае если датчик изображений или система машинного видения используется для обнаружения дефектов, эталонный набор данных может содержать изображение (или набор изображений, например, представляющий разные виды) идеального бездефектного объекта.
[134] Алгоритмы машинного обучения для обнаружения и классификации дефектов. При реализации предлагаемых способов автоматизированного обнаружения и классификации дефектов объекта могут использовать любой из целого ряда алгоритмов машинного обучения. Используемый алгоритм машинного обучения может представлять собой алгоритм обучения с учителем, алгоритм неконтролируемого (без учителя) обучения, алгоритм обучения с частичным привлечением учителя, алгоритм усиленного обучения, алгоритм глубокого обучения или их любую комбинацию. Согласно предпочтительным вариантам осуществления алгоритм машинного обучения, используемый для выявления и классификации дефектов, может содержать метод опорных векторов (SVM), искусственную нейтронную сеть (ANN) или экспертную обучающую систему на основе дерева решений, некоторые из которых будут подробнее описаны ниже. Согласно некоторым предпочтительным вариантам осуществления дефекты объекта могут обнаруживать как различия между набором данных о свойствах объекта и эталонным набором данных, превышающие установленный порог, и могут классифицировать с использованием алгоритма метода опорных векторов (SVM) для одного класса или автокодировщика. Согласно некоторым предпочтительным вариантам осуществления, дефекты объекта могут обнаруживать и классифицировать с использованием алгоритма неконтролируемого машинного обучения метода опорных векторов (SVM) для одного класса, автокодировщика, кластеризации или ближайших k-соседей (например, kNN) и набора данных для обучения, содержащего данные о свойствах объекта для дефектных и бездефектных объектов.
Адаптивное управление процессом нанесения в реальном масштабе времени с использованием алгоритма машинного обучения
[135] Предлагаются способы и системы для обеспечения адаптивного управления в реальном масштабе времени процессами нанесения, например, процессами аддитивного производства или сварки. В целом, предлагаемые способы предусматривают а) предоставление входной проектной геометрии для объекта (например, 3D-модель САПР); b) предоставление набора данных для обучения, причем набор данных для обучения содержит данные моделирования процесса, данные характеризации процесса, данные контроля после изготовления или их любую комбинацию, для нескольких проектных геометрий или их частей, таких же или отличающихся от входной проектной геометрии стадии (а); с) предоставление прогнозируемого оптимального набора или последовательности из одного или более параметров управления технологическим процессом для изготовления объекта, причем прогнозируемый оптимальный набор из одного или более параметров управления технологическим процессом получают, используя алгоритм машинного обучения, обученный с использованием набора данных для обучения стадии (b); и d) осуществление процесса нанесения, например, процесса аддитивного производства, для изготовления объекта, причем данные характеризации процесса в реальном масштабе времени выдаются одним или более датчиками как входные данные для алгоритма машинного обучения для настройки одного или более параметров управления технологическим процессом в реальном масштабе времени. Согласно некоторым вариантам осуществления стадии (b) - (d) выполняют итерационно, и данные характеризации процесса, данные контроля после изготовления или их любую комбинацию для каждой итерации включают в набор данных для обучения. Предлагаемые способы управления технологическим процессом могут использовать для любого из целого ряда процессов нанесения, включая процессы аддитивного производства, известные специалистам в данной области техники, например, процесс стереолитографии (SLA), цифровой оптической обработки (DLP), моделирования методом наплавления нити (FDM), выборочного лазерного спекания (SLS), выборочного лазерного сплавления (SLM), электронно-лучевой плавки (ЕВМ), сварки лазерным лучом, сварки плавящимся электродом в среде инертного газа, сварки вольфрамовым электродом в среде инертного газа и т.п. Согласно одному предпочтительному варианту осуществления предлагаемые способы управления технологическим процессом применяют для процесса нанесения для изготовления изделий произвольной формы с переходом из жидкой фазы в твердую, например, для процесса нанесения с использованием лазера и металлической проволоки.
[136] Наборы данных для обучения. Как и в случае способов автоматизированной классификации дефектов, описанных выше, набор (наборы) данных для обучения, используемый (используемые) в алгоритме управления процессом обучения машинного обучения, может содержать данные моделирования процесса изготовления, данные характеризации процесса изготовления, данные контроля после изготовления (включая данные контроля, предоставленные квалифицированным оператором, и/или данные контроля, выданные любым из целого ряда инструментов автоматизированного контроля), или их любую комбинацию по результатам прошлых изготовлений нескольких проектных геометрий, таких же или отличающихся от проектной геометрии объекта, изготавливаемой в данный момент. Один или более наборов данных для обучения могут использовать для обучения алгоритма машинного обучения, используемого для адаптивного управления процессом нанесения в реальном масштабе времени. В некоторых случаях тип данных, включенных в набор данных для обучения, может варьировать в зависимости от конкретного типа используемого алгоритма машинного обучения, что будет подробнее рассмотрено ниже. Например, в некоторых случаях набор данных для обучения может содержать, главным образом, настройки управления процессом, предоставленные квалифицированным оператором или техником при успешном изготовлении ряда одного типа детали или для ряда разных деталей, имеющих некоторый общий набор признаков. В некоторых случаях набор данных для обучения может обновляться в реальном масштабе времени с использованием данных моделирования процесса, данных управления процессом, данных характеризации процесса, данных контроля в процессе изготовления и/или данных контроля после изготовления при осуществлении изготовления в данной системе. В некоторых случаях обучающие данные могут обновляться с использованием данных моделирования процесса, данных управления процессом, данных характеризации процесса, данных контроля в процессе изготовления и/или данных контроля после изготовления при осуществлении изготовления в нескольких системах нанесения и/или сварки.
[137] Согласно некоторым вариантам осуществления набор данных для обучения может содержать данные моделирования процесса, данные характеризации процесса, данные контроля в процессе изготовления, данные контроля после изготовления или их любую комбинацию. Согласно некоторым вариантам осуществления набор данных для обучения может содержать один тип данных, выбранный из группы, состоящей из данных моделирования процесса, данных характеризации процесса, данных контроля в процессе изготовления и данных контроля после изготовления. Согласно некоторым вариантам осуществления набор данных для обучения может содержать комбинацию любых двух или любых трех типов данных, выбранных из группы, состоящей из данных моделирования процесса, данных характеризации процесса, данных контроля в процессе изготовления и данных контроля после изготовления. Согласно некоторым вариантам осуществления набор данных для обучения может содержать все эти типы данных, т.е. данные моделирования процесса, данные характеризации процесса, данные контроля в процессе изготовления и данные контроля после изготовления.
[138] Данные характеризации процесса. Для контроля различных технологических параметров в реальном масштабе времени могут использоваться любые из целого ряда датчиков, измерительных инструментов или инструментов контроля, включая перечисленные выше. Согласно некоторым вариантам осуществления, например, лазерные интерферометры используются для контроля размеров зоны плавления (в случае нанесения с использованием лазера и металлической проволоки) или иных размеров детали в процессе ее изготовления. Согласно некоторым вариантам осуществления один или более датчиков (например, датчики изображения или системы машинного видения) выдают данные об электромагнитном излучении, отраженном, рассеянном, поглощенном, пропущенном или излученном объектом. Согласно некоторым вариантам осуществления электромагнитное излучение представляет собой рентгеновское излучение, излучение в ультрафиолетовой, видимой, ближней инфракрасной или инфракрасной областях спектра. Согласно некоторым вариантам осуществления получение и обработка изображений в реальном масштабе времени используются для контроля, например, угла подачи проволоки относительно плиты основания или ранее нанесенного слоя или толщины нанесенного слоя. Согласно некоторым вариантам осуществления один или более датчиков выдают данные об акустической энергии, отраженной, рассеянной, поглощенной, пропущенной или излученной объектом. Согласно некоторым вариантам осуществления один или более датчиков выдают данные об удельной электропроводности или удельной теплопроводности объекта. Согласно некоторым вариантам осуществления один или более датчиков могут выдавать данные характеризации процесса в процессор, запрограммированный для выполнения алгоритма машинного обучения, которые могут обновляться с частотой по меньшей мере 0,1 Гц, 1 Гц, 5 Гц, 10 Гц, 20 Гц, 30 Гц, 40 Гц, 50 Гц, 60 Гц, 70 Гц, 80 Гц, 90 Гц, 100 Гц, 250 Гц, 500 Гц, 750 Гц, 1000 Гц, 2 500 Гц, 5000 Гц, 10000 Гц или выше. Специалистам в данной области техники ясно, что один или более датчиков характеризации процесса могут выдавать данные с частотой обновления, имеющей любое промежуточное значение в этом диапазоне, например, около 8000 Гц.
[139] Согласно одному предпочтительному варианту осуществления данные характеризации процесса в реальном масштабе времени, подаваемые в алгоритм машинного обучения, используемый для осуществления управления процессом, могут содержать данные, выдаваемый системой автоматизированной классификации дефектов объекта, как описано выше, при этом параметры управления технологическим процессом нанесения могут корректироваться в реальном масштабе времени для компенсации или устранения дефектов детали при их возникновении в процессе построения. Алгоритм машинного обучения, используемый для осуществления автоматизированного управления процессом, может конфигурироваться для корректировки параметров управления технологическим процессом в реальном масштабе времени при необходимости в этом для максимизации функции вознаграждения (или минимизации функции потерь), как будет подробнее рассмотрено ниже.
[140] Алгоритмы машинного обучения для автоматизированного управления процессом нанесения. При реализации предлагаемых способов управления технологическим процессом могут использовать любой из целого ряда алгоритмов машинного обучения, которые могут быть такими же или отличающимися от использованных при реализации способов автоматизированной классификации дефектов объекта, описанных выше. Используемый алгоритм машинного обучения может представлять собой алгоритм обучения с учителем, алгоритм неконтролируемого обучения, алгоритм обучения с частичным привлечением учителя, алгоритм усиленного обучения, алгоритм глубокого обучения или их любую комбинацию. Согласно предпочтительному варианту осуществления используемый алгоритм машинного обучения может представлять собой алгоритм искусственной нейронной сети, алгоритм регрессии Гауссова процесса, алгоритм дерева логистической модели, алгоритм случайного леса, алгоритм нейронечеткого классификатора, алгоритм дерева решений, алгоритм иерархической кластеризации, алгоритм обучения методом k-средних, алгоритм нечеткой кластеризации, алгоритм машинного обучения с использованием глубинной машины Больцмана, алгоритм глубокой сверточной нейронной сети, алгоритм глубокой рекуррентной нейронной сети или их любая комбинация, некоторые из которых будут подробнее описаны ниже.
[141] Функции вознаграждения и функции потерь. Как уже отмечалось, согласно некоторым вариантам осуществления алгоритм машинного обучения, используемый для осуществления автоматизированного управления процессом, может конфигурироваться для корректировки параметров управления технологическим процессом в реальном масштабе времени при необходимости в этом для максимизации функции вознаграждения (или минимизации функции потерь), чтобы оптимизировать процесс нанесения. В значении, в каком он используется в настоящем описании, термин «функция вознаграждения» (или противоположный ему по значению термин «функция потерь» (иногда называемая функцией стоимости или функцией ошибок)) означает функцию, соотносящую значения одной или более переменных процесса аддитивного производства и/или результатов события изготовления с вещественным числом, представляющим «вознаграждение», связанное с данным событием изготовления (или «стоимостью» в случае функции потерь). Примеры технологических параметров и результатов события изготовления, которые могут использоваться при определении функции вознаграждения (или потерь), включают, но без ограничения, производительность процесса (например, число деталей, изготовленных за единицу времени), выход процесса (например, процент изготовленных деталей, отвечающих установленному набору критериев качества), качество производства (например, среднеквадратичное отклонение размера (размеров) деталей между произведенными деталями и идеальной бездефектной деталью или среднее число дефектов на одну изготовленную деталь), себестоимость производства (например, стоимость на одну изготовленную деталь) и т.п. В некоторых случаях определение функции вознаграждения (или функции потер), которая должна быть максимизирована (или минимизирована), может зависеть от выбора алгоритма машинного обучения, используемого для осуществления способа управления процессом, и наоборот. Например, если цель заключается в максимизации функции общего вознаграждения/функции ценности, может выбираться алгоритм усиленного обучения. Например, если цель заключается в минимизации функции среднеквадратических ошибок (или потерь), может выбираться алгоритм регрессии дерева решений или алгоритм линейной регрессии. В целом, алгоритм машинного обучения, используемый для способа осуществления управления процессом, будет стремиться оптимизировать (максимизировать) функцию вознаграждения (или минимизировать функцию потерь) путем (1) идентификации текущего «состояния» изготавливаемой детали (например, на основании потока данных характеризации процесса в реальном масштабе времени, выдаваемых одним или более датчиками), (2) сравнения текущего «состояния» с расчетным целевым (или эталонным «состоянием») и (3) корректировки одного или более параметров управления технологическим процессом для минимизации различия между этими двумя состояниями (например, на основании прошлого «обучения», осуществленного набором данных для обучения).
[142] На фиг. 8 представлен цикл «прогноз действия - вознаграждение» для алгоритма усиленного обучения в соответствии с некоторыми вариантами осуществления предлагаемых способов управления процессом нанесения или сварки. В случае процесса нанесения, например, в любой момент времени в течение или после завершения нанесения слоя (действие a j) изготавливаемая деталь контролируется с использованием любого из целого ряда датчиков, измерительных инструментов, инструментов контроля и/или систем машинного видения, как описано выше, для определения текущего «состояния» построения детали (состояние sj). Согласно одному предпочтительному варианту осуществления деталь контролируется в реальном масштабе времени с использованием системы автоматизированной классификации дефектов объекта, как раскрыто в настоящем описании. После того как текущее состояние построения детали определено, алгоритм усиленного обучения использует информацию о текущем состоянии sj и модель, разработанную с использованием прошлых обучающих данных, для прогнозирования предлагаемого действия a j+1 (например, корректировки набора или последовательности параметров управления технологическим процессом), максимизирующего функцию вознаграждения. Если текущее состояние sj построения относительно плохое (т.е. ассоциировано с низким значением функции вознаграждения), может быть нежелательным просто предпринять ряд действий, которые в следующем состоянии sj+1 построения дадут наибольшее вознаграждение, поскольку в долгосрочном аспекте это может не дать максимального вознаграждения. В некоторых случаях максимизация вознаграждения для непосредственно следующего состояния sj+ построения может привести к очень низким вознаграждениям для нескольких следующих состояний построения, например, sj+2, sj+3, sj+4 и т.д. При использовании обученной модели процесса для того, чтобы заглянуть чуть дальше в будущее, можно оптимизировать корректировки параметров управления технологическим процессом для следующих N состояний построения в отличие от оптимизации для непосредственно следующего состояния. Каждый набор «следующих N состояний», начиная с состояния si, имеет соответствующее вознаграждение (т.е. пространство вознаграждений для следующих N действий), которое можно прогнозировать, используя ранее обученную модель, прогнозирующую корреляцию между действиями и их результирующим состоянием. Таким образом, обученную модель можно использовать для определения последовательности действий, оптимизирующей сумму (или взвешенную сумму) значений вознаграждения для следующих N состояний. Цикл повторяется, пока деталь не будет закончена, и обеспечивает адаптивное управление процессом нанесения для обеспечения быстрой оптимизации и корректировки параметров управления технологическим процессом, используемой в ответ на изменения технологических параметров и параметров окружающей среды, а также для обеспечения более высоких выхода процесса, производительности процесса и качества деталей.
[143] На фиг. 9 представлена конструкция функции вознаграждения, в которой обучающие данные, используемые для построения модели прогнозирования состояния, основанной на функции вознаграждения, получают путем контроля действий, выбираемых человеком-оператором в управляемым вручную процессе нанесения. Согласно некоторым вариантам осуществления алгоритм машинного обучения может быть полностью или частично самообучающимся. Например, согласно некоторым вариантам осуществления как часть обучения алгоритма машинного обучения алгоритм машинного обучения может произвольно выбирать значения в заданном диапазоне для каждого из набора из одного или более параметров управления технологическим процессом и включать результирующие данные моделирования процесса, данные характеризации процесса, данные контроля в процессе изготовления, данные контроля после изготовления или их любую комбинацию в набор данных для обучения для улучшения обученной модели, соотносящей значения параметров управления технологическим процессом с результатами процесса.
[144] В целом, способы и системы для адаптивного управления процессами нанесения в реальном масштабе времени, раскрытые в настоящем описании, не основываются на операциях поиска просмотром статических данных (например, просмотром параметров управления технологическим процессом или данных характеризации процесса по результатам предыдущих выполнений). Напротив, алгоритм машинного обучения используется для исследования диапазона входных значений для одного или более параметров управления технологическим процессом в процессе моделирования и/или при действительном изготовлении детали и создает обученную модель, соотносящую входные параметры управления технологическим процессом с результатами процесса при разных технологических условиях и условиях окружающей среды.
[145] Частота обновления параметров управления технологическим процессом. Согласно некоторым вариантам осуществления один или более датчиков могут выдавать данные в процессор, запрограммированный для выполнения алгоритма машинного обучения, и при этом один или более параметров управления технологическим процессом могут корректироваться с частотой обновления по меньшей мере 0,1 Гц, 1 Гц, 5 Гц, 10 Гц, 20 Гц, 30 Гц, 40 Гц, 50 Гц, 60 Гц, 70 Гц, 80 Гц, 90 Гц, 100 Гц, 250 Гц, 500 Гц, 750 Гц, 1000 Гц, 2 500 Гц, 5000 Гц, 10000 Гц или выше. Специалистам в данной области техники ясно, что один или более параметров управления технологическим процессом могут корректироваться или обновляться с частотой обновления, имеющей любое промежуточное значение в этом диапазоне, например, около 8000 Гц.
Алгоритмы машинного обучения для адаптивного управления технологическим процессом
[146] Как уже отмечалось, алгоритм (алгоритмы) машинного обучения, используемый (используемые) в предлагаемых способах автоматизированной классификации дефектов и управления процессом аддитивного производства, может (могут) представлять собой алгоритм обучения с учителем, алгоритм неконтролируемого (без учителя) обучения, алгоритм обучения с частичным привлечением учителя, алгоритм усиленного обучения, алгоритм глубокого обучения или их любую комбинацию.
[147] Алгоритм обучения с учителем. В контексте настоящего описания алгоритмы обучения с учителем - это алгоритмы, основанные на использовании набора размеченных обучающих данных для выведения зависимости между набором из одного или более дефектов, выявленных для данного объекта, и классификацией объекта в соответствии с оговоренным набором критериев качества или для выведения зависимости между набором входных параметров управления технологическим процессом аддитивного производства и набором желаемых результатов изготовления. Обучающие данные содержат набор парных обучающих примеров, например, каждый пример содержит набор дефектов, обнаруженных для данного объекта, и результирующую классификацию данного объекта, или каждый пример содержит набор параметров управления технологическим процессом, которые использовались в процессе изготовления, который спарен с известным результатом этого процесса изготовления.
[148] Алгоритмы неконтролируемого обучения (без учителя). В контексте настоящего изобретения алгоритмы неконтролируемого обучения - это алгоритмы, используемые для вывода заключений из наборов обучающих данных, состоящих из наборов данных о дефектах объекта, не спаренных с размеченными данными классификации объекта, или из входных параметров управления технологическим процессом аддитивного производства, не спаренных с размеченными результатами изготовления. Чаще всего используемым алгоритмом неконтролируемого обучения является кластерный анализ, который часто используется для разведочного анализа данных с целью найти скрытые паттерны или группирования в технологических данных.
[149] Алгоритмы обучения с частичным привлечением учителя. В контексте настоящего изобретения алгоритмы обучения с частичным привлечением учителя - это алгоритмы, использующие для обучения как размеченные, так и неразмеченные данные процесса классификации объекта или процесса аддитивного производства (обычно использующие относительно малое количество размеченных данных с большим количеством неразмеченных данных).
[150] Алгоритмы усиленного обучения. В контексте настоящего изобретения алгоритмы усиленного обучения - это алгоритмы, используемые, например, для определения набора стадий (или действий) процесса аддитивного производства, которые необходимо выполнить для максимизации оговоренной функции вознаграждения процесса изготовления. В средах машинного обучения алгоритмы усиленного обучения часто формулируются как марковские процессы принятия решений. Алгоритмы усиленного обучения отличаются от алгоритмов обучения с учителем тем, что правильные входные/выходные пары обучающих данных никогда не представляются, равно как субоптимальные действия явно не корректируются. Эти алгоритмы обычно реализуются ориентированными на характеристики в реальном масштабе времени посредством нахождения баланса между исследованием возможных результатов на основании обновленных входных данных и использованием обучения в прошлом.
[151] Алгоритмы глубокого обучения. В контексте настоящего изобретения алгоритмы глубокого обучения - это алгоритмы, инспирированные структурой и функцией человеческого мозга, называемыми искусственными нейронными сетями (ANN), и, в частности, большими нейронными сетями, содержащими много слоев, которые используются для соотношения данных о дефектах объекта с решениями относительно классификации объекта или для соотношения входных параметров управления технологическим процессом аддитивного производства с желаемыми результатами изготовления. Искусственные нейронные сети будут подробнее рассмотрены ниже.
[152] Экспертные системы на основании дерева решений. В контексте настоящего изобретения экспертные системы представляют собой один пример алгоритмов обучения с учителем, разработанный для решения задач классификации дефектов объекта или задач управления процессом аддитивного производства путем применения ряда правил импликации («если, то»). Экспертные системы обычно содержат две подсистемы: механизм логического вывода и базу знаний. База знаний содержит набор фактов (например, набор данных для обучения, содержащий данные о дефектах объекта для ряда изготовленных деталей и соответствующие данные классификации объекта, предоставленные квалифицированным оператором, техником или контролером) и выведенные правила (например, выведенные правила классификации объекта). Затем механизм логического вывода применяет эти правила к данным для текущей задачи классификации объекта или задачи управления процессом для определения классификации объекта или следующего набора корректировок управления процессом.
[153] Методы опорных векторов (SVM). В контексте настоящего изобретения методы опорных векторов - это алгоритмы обучения с учителем, используемые для классификации и регрессионного анализа данных классификации дефектов объекта или управления процессом аддитивного производства. Учитывая набор примеров обучающих данных (например, данных о дефектах объекта), каждые из которых помечены как относящиеся к той или иной из двух категорий (например, хорошие или плохие, отвечающие или не отвечающие), SVM-алгоритм обучения строит модель, относящую новые примеры (например, данные о дефектах для вновь изготовленного объекта) к той или иной категории.
[154] Автокодировщики. В контексте настоящего изобретения автокодировщик (иногда называемый также автоассоциатором или сеть диаболо) - это искусственная нейронная сеть, используемая для эффективного, неконтролируемого соотношения входных данных, например, данных о дефектах объекта, с выходным значением, например, с классификацией объекта. Автокодировщики часто используются с целью редукции размерности, т.е. процесса уменьшения числа рассматриваемых случайных переменных путем уменьшения набора переменных главных компонент. Редукция размерности может выполняться, например, с целью выбора признаков (т.е. подмножества исходных переменных) или выделения признаков (т.е. преобразования данных в многомерном пространстве в пространство меньшего числа размеров).
[155] Искусственные нейронные сети (ANN). В некоторых случаях алгоритм машинного обучения, используемый для предлагаемых способов автоматизированной классификации дефектов объекта или адаптивного управления технологическим процессом, может содержать искусственную нейронную сеть (ANN), например, алгоритм глубокого машинного обучения. В предлагаемых способах автоматизированной классификация объекта могут, например, использовать искусственную нейронную сеть для соотношения данных о дефектах объекта с данными классификации объекта. В предлагаемых системах управления процессом аддитивного производства могут, например, использовать искусственную нейронную сеть (ANN) для определения оптимального набора или оптимальной последовательности настроек параметров управления технологическим процессом для адаптивного управления процессом аддитивного производства в реальном масштабе времени на основании потока данных контроля за ходом технологического процесса и/или данных классификации дефектов объекта, выданных одним или более датчиками. Искусственная нейронная сеть может представлять собой любой тип модели нейронной сети, например, нейронную сеть прямого распространения, сеть радиальной базисной функции, рекуррентную нейронную сеть или сверточную нейронную сеть и т.п. Согласно некоторым вариантам осуществления предлагаемые способы и системы автоматизированной классификации дефектов объекта и управления процессом аддитивного производства могут использовать архитектуру предварительно обученной ANN. Согласно некоторым вариантам осуществления предлагаемые способы и системы автоматизированной классификации дефектов объекта и управления процессом аддитивного производства могут использовать архитектуру ANN, в которой набор данных для обучения непрерывно обновляется данными классификации объекта в реальном масштабе времени или данными управления процессом нанесения и его контроля в реальном масштабе времени из одной локальной системы, из нескольких локальных систем или из нескольких географически распределенных систем.
[156] В значении, в каком он используется по всему тексту настоящего описания, термин «реальный масштаб времени» относится к частоте, с которой данные датчика (например, данные управления технологическим процессом, данные контроля за ходом технологического процесса и/или данные идентификации и классификации дефектов объекта) получаются, обрабатываются и/или используются алгоритмом машинного обучения, например, искусственной нейронной сетью или алгоритмом глубокого машинного обучения, для обновления прогноза классификации объекта или прогноза оптимальных параметров управления технологическим процессом в ответ на изменения одного или более потоков входных данных датчиков. В целом, частота обновления для параметров классификации объекта или управления технологическим процессом, обеспечиваемая предлагаемыми способами и системами классификации дефектов объекта и управления процессом аддитивного производства, может колебаться от примерно 0,1 Гц до примерно 10000 Гц. Согласно некоторым вариантам осуществления частота обновления может составлять меньшей мере 0,1 Гц, по меньшей мере 1 Гц, по меньшей мере 10 Гц, по меньшей мере 50 Гц, по меньшей мере 100 Гц, по меньшей мере 250 Гц, по меньшей мере 500 Гц, по меньшей мере 750 Гц, по меньшей мере 1000 Гц, по меньшей мере 2000 Гц, по меньшей мере 3000 Гц, по меньшей мере 4000 Гц, по меньшей мере 5000 Гц или по меньшей мере 10000 Гц. Согласно некоторым вариантам осуществления частота обновления может быть не более 10000 Гц, не более 5000 Гц, не более 4000 Гц, не более 3000 Гц, не более 2000 Гц, не более 1000 Гц, не более 750 Гц, не более 500 Гц, не более 250 Гц, не более 100 Гц, не более 50 Гц, не более 10 Гц, не более 1 Гц или не более 0,1 Гц. Специалистам в данной области техники ясно, что частота обновления может иметь любое промежуточное значение в этом диапазоне, например, около 8000 Гц.
[157] Искусственные нейронные сети обычно содержат взаимосвязанную группу узлов, организованных в несколько слоев узлов (см. фиг. 10). Например, архитектура ANN может содержать по меньшей мере один входной слой (уровень), один или более скрытых слоев (уровней) и один выходной слой (уровень). ANN может содержать любое общее число слоев и любое число скрытых слоев, причем скрытые слои функционируют как обучаемые выделители признаков, позволяющие соотносить набор входных данных с предпочтительным выходным значением или набором выходных значений. Каждый слой (уровень) нейронной сети содержит определенное число узлов (или нейронов). Узел принимает входной сигнал, поступающий либо непосредственно из входных данных (например, данных датчика, данных изображений, данных о дефектах объекта и т.д. в случае предлагаемых способов), либо с выхода узлов предыдущих слоев, и выполняет конкретную операцию, например, операцию суммирования. В некоторых случаях соединение от входа до узла ассоциируется с весом (или весовым коэффициентом). В некоторых случаях узел может суммировать произведения всех пар входов xi и их соответствующих весов wi (фиг. 11). В некоторых случаях взвешенная сумма смещается смещением b, как показано на фиг. 11. В некоторых случаях выход нейрона (узла) может стробироваться с использованием пороговой функции или активационной функции ƒ, которая может представлять собой линейную или нелинейную функцию. Активационная функция может представлять собой, например, активационную функцию блока линейной ректификации (ReLU), или иную функцию, такую как насыщающая гиперболическая тангенсная функция, функция тождества, двоичная ступенчатая функция, логистическая функция, арктангенсная функция, функция softsign, функция блока параметрической линейной ректификации, функция экспоненциального линейного блока, функция softPlus, согнутая функция тождества, мягкая экспоненциальная функция, синусоидная функция, функция sine, гауссова функция или сигмоидная функция или их любая комбинация.
[158] Весовые коэффициенты, значения смещения и пороговые значения или иные вычислительные параметры нейронной сети могут «учиться» или «обучаться» в фазе обучения с использованием одного или более наборов обучающих данных. Например, указанные параметры могут обучаться с использованием входных данных из набора данных для обучения и метода градиентного спуска или распространения в обратном направлении так, что выходное значение (значения) (например, набор прогнозируемых корректировок настроек параметров управления технологическим процессом), которое (которые) рассчитывает ANN, согласуется (согласуются) с примерами, включенным в набор данных для обучения. Эти параметры могут получаться из процесса обучения нейронной сети методом распространения в обратном направлении, который может выполняться или не выполняться с использованием тех же аппаратных средств, что и используются для автоматизированной классификации дефектов объекта или адаптивного управления процессом нанесения в реальном масштабе времени.
[159] В предлагаемых способах и системах могут использоваться и другие типы алгоритмов глубокого машинного обучения, например, сверточные нейронные сети (CNN) (например, для обработки данных изображений из систем машинного видения). Сверточные нейронные сети обычно состоят из разных видов слоев: сверточные, пулинговые, увеличивающие и полносвязные (с полносвязными узлами) слои. В некоторых случаях в некоторых из слоев может использоваться активационная функция, такая как активационная функция блока линейной ректификации. В архитектуре CNN для каждого типа выполняемой операции возможны один или более слоев. Архитектура CNN может содержать любое число слоев в совокупности и любое число слоев для разных типов выполняемых операций. Простейшая архитектура сверточной нейронной сети начинается с входного слоя, за которым следует последовательность сверточных и пулинговых слоев, и заканчивается полносвязными слоями. Каждый сверточный слой может содержать несколько параметров, используемых для выполнения сверточных операций. Каждый сверточный слой может также содержать один или более фильтров, которые в свою очередь могут содержать один или более коэффициентов веса или иных корректируемых параметров. В некоторых случаях эти параметры могут включать смещения (т.е. параметры, допускающие смещение активационной функции). В некоторых случаях за сверточными слоями следует слой активационной функции блока линейной ректификации. Могут использоваться и другие активационные функции, например, насыщающая гиперболическая тангенсная функция, функция тождества, двоичная ступенчатая функция, логистическая функция, арктангенсная функция, функция softsign, функция блока параметрической линейной ректификации, функция экспоненциального линейного блока, функция softPlus, согнутая функция тождества, мягкая экспоненциальная функция, синусоидная функция, функция sine, гауссова функция или сигмоидная функция и различные другие. Сверточные, пулинговые и ReLU-слои могут функционировать как обучаемые выделители признаков, а полносвязные слои - как классификатор машинного обучения.
[160] Как и в случае других искусственных нейронных сетей, сверточные и полносвязные слои архитектур CNN обычно содержат различные вычислительные параметры, например, веса, значения смещения и пороговые значения, обучаемые в фазе обучения, как описано выше.
[161] В целом, число узлов, используемых во входном слое искусственной нейронной сети (обеспечивающем ввод данных из некоторых потоков данных датчиков и/или, например, из подвыборки кадра изображения), может колебаться от примерно 10 до примерно 10000. В некоторых случаях число узлов, используемых во входном слое, может составлять по меньшей мере 10, по меньшей мере 50, по меньшей мере 100, по меньшей мере 200, по меньшей мере 300, по меньшей мере 400, по меньшей мере 500, по меньшей мере 600, по меньшей мере 700, по меньшей мере 800, по меньшей мере 900, по меньшей мере 1000, по меньшей мере 2000, по меньшей мере 3000, по меньшей мере 4000, по меньшей мере 5000, по меньшей мере 6000, по меньшей мере 7000, по меньшей мере 8000, по меньшей мере 9000 или по меньшей мере 10000. В некоторых случаях число узлов, используемых во входном слое, может составлять не более 10000, не более 9000, не более 8000, не более 7000, не более 6000, не более 5000, не более 4000, не более 3000, не более 2000, не более 1000, не более 900, не более 800, не более 700, не более 600, не более 500, не более 400, не более 300, не более 200, не более 100, не более 50, или не более 10. Специалистам в данной области техники ясно, что число узлов, используемых во входном слое, может иметь любое промежуточное значение в этом диапазоне, например, примерно 512.
[162] В некоторых случаях общее число слоев, используемых в искусственной нейронной сети (включая входной и выходной слои) может варьировать от примерно 3 до примерно 20. В некоторых случаях общее слоев может быть по меньшей мере 3, по меньшей мере 4, по меньшей мере 5, по меньшей мере 10, по меньшей мере 15 или по меньшей мере 20. В некоторых случаях общее слоев может быть не более 20, не более 15, не более 10, не более 5, не более 4 или не более 3. Специалистам в данной области техники ясно, что общее слоев, используемых в искусственной нейронной сети, может иметь любое промежуточное значение в этом диапазоне, например, 8.
[163] В некоторых случаях общее число обучаемых параметров, например, весовых коэффициентов, смещений или пороговых значений, используемых в искусственной нейронной сети, может варьировать от примерно 1 до примерно 10000. В некоторых случаях общее число обучаемых параметров может составлять по меньшей мере 1, по меньшей мере 10, по меньшей мере 100, по меньшей мере 500, по меньшей мере 1000, по меньшей мере 2000, по меньшей мере 3000, по меньшей мере 4000, по меньшей мере 5000, по меньшей мере 6000, по меньшей мере 7000, по меньшей мере 8000, по меньшей мере 9000 или по меньшей мере 10000. Альтернативно, общее число обучаемых параметров может представлять собой любое число менее 100, любое число между 100 и 10000 или число более 10000. В некоторых случаях общее число обучаемых параметров может составлять не более 10000, не более 9000, не более 8000, не более 7000, не более 6000, не более 5000, не более 4000, не более 3000, не более 2000, не более 1000, не более 500, не более 100 не более 10 или не более 1. Специалистам в данной области техники ясно, что общее число используемых обучаемых параметров может иметь любое промежуточное значение в этом диапазоне, например, примерно 2 200.
Интегрированные и распределенные системы аддитивного производства
[164] Согласно некоторым вариантам осуществления предлагаемые способы адаптивного управления технологическим процессом в реальном масштабе времени могут использоваться для интегрированных систем аддитивного производства и/или сварки (т.е. систем нанесения для изготовления изделий произвольной формы или соединения), находящихся в одном физическом/географическом местоположении. На фиг. 12 представлена схематическая иллюстрация интегрированной системы аддитивного производства, содержащей аппарат для нанесения, одну или более систем машинного видения и/или иных инструментов контроля за ходом технологического процесса, инструментов моделирования процесса, инструментов контроля после изготовления и один или более процессоров для выполнения алгоритма машинного обучения, использующего данные инструментов моделирования процесса, машинного видения и/или инструментов контроля за ходом технологического процесса (включая инструменты контроля за ходом технологического процесса и/или классификации дефектов), инструментов контроля после изготовления или их любой комбинации, для обеспечения адаптивного управления процессом нанесения в реальном масштабе времени, если компоненты системы находятся в одном физическом/географическом местоположении. Согласно этим вариантам осуществления процессор может устанавливать связь с отдельными компонентами системы с помощью прямых проводных соединений и/или по каналам связи ближнего действия, таким как BLUETOOTH или WI-FI. Согласно некоторым вариантам осуществления два или более компонентов системы могут находиться в корпусе (показанном пунктирной линией), что обеспечивает более жесткий контроль параметров окружающей среды при изготовлении, таких как температура, давление, состав атмосферы и т.д.
[165] На фиг. 13 представлена схематическая иллюстрацию распределенной системы нанесения для изготовления изделий произвольной формы, например, системы аддитивного производства, содержащей один или более аппаратов для нанесения, инструментов моделирования процесса, систем машинного видения и/или иных инструментов контроля за ходом технологического процесса, инструментов контроля в ходе процесса, инструментов контроля после построения и один или более процессоров для выполнения алгоритма машинного обучения, использующего данные машинного видения и/или инструментов контроля за ходом технологического процесса, инструментов моделирования процесса, инструментов контроля после построения или их любой комбинации, для обеспечения адаптивного управления процессом нанесения в реальном масштабе времени, если разные компоненты или модули системы могут физически находиться в разных рабочих зонах и/или на разных рабочих местах (т.е. в разных физических/географических местоположениях) и могут связываться через локальную вычислительную сеть (LAN), интранет, экстранет или интернет, и при этом разные модули могут совместно использовать технологические данные (например, обучающие данные, данные моделирования процесса, данные управления процессом и данные контроля после изготовления) и управляющие команды процесса и обмениваться ими. Согласно некоторым вариантам осуществления некоторые из находящихся в одном месте компонентов системы (например, аппарат для нанесения и инструмент контроля за ходом технологического процесса) могут находиться в локальном корпусе (не показанном), что обеспечивает более жесткий контроль параметров окружающей среды при изготовлении, таких как температура, давление, состав атмосферы и т.д.
[166] Для распределенных систем совместное использование данных одним или более аппаратами для нанесения, одним или более датчиками контроля за ходом технологического процесса, системами машинного видения и/или инструментами контроля в ходе процесса может обеспечиваться путем использования алгоритма сжатия данных, алгоритма выделения признаков данных или алгоритма редукции размерности данных. На фиг. 14 представлен один не ограничивающий объем изобретения пример подхода к выделению признаков изображения и сжатию данных на основании ANN без учителя, которым данные изображений удобно сжимаются, передаются и восстанавливаются в другом физическом/географическом местоположении, чем то, в котором они были получены.
Процессоры и компьютерные системы
[167] Для выполнения алгоритмов машинного обучения, способов автоматизированной классификации дефектов объекта и способов управления процессами аддитивного производства, предлагаемых в настоящей заявке, могут использоваться один или более процессоров. Указанные один или более процессоров могут представлять собой аппаратный процессор, такой как центральный процессов (ЦП), графический процессор (ГП), процессор общего назначения или вычислительную платформу. Указанные один или более процессоров могут состоять из любого из целого ряда соответствующих интегральных схем, микропроцессоров, логических устройств и т.п. Хотя настоящее изобретение описывается со ссылками на процессор, применимыми могут быть и другие типы интегральных схем и логических устройств. Процессор может иметь любые подходящие возможности операций над данными. Например, процессор может выполнять операции над 512-битными, 256-битными, 128-битными, 64-битными, 32-битными или 16-битными данными. Один или более процессоров могут представлять собой одноядерные или многоядерные процессоры или более процессоров, конфигурированных для параллельной обработки.
[168] Один или более процессоров, или аппарат для нанесения автоматизированного аддитивного производства и сама система управления могут быть частью более крупной компьютерной системы и/или с помощью связного интерфейса могут быть функционально связаны с сетью вычислительных машин (далее «сеть») для обеспечения передачи данных и результатов прогнозирования и обмена ими. Сеть может представлять собой локальную вычислительную сеть, интранет и/или экстранет, интранет и/или экстранет в связи с сетью интернет или сеть интернет. В некоторых случаях сеть представляет собой телекоммуникационную сеть и/или сеть передачи данных. Сеть может содержать один или более компьютерных серверов, позволяющих в некоторых случаях осуществлять распределенные вычисления, такие как облачные вычисления. В некоторых случаях сеть с помощью компьютерной системы может реализовывать одноранговую сеть, которая может позволять устройствам, связанным с компьютерной системой, действовать как клиент или сервер.
[169] Компьютерная система может также содержать запоминающее устройство или ячейки памяти (например, оперативное запоминающее устройство, постоянное запоминающее устройство, флэш-память), электронные устройства хранения данных (например, жесткие диски), связные интерфейсы (например, сетевые адаптеры) для связи с одной или более другими системами и периферийные устройства, такие как кэш, другое запоминающее устройство, хранилище данных и/или адаптеры электронных дисплеев. Запоминающее устройство, устройства хранения, интерфейсы и периферийные устройства могут иметь связь с одним или более процессорами, например, с центральным процессором (ЦП), с использованием шины связи, например, такой, какая встречается на материнской плате. Устройство (устройства) хранения могут представлять собой устройство (устройства) хранения данных (или репозитории данных) для хранения данных.
[170] Один или более процессоров, например, ЦП, выполняют последовательность машиночитаемых команд, содержащихся в программе (или программном обеспечении). Указанные команды хранятся в ячейке запоминающего устройства. Команды направляются центральному процессору, и эти команды затем программируют или иным образом конфигурируют ЦП для выполнения предлагаемых способов. Примеры операций, выполняемых центральным процессором, включают выборку, декодирование, выполнение и обратную запись. ЦП может быть частью схемы, такой как интегральная схема. В указанную схему могут быть включены один или более других компонентов системы. В некоторых случаях схема представляет собой заказную интегральную микросхему.
[171] Устройство хранения хранит файлы, такие как драйверы, библиотеки и сохраненные программы. Устройство хранения хранит пользовательские данные, например, указанные пользователем предпочтения и указанные пользователем программы. Компьютерная система в некоторых случаях может содержать одно или более дополнительных устройств хранения данных, внешних для компьютерной системы, таких как устройства, находящиеся в удаленном сервере, связанном с компьютерной системой через интранет или интернет.
[172] Некоторые аспекты способов и систем, предлагаемых в настоящей заявке, такие как предлагаемые алгоритмы классификации дефектов объекта или управления процессом аддитивного производства, реализуются посредством выполняемого машиной (например, процессором) кода, хранящегося в ячейке памяти компьютерной системы, например, в запоминающем устройстве или электронном устройстве хранения. Выполняемый машиной или читаемый машиной код предусматривается в виде программного обеспечения. При использовании код выполняется одним или более процессорами. В некоторых случаях код извлекается из устройства хранения и запоминается в запоминающем устройстве для свободного доступа одним или более процессорами. В некоторых случаях электронное устройство хранения исключено, а выполняемые машиной команды хранятся в запоминающем устройстве. Код может предварительно компилироваться и конфигурироваться для использования с машиной, имеющей один или более процессоров, предназначенных для выполнения этого кода, или может компилироваться при прогоне. Код может предоставляться на языке программирования, выбранном с таким расчетом, чтобы код можно было выполнять с предварительной компиляцией или компиляцией «как есть».
[173] Различные аспекты технологии могут рассматриваться как «продукты» или «изделия» обычно в виде выполняемого машиной (или процессором) кода и/или связанных данных, хранящихся на каком-либо типе машиночитаемого носителя. Выполняемый машиной код может храниться в оптическом устройстве хранения, представляющим собой оптически читаемый носитель, такой как оптический диск, диск CD-ROM, диск DVD или диск Blu-Ray. Выполняемый машиной код может храниться в электронном устройстве хранения, таком как запоминающее устройство (например, постоянное запоминающее устройство, оперативное запоминающее устройство, флэш-память) или на жестком диске. Среды для хранения включают любое или все из материальных запоминающих устройств компьютеров, процессоров и т.п.или их связанных модулей, таких как различные полупроводниковые микросхемы памяти, оптические накопители, ленточные накопители, дисководы и т.п., которые могут в любое время обеспечивать энергонезависимое хранение для программного обеспечения, кодирующего способы и алгоритмы, предлагаемые в настоящей заявке.
[174] Весь программный код или его часть могут иногда передаваться через интернет или различные другие телекоммуникационные сети. Возможность такой связи позволяет, например, загружать программное обеспечение из одного компьютера или процессора в другой, например, из сервера управления или главного компьютер на компьютерную платформу сервера приложений. Таким образом, другие типы сред, используемых для передачи команд, закодированных программным обеспечением, включают оптические, электрические и электромагнитные волны, такие как используемые через физические интерфейсы между локальными устройствами, по проводным и оптическим наземным сетям связи и по различным каналам связи с передачей через атмосферу. Физические элементы, переносящие эти волны, такие как проводные или беспроводные, оптические линии связи и т.п., также считаются средами, передающими команды, закодированные программным обеспечением, для выполнения способов, предлагаемых в настоящей заявке. В значении, в каком они используются в настоящем описании, если не ограничиваются энергонезависимыми, материальными носителями для «хранения», термины, такие как «машиночитаемый носитель», означают любой носитель, участвующий в выдаче команд процессору для выполнения.
[175] Компьютерная система обычно содержит (или может быть связанной с ним) электронный дисплей, предназначенный для отображения, например, изображений, захваченных системой машинного видения. Кроме того, дисплей обычно может действовать в качестве пользовательского интерфейса. Примеры пользовательских интерфейсов включают, но без ограничения, графические пользовательские интерфейсы, пользовательские интерфейсы на основе веб-технологии и т.п.
Применения
[176] Предлагаемые способы и системы автоматизированной классификации дефектов объекта и адаптивного, в реальном масштабе времени управления технологическим процессом нанесения для изготовления изделий произвольных форм или соединения (включая аддитивное производство и сварку) могут использоваться в любом из целого ряда промышленных применений, включая, но без ограничения, изготовление деталей и узлов в автомобильной, аэрокосмической промышленности, в производстве медицинского оборудования и бытовой электроники и т.д. Например, примеры крупномасштабных применений для процессов сварки включают использование в автомобильной промышленности для сварки кузовов автомобилей, а также использование в нефтегазовой промышленности для строительства скважин и нефтеперерабатывающих заводов и в судостроении.
Примеры
[177] Эти примеры приведены исключительно в целях иллюстрации и не предназначены ограничивать объем прилагаемой формулы изобретения.
Пример 1 возможного использования. Автоматизированная классификация дефектов объекта
[178] Основанные на алгоритме машинного обучения способы и системы автоматизированной классификации дефектов объекта, предлагаемые в настоящей заявке, являются основным компонентом, позволяющим реализовать адаптивное управление процессом аддитивного производства (или сварки) в реальном масштабе времени. Эти способы предусматривают использование алгоритма машинного обучения для анализа данных контроля в ходе процесса или после изготовления с целью выявления дефектов объекта и их классификации в соответствии с определенным набором критериев качества изготовления, и согласно некоторым вариантам осуществления дополнительно обеспечивают входные данные для адаптивного управления технологическим процессом в реальном масштабе времени.
[179] На фиг. 15 представлена схематическая иллюстрация ожидаемого результата процесса неконтролируемого машинного обучения для классификации дефектов объекта. Один или более автоматизированных инструментов контроля, например, системы машинного видения, увязанные с алгоритмами автоматизированной обработки изображений, используются для контроля и измерения размеров признаков, углов, чистоты обработки поверхности и/или других свойств изготовленных деталей как в ходе процесса, так и после построения. Дефекты могут устанавливаться, например, путем удаления шумов из данных контроля и вычитания эталонного набора данных (например, контрольного изображения бездефектной детали в случае, если для контроля используются инструменты машинного видения), и классифицироваться с использованием алгоритма неконтролируемого машинного обучения, такого как кластерный анализ или искусственная нейронная сеть, для классификации отдельных объектов как отвечающие или не отвечающие определенному набору критериев принятия решения (например, границе решения) в признаковом пространстве, в котором контролируются дефекты. Отслеживание параметров управления технологическим процессом и данных контроля за ходом технологического процесса, использовавшихся для изготовления набора объектов (включая как отвечающих, так и не отвечающих критерию принятия решения), дает обучающие данные для алгоритма машинного обучения, используемого для осуществления управления процессом изготовления.
Пример 2 возможного использования. Адаптивное управление процессом аддитивного производства в реальном масштабе времени
[180] На фиг. 10 представлен один не ограничивающий объем изобретения пример архитектуры искусственной нейронной сети (ANN), используемой для адаптивного управления в реальном масштабе времени технологическим процессом аддитивного производства (или сварки). На фиг. 10 входной слой содержит один или более потоков в реальном масштабе времени технологических данных и/или данных о свойствах объекта, указывающих на текущее состояние технологического процесса изготовления и/или изготавливаемой детали. Примеры подходящих потоков входных данных включают, но без ограничения, данные моделирования процесса (например, данные FEA-моделирования), данные управления технологическим процессом или его характеризации, данные контроля в процессе изготовления, данные контроля после изготовления или их любую комбинацию, а также перечень параметров управления технологическим процессом, которые могут корректироваться для осуществления действий следующей стадии для достижения целевого (или будущего) состояния изготовления. Эти данные подаются в ANN, которая во многих случаях ранее обучена с использованием одного или более наборов данных для обучения, содержащих данные моделирования процесса, данные управления технологическим процессом или его характеризации, данные контроля в процессе изготовления, данные контроля после изготовления или их любую комбинацию по результатам прошлых изготовлений таких же или других типов деталей. Скрытые или промежуточные слои ANN действуют как обученные выделители признаков, а выходной слой в примере на фиг. 10 определяет прогнозируемое будущее состояние построения. Как уже отмечалось, модель ANN обучена прогнозировать будущее состояние построения, исходя из текущего состояния построения и набора действий. После того как модель ANN разработана (т.е. модель может соотносить текущее состояние и технологические параметры с будущим состоянием), ее использование можно расширить на определение корректировок набора параметров управления технологическим процессом для следующих N состояний. Модель ANN - это первая стадия в создании функции «действие-ценность», а определение следующей последовательности действий для данной стадии построения (как показано на фиг. 8) - это вторая стадия в разработке адаптивного управления технологическим процессом в реальном масштабе времени.
[181] Согласно некоторым вариантам осуществления модель нейронной сети может использоваться непосредственно для определения корректировок параметров управления технологическим процессом. Для этого обычно потребуется более трудный процесс «обучения». Вначале машине разрешают выполнить случайный выбор из диапазона значений для каждого входного параметра или действия управления технологическим процессом. Если последовательность корректировок параметров управления технологическим процессом или действий приводит к изъяну или дефекту, ее отмечают как ведущую к нежелательному (или отрицательному) результату. Повторение процесса с использованием разных наборов случайно выбранных значений для каждого параметра управления технологическим процессом или действия приводит к подкреплению этих последовательностей, что приводит к желаемым (или положительным) результатам. В конечном итоге модель нейронной сети «усваивает», какие корректировки набора или последовательности параметров управления технологическим процессом нанесения или действий необходимо выполнять для достижения целевого результата, т.е. бездефектной напечатанной детали.
Пример 3. Выделение признаков изображения после процесса и корреляция с действиями во время построения
[182] На фиг. 16А-С представлен пример выделения признаков изображения в ходе процесса и после процесса и корреляции признаков детали с действиями во время построения. На фиг. 16А представлено изображение детали после завершения процесса построения. На фиг. 16В представлен пример результата контроля после построения (в этом случае скан детали, полученный с помощью компьютерной томографии (КТ)). На фиг. 16С представлено изображение, полученное с использованием алгоритма выделения признаков для обработки скана КТ, показанного на фиг. 16В. Согласно некоторым вариантам осуществления автоматизированное выделение признаков позволяет коррелировать признаки детали с действиями во время построения. Во время построения (например, при печати) в дополнение к построению модели машинного обучения, коррелирующей параметры управления технологическим процессом (например, мощность лазера, скорость подачи, скорость перемещения и т.д.) и результат процесса нанесения (например, форму зону плавления, дефекты в зоне плавления и т.д.), можно также соотносить параметры управления технологическим процессом и конкретное место в детали. Это позволяет затем индексировать данные контроля на детали после изготовления и коррелировать результаты контроля после построения с параметрами управления технологическим процессом, относящимся к интересуемой области, тем самым расширяя модель машинного обучения для включения данных контроля после изготовления.
[183] В настоящем документе показаны и описаны предпочтительные варианты осуществления настоящего изобретения, однако специалистам в данной области техники будет очевидно, что эти варианты осуществления приведены лишь для примера. Специалистам в данной области техники будут очевидны многочисленные модификации, изменения и замены в пределах сущности и объема изобретения. Следует понимать, что при практическом осуществлении изобретения различные альтернативы вариантам осуществления изобретения, описанным в настоящем документе, могут использоваться в любой комбинации. Предполагается, что объем изобретения определяется последующей формулой изобретения, и что способы и структуры в пределах этой формулы изобретения или ее эквивалентов охватываются ими.

Claims (38)

1. Способ адаптивного управления в реальном масштабе времени процессом нанесения для изготовления изделий произвольной формы после проектирования или процессом соединения после проектирования, причем указанный способ включает:
a) предоставление входной проектной геометрии для объекта;
b) предоставление набора данных для обучения, причем набор данных для обучения содержит:
(i) прошлые данные моделирования процесса, прошлые данные характеризации процесса, прошлые данные физического контроля в процессе изготовления или прошлые данные физического контроля после изготовления для множества объектов, которые включают по меньшей мере один объект, который отличается от объекта, который должен быть физически изготовлен, предоставленного на стадии (а); и
(ii) данные для обучения, генерируемые посредством повторяющегося процесса случайного выбора значений для каждого одного или более входных параметров управления технологическим процессом и оценки корректировок входных параметров управления технологическим процессом как ведущих либо к нежелательным, либо желательным результатам, причем результаты основаны соответственно на присутствии или отсутствии дефектов, обнаруженных в изготовленном объекте, которые возникают в результате корректировок параметров управления технологическим процессом;
с) предоставление одного или более датчиков, причем указанные один или более датчиков выдают данные в реальном масштабе времени для одного или более свойств объекта, когда объект физически изготавливается; и
d) предоставление процессора, запрограммированного для
(i) прогнозирования оптимального набора из одного или более параметров управления технологическим процессом для инициации процесса нанесения для изготовления изделий произвольной формы или процесса соединения, причем прогнозируемый оптимальный набор из одного или более параметров управления технологическим процессом получают с использованием алгоритма машинного обучения, обученного с использованием набора данных для обучения стадии (b);
(ii) удаления шумов из данных о свойствах объекта, выданных одним или более датчиками, до включения их в алгоритм машинного обучения, причем шумы удаляют с использованием алгоритма усреднения сигнала, алгоритма фильтра Калмана, алгоритма нелинейного фильтра, алгоритма минимизации полной вариации или их любой комбинации;
(iii) предоставления в масштабе реального времени классификации обнаруженных дефектов объекта с использованием алгоритма машинного обучения, обученного с использованием набора данных для обучения стадии (b), причем данные в реальном масштабе времени из одного или более датчиков выдают как входные данные для алгоритма машинного обучения, и классификация в реальном масштабе времени обнаруженных дефектов объекта является выходными данными из алгоритма машинного обучения; и
(iv) предоставления команд для осуществления процесса нанесения для изготовления изделий произвольной формы после проектирования или процесса соединения после проектирования, чтобы изготовить объект, причем алгоритм машинного обучения корректирует один или более параметров управления технологическим процессом в реальном масштабе времени при физическом осуществлении процесса нанесения для изготовления изделий произвольной формы или процесса соединения.
2. Способ по п. 1, в котором стадии (b)-(d) выполняют итерационно, и в набор данных для обучения включают данные характеризации процесса, данные контроля в процессе изготовления или данные контроля после изготовления для каждой итерации.
3. Способ по п. 1, в котором процесс нанесения для изготовления изделий произвольной формы или процесс соединения представляет собой стереолитографию (SLA), цифровую оптическую обработку (DLP), моделирование методом наплавления нити (FDM), выборочное лазерное спекание (SLS), выборочное лазерное сплавление (SLM), электронно-лучевую плавку (EBM) или процесс сварки.
4. Способ по п. 1, в котором алгоритм машинного обучения включает алгоритм искусственной нейронной сети, алгоритм регрессии Гауссова процесса, алгоритм дерева логистической модели, алгоритм случайного леса, алгоритм нечеткого классификатора, алгоритм дерева решений, алгоритм иерархической кластеризации, алгоритм обучения методом k-средних, алгоритм нечеткой кластеризации, алгоритм машинного обучения с использованием глубинной машины Больцмана, алгоритм глубокой сверточной нейронной сети, алгоритм глубокой рекуррентной нейронной сети или их любую комбинацию.
5. Способ по п. 1, причем указанный способ реализуют с использованием (i) одной интегрированной системы, содержащей аппарат для нанесения или соединения, датчик и процессор; или (ii) распределенной блочной системы, содержащей первый аппарат для нанесения или соединения, первый датчик и первый процессор, причем первый аппарат для нанесения или соединения, первый датчик и первый процессор выполнены с возможностью совместного использования обучающих данных и данных характеризации процесса в реальном масштабе времени через локальную вычислительную сеть (LAN), интранет, экстранет или интернет.
6. Способ по п. 1, в котором набор данных для обучения дополнительно содержит данные характеризации процесса, данные контроля в процессе изготовления или данные контроля после изготовления, сгенерированные оператором при ручной корректировке входных параметров управления технологическим процессом.
7. Система для управления процессом нанесения для изготовления изделий произвольной формы после проектирования или процессом соединения после проектирования, причем указанная система содержит:
a) первый аппарат для нанесения или соединения, предназначенный для физического изготовления объекта на основании входной проектной геометрии;
b) один или более датчиков характеризации процесса, причем один или более датчиков характеризации процесса выдают данные в реальном масштабе времени для одного или более технологических параметров или свойств объекта; и
с) процессор, запрограммированный для
(i) предоставления прогнозируемого оптимального набора из одного или более параметров управления технологическим процессом для инициации процесса нанесения для изготовления изделий произвольной формы или процесса соединения с использованием алгоритма машинного обучения;
(ii) удаления шумов из данных о свойствах объекта в реальном масштабе времени, выданных одним или более датчиками характеризации процесса, до включения их в алгоритм машинного обучения, причем шумы удаляют с использованием алгоритма усреднения сигнала, алгоритма фильтра Калмана, алгоритма нелинейного фильтра, алгоритма минимизации полной вариации или их любой комбинации;
(iii) предоставления в масштабе реального времени классификации дефектов объекта с использованием алгоритма машинного обучения, причем данные о свойствах объекта в реальном масштабе времени из одного или более датчиков характеризации процесса выдают как входные данные для алгоритма машинного обучения, и классификация в реальном масштабе времени обнаруженных дефектов объекта является выходными данными алгоритма машинного обучения; и
(iv) предоставления команд для осуществления процесса нанесения для изготовления изделий произвольной формы после проектирования или процесса соединения после проектирования, чтобы изготовить объект, причем алгоритм машинного обучения корректирует один или более параметров управления технологическим процессом в реальном масштабе времени при физическом осуществлении процесса нанесения для изготовления изделий произвольной формы или процесса соединения, и алгоритм машинного обучения обучен с использованием набора данных для обучения, который содержит:
i) прошлые данные моделирования процесса, прошлые данные характеризации процесса, прошлые данные физического контроля в процессе изготовления или прошлые данные физического контроля после изготовления для множества объектов, которые включают по меньшей мере один объект, который отличается от объекта, который должен быть физически изготовлен, предоставленного на стадии (а); и
ii) данные для обучения, генерируемые посредством повторяющегося процесса случайного выбора значений для каждого одного или более входных параметров управления технологическим процессом и оценки корректировок входных параметров управления технологическим процессом как ведущих либо к нежелательным, либо желательным результатам, причем результаты основаны соответственно на присутствии или отсутствии дефектов, обнаруженных в изготовленном объекте, которые возникают в результате корректировок параметров управления технологическим процессом.
8. Система по п. 7, в которой первый аппарат для нанесения или соединения, один или более датчиков характеризации процесса и процессор выполнены как (i) одна интегрированная система или (ii) как модули распределенной системы, совместно использующие обучающие данные и данные характеризации процесса в реальном масштабе времени через локальную вычислительную сеть (LAN), интранет, экстранет или интернет.
9. Система по п. 7, в которой один или более датчиков характеризации процесса включают по меньшей мере один лазерный интерферометр, систему машинного видения или датчик, который обнаруживает электромагнитное излучение, отраженное, рассеянное, поглощенное, пропущенное или излученное объектом.
10. Система по п. 7, в которой один или более датчиков характеризации процесса выдают данные об акустической или механической энергии, отраженной, рассеянной, поглощенной, пропущенной или излученной объектом.
11. Система по п. 7, в которой дефекты объекта обнаруживают как различия между данными о свойствах объекта и эталонным набором данных, превышающие установленный порог, и классифицируют с использованием алгоритма метода опорных векторов (SVM) для одного класса или алгоритма автокодировщика.
12. Система по п. 7, в которой дефекты объекта обнаруживают и классифицируют с использованием алгоритма машинного обучения неконтролируемого метода опорных векторов (SVM) для одного класса, автокодировщика, кластеризации или ближайших k-соседей (kNN) и набора данных для обучения, содержащего данные о свойствах объекта для дефектных и бездефектных объектов.
13. Способ по п. 1, в котором один или более датчиков включают по меньшей мере один лазерный интерферометр, систему машинного видения или датчик, который обнаруживает электромагнитное излучение, отраженное, рассеянное, поглощенное, пропущенное или излученное объектом.
14. Способ по п. 1, в котором один или более датчиков выдают данные об акустической или механической энергии, отраженной, рассеянной, поглощенной, пропущенной или излученной объектом.
15. Способ по п. 1, в котором дефекты объекта обнаруживают как различия между данными о свойствах объекта и эталонным набором данных, превышающие установленный порог, и классифицируют с использованием алгоритма метода опорных векторов (SVM) для одного класса или алгоритма автокодировщика.
16. Способ по п. 1, в котором дефекты объекта обнаруживают и классифицируют с использованием алгоритма машинного обучения неконтролируемого метода опорных векторов (SVM) для одного класса, автокодировщика, кластеризации или ближайших k-соседей (kNN) и набора данных для обучения, содержащего данные о свойствах объекта для дефектных и бездефектных объектов.
17. Система по п. 7, в которой первый аппарат для нанесения или соединения представляет собой аппарат для стереолитографии (SLA), аппарат для цифровой оптической обработки (DLP), аппарат для моделирования методом наплавления нити (FDM), аппарат для выборочного лазерного спекания (SLS), аппарат для выборочного лазерного сплавления (SLM), аппарат для электронно-лучевой плавки (EBM) или сварочный аппарат.
18. Система по п. 7, в которой алгоритм машинного обучения включает алгоритм искусственной нейронной сети, алгоритм регрессии Гауссова процесса, алгоритм дерева логистической модели, алгоритм случайного леса, алгоритм нечеткого классификатора, алгоритм дерева решений, алгоритм иерархической кластеризации, алгоритм обучения методом k-средних, алгоритм нечеткой кластеризации, алгоритм машинного обучения с использованием глубинной машины Больцмана, алгоритм глубокой сверточной нейронной сети, алгоритм глубокой рекуррентной нейронной сети или их любую комбинацию.
19. Система по п. 7, в которой набор данных для обучения дополнительно содержит данные характеризации процесса, данные контроля в процессе изготовления или данные контроля после изготовления, сгенерированные оператором при ручной корректировке параметров управления технологическим процессом.
RU2019141479A 2017-05-24 2018-05-23 Адаптивное управление процессами аддитивного производства в реальном масштабе времени с использованием машинного обучения RU2722525C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/604,473 US10234848B2 (en) 2017-05-24 2017-05-24 Real-time adaptive control of additive manufacturing processes using machine learning
US15/604,473 2017-05-24
PCT/US2018/034147 WO2018217903A1 (en) 2017-05-24 2018-05-23 Real-time adaptive control of additive manufacturing processes using machine learning

Publications (1)

Publication Number Publication Date
RU2722525C1 true RU2722525C1 (ru) 2020-06-01

Family

ID=64395947

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019141479A RU2722525C1 (ru) 2017-05-24 2018-05-23 Адаптивное управление процессами аддитивного производства в реальном масштабе времени с использованием машинного обучения

Country Status (8)

Country Link
US (5) US10234848B2 (ru)
EP (2) EP3635640B1 (ru)
JP (2) JP6741883B1 (ru)
CA (1) CA3064593C (ru)
ES (1) ES2955982T3 (ru)
NZ (1) NZ760534A (ru)
RU (1) RU2722525C1 (ru)
WO (1) WO2018217903A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2787293C1 (ru) * 2022-06-06 2023-01-09 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Способ изготовления медицинских изделий из пластика методом SLA технологии с градиентной засветкой

Families Citing this family (213)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11125655B2 (en) 2005-12-19 2021-09-21 Sas Institute Inc. Tool for optimal supersaturated designs
US10547949B2 (en) 2015-05-29 2020-01-28 EVA Automation, Inc. Loudspeaker diaphragm
DE102016211313A1 (de) 2016-06-23 2017-12-28 Eos Gmbh Electro Optical Systems Automatische Justierung einer Heizungsregelung in einer generativen Schichtbauvorrichtung
EP3526766A1 (en) * 2017-01-12 2019-08-21 EOS GmbH Electro Optical Systems Method of detecting process irregularities by means of volume image data of the manufactured object
US10955814B2 (en) * 2017-04-24 2021-03-23 Autodesk, Inc. Closed-loop robotic deposition of material
US10857735B1 (en) * 2017-04-25 2020-12-08 Hrl Laboratories, Llc Apparatus and method for additive manufacturing and determining the development of stress during additive manufacturing
US10234848B2 (en) 2017-05-24 2019-03-19 Relativity Space, Inc. Real-time adaptive control of additive manufacturing processes using machine learning
US10635085B2 (en) * 2017-05-30 2020-04-28 General Electric Company Systems and methods for receiving sensor data for an operating additive manufacturing machine and adaptively compressing the sensor data based on process data which controls the operation of the machine
US10824137B2 (en) * 2017-06-19 2020-11-03 Panasonic Intellectual Property Management Co., Ltd. Mounting board manufacturing system
US10875125B2 (en) * 2017-06-20 2020-12-29 Lincoln Global, Inc. Machine learning for weldment classification and correlation
JP6549644B2 (ja) * 2017-06-27 2019-07-24 ファナック株式会社 機械学習装置、ロボット制御システム及び機械学習方法
US20190001658A1 (en) * 2017-06-30 2019-01-03 General Electric Company Systems and method for advanced additive manufacturing
US20190070787A1 (en) * 2017-08-10 2019-03-07 William Marsh Rice University Machine learning enabled model for predicting the spreading process in powder-bed three-dimensional printing
WO2019043425A1 (en) * 2017-09-01 2019-03-07 Omron Corporation SYSTEM AND METHOD FOR AIDING MANUFACTURING
US10373598B2 (en) * 2017-09-20 2019-08-06 Fisher Controls International Llc Integrated acoustic emission transducer apparatus and methods
US10444196B2 (en) 2017-09-20 2019-10-15 Fisher Controls International Llc Bandwidth-selectable acoustic emission apparatus and methods for transmitting time-averaged signal data
US10551297B2 (en) * 2017-09-22 2020-02-04 Saudi Arabian Oil Company Thermography image processing with neural networks to identify corrosion under insulation (CUI)
EP3459714A1 (en) * 2017-09-26 2019-03-27 Siemens Aktiengesellschaft Method and apparatus for monitoring a quality of an object of a 3d-print-job series of identical objects
US11475337B1 (en) * 2017-10-31 2022-10-18 Virtustream Ip Holding Company Llc Platform to deliver artificial intelligence-enabled enterprise class process execution
WO2019090487A1 (zh) * 2017-11-07 2019-05-16 大连理工大学 数控机床高动态大范围任意轮廓误差单目六维测量方法
EP3483808A1 (en) * 2017-11-14 2019-05-15 Wipro Limited Method and system for tracking and managing additive manufacturing of products
US11112771B2 (en) * 2017-12-20 2021-09-07 Moog Inc. Convolutional neural network evaluation of additive manufacturing images, and additive manufacturing system based thereon
TWI653605B (zh) * 2017-12-25 2019-03-11 由田新技股份有限公司 利用深度學習的自動光學檢測方法、設備、電腦程式、電腦可讀取之記錄媒體及其深度學習系統
TWI798314B (zh) * 2017-12-28 2023-04-11 日商東京威力科創股份有限公司 資料處理裝置、資料處理方法及資料處理程式
US11043006B1 (en) * 2017-12-29 2021-06-22 Perceive Corporation Use of machine-trained network for misalignment identification
US10891335B2 (en) * 2018-01-03 2021-01-12 International Business Machines Corporation Enhanced exploration of dimensionally reduced data
US11625628B2 (en) * 2018-01-05 2023-04-11 Daniel Suklja Method of improving processing efficiency decision making within a computer system
US20190211072A1 (en) * 2018-01-10 2019-07-11 Syracuse University TRI-AGONIST FOR THE GLu, GLP-1 AND NPY2 RECEPTORS
US11931966B2 (en) * 2018-01-26 2024-03-19 Cellink Bioprinting Ab Systems and methods for optical assessments of bioink printability
US10518356B2 (en) * 2018-02-05 2019-12-31 General Electric Company Methods and apparatus for generating additive manufacturing scan paths using thermal and strain modeling
US10073440B1 (en) * 2018-02-13 2018-09-11 University Of Central Florida Research Foundation, Inc. Method for the design and manufacture of composites having tunable physical properties
JP6791182B2 (ja) * 2018-03-14 2020-11-25 オムロン株式会社 ニューラルネットワーク型画像処理装置
US10857738B2 (en) * 2018-03-19 2020-12-08 Tytus3D System Inc. Systems and methods for real-time defect detection, and automatic correction in additive manufacturing environment
JP7265318B2 (ja) * 2018-03-23 2023-04-26 株式会社日本製鋼所 機械学習器により成形条件を調整する射出成形機システム
US11084225B2 (en) 2018-04-02 2021-08-10 Nanotronics Imaging, Inc. Systems, methods, and media for artificial intelligence process control in additive manufacturing
US11194940B2 (en) * 2018-04-22 2021-12-07 Sas Institute Inc. Optimization under disallowed combinations
US11561690B2 (en) 2018-04-22 2023-01-24 Jmp Statistical Discovery Llc Interactive graphical user interface for customizable combinatorial test construction
WO2019210285A2 (en) 2018-04-26 2019-10-31 San Diego State University Selective sintering-based fabrication of fully dense complex shaped parts
US11009863B2 (en) * 2018-06-14 2021-05-18 Honeywell International Inc. System and method for additive manufacturing process monitoring
EP3591592A1 (en) * 2018-07-05 2020-01-08 Siemens Aktiengesellschaft Method and system for manufacturing industrial unit goods
US10732521B2 (en) * 2018-08-07 2020-08-04 3DFortify, Inc. Systems and methods for alignment of anisotropic inclusions in additive manufacturing processes
WO2020032963A1 (en) * 2018-08-10 2020-02-13 Hewlett-Packard Development Company, L.P. Predicting thermal behavior in 3d printers
KR102220029B1 (ko) * 2018-10-12 2021-02-25 한국과학기술원 뉴럴 네트워크를 이용한 비매칭 저 선량 엑스선 전산단층 촬영 영상 처리 방법 및 그 장치
EP3850300A2 (en) 2018-10-19 2021-07-21 Inkbit, LLC High-speed metrology
AU2019374148A1 (en) 2018-11-02 2021-05-27 Inkbit, LLC Intelligent additive manufacturing
US11354466B1 (en) 2018-11-02 2022-06-07 Inkbit, LLC Machine learning for additive manufacturing
EP3651081B1 (en) * 2018-11-09 2021-04-21 Siemens Aktiengesellschaft Tuning of axis control of multi-axis machines
CA3118309A1 (en) 2018-11-16 2020-05-22 Inkbit, LLC Inkjet 3d printing of multi-component resins
EP3659718B1 (de) * 2018-11-29 2021-06-16 ALLGAIER WERKE GmbH System und verfahren zur überwachung einer siebmaschine
DE102018221002A1 (de) * 2018-12-05 2020-06-10 Robert Bosch Gmbh Steuereinrichtung zur Steuerung einer Fertigungsanlage sowie Fertigungsanlage und Verfahren
US11020907B2 (en) 2018-12-13 2021-06-01 General Electric Company Method for melt pool monitoring using fractal dimensions
US20200189199A1 (en) * 2018-12-13 2020-06-18 General Electric Company Method for melt pool monitoring using machine learning
US11491650B2 (en) 2018-12-19 2022-11-08 Abb Schweiz Ag Distributed inference multi-models for industrial applications
DE102018133092B3 (de) * 2018-12-20 2020-03-12 Volume Graphics Gmbh Computer-implementiertes Verfahren zur Analyse von Messdaten aus einer Messung eines Objektes
TWI709922B (zh) * 2018-12-21 2020-11-11 財團法人工業技術研究院 基於模型之機器學習系統
EP3671387A1 (en) * 2018-12-21 2020-06-24 Atos Spain S.A. Monitoring of additive manufacturing process by machine learning algorithms
JP7321624B2 (ja) * 2018-12-25 2023-08-07 エルジー・ケム・リミテッド 成形装置及び成形体の製造方法
EP3674984B1 (en) 2018-12-29 2024-05-15 Dassault Systèmes Set of neural networks
EP3674983A1 (en) * 2018-12-29 2020-07-01 Dassault Systèmes Machine-learning for 3d modeled object inference
US11681280B2 (en) * 2018-12-31 2023-06-20 Andritz Inc. Material processing optimization
AU2020206336A1 (en) 2019-01-08 2021-07-15 Inkbit, LLC Depth reconstruction in additive fabrication
JP2022522945A (ja) * 2019-01-08 2022-04-21 インクビット, エルエルシー 積層製造のための表面の再構築
CN109871011B (zh) * 2019-01-15 2022-03-11 哈尔滨工业大学(深圳) 一种基于预处理层与深度强化学习的机器人导航方法
JP7056592B2 (ja) * 2019-01-17 2022-04-19 Jfeスチール株式会社 金属材料の製造仕様決定方法、製造方法、および製造仕様決定装置
CN113614759A (zh) * 2019-02-11 2021-11-05 建筑研究和技术有限公司 用于配制或评估建筑组合物的***和方法
JP6705519B1 (ja) * 2019-02-12 2020-06-03 Jfeスチール株式会社 製造設備の設定条件決定方法、圧延機のミルセットアップ設定値の決定方法、圧延機のミルセットアップ設定値の決定装置、製造物の製造方法および圧延材の製造方法
US20200265270A1 (en) * 2019-02-20 2020-08-20 Caseware International Inc. Mutual neighbors
DE102019104822A1 (de) * 2019-02-26 2020-08-27 Wago Verwaltungsgesellschaft Mbh Verfahren und Vorrichtung zum Überwachen eines industriellen Prozessschrittes
US11256231B2 (en) * 2019-02-27 2022-02-22 The Boeing Company Object design using machine-learning model
EP3702130B1 (de) 2019-02-27 2022-05-18 Ivoclar Vivadent AG Stereolithografiegerät und ein verfahren zum einstellen eines stereolithografiegerätes
JP7060535B2 (ja) * 2019-02-27 2022-04-26 ファナック株式会社 工作機械の加工不良発生予測システム
US10884396B2 (en) * 2019-02-27 2021-01-05 General Electric Company Sensor based smart segmentation
CN111766253A (zh) * 2019-03-15 2020-10-13 鸿富锦精密电子(成都)有限公司 锡膏印刷品质检测方法、数据处理装置及计算机存储介质
US11407179B2 (en) 2019-03-20 2022-08-09 General Electric Company Recoater automated monitoring systems and methods for additive manufacturing machines
CN110097075B (zh) * 2019-03-21 2023-04-18 国家海洋信息中心 基于深度学习的海洋中尺度涡分类识别方法
CN109967741B (zh) * 2019-03-29 2021-02-02 贵州翰凯斯智能技术有限公司 一种基于增强学习的3d打印工艺优化方法
AU2020256077A1 (en) * 2019-03-29 2021-10-28 Advanced Solutions Life Sciences, Llc Defect detection in three-dimensional printed constructs
US11110667B2 (en) * 2019-04-10 2021-09-07 The Boeing Company Fabrication optimization for composite parts
DE102019110360A1 (de) * 2019-04-18 2020-10-22 Volume Graphics Gmbh Computer-implementiertes Verfahren zur Bestimmung von Defekten eines mittels eines additiven Fertigungsprozesses hergestellten Objekts
WO2020215093A1 (en) * 2019-04-19 2020-10-22 Nanotronics Imaging, Inc. Systems, methods, and media for artificial intelligence process control in additive manufacturing
US11487271B2 (en) * 2019-04-23 2022-11-01 Dassault Systemes Simulia Corp. Machine learning with fast feature generation for selective laser melting print parameter optimization
WO2020216458A1 (en) * 2019-04-26 2020-10-29 Siemens Industry Software Nv Machine learning approach for fatigue life prediction of additive manufactured components
EP3736645A1 (en) 2019-05-10 2020-11-11 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Method for automated control of material processing and control unit
US20200368815A1 (en) * 2019-05-23 2020-11-26 The Boeing Company Additive manufacturing with adjusted cooling responsive to thermal characteristic of workpiece
EP3980269A1 (en) * 2019-06-07 2022-04-13 Materialise NV Systems and methods for selection of processing parameter for additive manufacturing using simulation
CN113950403A (zh) * 2019-06-11 2022-01-18 惠普发展公司,有限责任合伙企业 适配制造模拟
JP6848010B2 (ja) * 2019-06-11 2021-03-24 株式会社ソディック 積層造形装置
CN110376457B (zh) * 2019-06-28 2020-10-02 同济大学 基于半监督学习算法的非侵入式负荷监测方法及装置
US11373108B2 (en) 2019-07-10 2022-06-28 Microsoft Technology Licensing, Llc Reinforcement learning in real-time communications
EP3767414A1 (en) * 2019-07-17 2021-01-20 Borges3D B.V. Control system unit for use in a 3-dimensional object manufacturing system and a corresponding method of operating
US11181888B2 (en) 2019-07-31 2021-11-23 General Electric Company Autozoning of additive manufacturing print parameters
EP3772411A1 (en) * 2019-08-06 2021-02-10 Siemens Aktiengesellschaft Separation of states of mechanical presses by analysing trained patterns in a neural network
JP2021037716A (ja) * 2019-09-04 2021-03-11 株式会社荏原製作所 機械学習装置、am装置、機械学習方法、および学習モデルの生成方法
JP7365168B2 (ja) * 2019-09-04 2023-10-19 株式会社荏原製作所 Am装置
US11826951B2 (en) 2019-09-06 2023-11-28 Cellink Ab Temperature-controlled multi-material overprinting
US11117328B2 (en) * 2019-09-10 2021-09-14 Nanotronics Imaging, Inc. Systems, methods, and media for manufacturing processes
JP7488638B2 (ja) 2019-10-04 2024-05-22 株式会社日本製鋼所 操作量決定装置、成形装置システム、成形機、コンピュータプログラム、操作量決定方法及び状態表示装置
WO2021081666A1 (en) * 2019-10-31 2021-05-06 Fz Inc. Computer implements system and method for assisting the design of manufactured components requiring post-processing
US11712837B2 (en) 2019-11-01 2023-08-01 Inkbit, LLC Optical scanning for industrial metrology
US10994477B1 (en) 2019-11-01 2021-05-04 Inkbit, LLC Optical scanning for industrial metrology
US20210138735A1 (en) * 2019-11-07 2021-05-13 Nanotronics Imaging, Inc. Systems, Methods, and Media for Manufacturing Processes
US11760005B2 (en) * 2019-11-27 2023-09-19 BWXT Advanced Technologies LLC Resin adhesion failure detection
US20220388070A1 (en) * 2019-12-05 2022-12-08 Hewlett-Packard Development Company, L.P. Porosity prediction
US11727284B2 (en) 2019-12-12 2023-08-15 Business Objects Software Ltd Interpretation of machine learning results using feature analysis
US11285673B2 (en) * 2019-12-17 2022-03-29 Northrop Grumman Systems Corporation Machine-learning-based additive manufacturing using manufacturing data
US11651587B2 (en) 2019-12-27 2023-05-16 Siemens Aktiengesellschaft Method and apparatus for product quality inspection
US11610153B1 (en) * 2019-12-30 2023-03-21 X Development Llc Generating reinforcement learning data that is compatible with reinforcement learning for a robotic task
CN113126481A (zh) * 2019-12-31 2021-07-16 钟国诚 控制目标装置及用于控制可变物理参数的方法
DE102020100345B4 (de) * 2020-01-09 2021-11-25 Precitec Gmbh & Co. Kg System und Verfahren zum Überwachen eines Laserbearbeitungsprozesses sowie dazugehöriges Laserbearbeitungssystem
DE102020000880A1 (de) 2020-02-11 2021-08-12 Open Mind Technologies Ag Verfahren zum Erzeugen einer Werkzeugbahn, sowie Verfahren und Vorrichtung zum additiven Fertigen eines Werkstücks mittels einer derartigen Werkzeugbahn
DE102020104484A1 (de) * 2020-02-20 2021-08-26 Precitec Gmbh & Co. Kg Verfahren zur optischen Abstandsmessung für einen Laserbearbeitungsprozess, Messsystem zur optischen Abstandsmessung für eine Laserbearbeitungsvorrichtung und Laserbearbeitungsvorrichtung mit demselben
JP2023515015A (ja) * 2020-02-21 2023-04-12 ナノトロニクス イメージング インコーポレイテッド 製造プロセスのためのシステム、方法、及び媒体
US11701832B2 (en) 2020-02-26 2023-07-18 Wisconsin Alumni Research Foundation Systems and methods for controlling additive manufacturing systems
US11604456B2 (en) * 2020-03-11 2023-03-14 Ford Global Technologies, Llc System for monitoring machining processes of a computer numerical control machine
US20210283717A1 (en) * 2020-03-13 2021-09-16 General Electric Company Systems and methods for compression, management, and analysis of downbeam camera data for an additive machine
US11571740B2 (en) * 2020-03-17 2023-02-07 Palo Alto Research Center Incorporated Fabricated shape estimation for additive manufacturing processes
US11537111B2 (en) * 2020-04-01 2022-12-27 General Electric Company Methods and apparatus for 2-D and 3-D scanning path visualization
JP2023519437A (ja) * 2020-04-01 2023-05-10 エスエルエム ソルーションズ グループ アーゲー システム及び方法
US11580455B2 (en) 2020-04-01 2023-02-14 Sap Se Facilitating machine learning configuration
EP3925760A3 (en) * 2020-04-03 2022-03-23 Ricoh Company, Ltd. Data output apparatus, three-dimensional fabrication system, and data output method
DE102020204522A1 (de) * 2020-04-08 2021-10-14 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Optimieren von Schweißparametern für eine Schweißsteuerung, Verfahren zum Bereitstellen eines trainierten Algorithmus maschinellen Lernens und Schweißsteuerung
US11544464B1 (en) * 2020-04-16 2023-01-03 Pharm3R Llc Method for assessing facility risks with natural language processing
EP3900857A1 (de) * 2020-04-21 2021-10-27 Siemens Aktiengesellschaft Ermitteln einer strahlungsintensität und/oder einer wellenlänge eines prozessleuchtens
US11301980B2 (en) * 2020-04-21 2022-04-12 GM Global Technology Operations LLC System and method to evaluate the integrity of spot welds
US11531920B2 (en) 2020-04-27 2022-12-20 Raytheon Technologies Corporation System and process for verifying powder bed fusion additive manufacturing operation as being defect free
DE102020111747A1 (de) 2020-04-30 2021-11-04 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur additiven Herstellung von Bauteilen
DE102020112116A1 (de) * 2020-05-05 2021-11-11 Precitec Gmbh & Co. Kg Verfahren zum Analysieren eines Laserbearbeitungsprozesses, System zum Analysieren eines Laserbearbeitungsprozesses und Laserbearbeitungssystem mit einem solchen System
US11772330B2 (en) 2020-05-12 2023-10-03 Honeywell International Inc. Tunable system and method for stress resolution in additive manufacturing
US11493906B2 (en) * 2020-05-19 2022-11-08 Mistras Group, Inc. Online monitoring of additive manufacturing using acoustic emission methods
WO2021232149A1 (en) * 2020-05-22 2021-11-25 Nidec-Read Corporation Method and system for training inspection equipment for automatic defect classification
JP7428350B2 (ja) 2020-06-01 2024-02-06 住友重機械ハイマテックス株式会社 加工条件推奨装置、加工条件推奨方法、プログラム、金属構造体製造システム及び金属構造体の製造方法
CN116235192A (zh) * 2020-06-10 2023-06-06 戴弗根特技术有限公司 适应性生产***
US11741273B2 (en) * 2020-06-11 2023-08-29 Palo Alto Research Center Incorporated Fabricated shape estimation for droplet based additive manufacturing
US11524463B2 (en) 2020-06-11 2022-12-13 Palo Alto Research Center Incorporated Fabricated shape estimation for droplet-based additive manufacturing processes with uncertainty
US11782396B2 (en) 2020-06-22 2023-10-10 Autodesk, Inc. Toolpath generation by reinforcement learning for computer aided manufacturing
US11513925B2 (en) * 2020-06-24 2022-11-29 EMC IP Holding Company LLC Artificial intelligence-based redundancy management framework
JP7353245B2 (ja) * 2020-07-16 2023-09-29 三菱電機株式会社 付加製造装置および付加製造方法
JP2022026568A (ja) * 2020-07-31 2022-02-10 セイコーエプソン株式会社 機械学習装置
US10994490B1 (en) 2020-07-31 2021-05-04 Inkbit, LLC Calibration for additive manufacturing by compensating for geometric misalignments and distortions between components of a 3D printer
US11536671B2 (en) * 2020-08-07 2022-12-27 Sigma Labs, Inc. Defect identification using machine learning in an additive manufacturing system
KR20220019894A (ko) * 2020-08-10 2022-02-18 삼성전자주식회사 반도체 공정의 시뮬레이션 방법 및 반도체 장치의 제조 방법
EP4196854A1 (en) * 2020-08-17 2023-06-21 5G3I Ltd Systems and methods for enhanced control of electronic circuits
WO2022038338A1 (en) * 2020-08-17 2022-02-24 5G3I Ltd Systems and methods for enhanced control of electronic circuits
US20240012400A1 (en) * 2020-08-28 2024-01-11 Siemens Corporation Failure prediction in surface treatment processes using artificial intelligence
WO2022046073A1 (en) * 2020-08-28 2022-03-03 Hewlett-Packard Development Company, L.P. Real-time anomaly detection in three dimensional printers
US11562467B2 (en) * 2020-08-31 2023-01-24 Servicenow Canada Inc. Method and system for designing an optical filter
CN112132796A (zh) * 2020-09-15 2020-12-25 佛山读图科技有限公司 以反馈数据自主学习提升检测精度的视觉检测方法和***
CN116134392A (zh) * 2020-09-18 2023-05-16 巴斯夫欧洲公司 化工生产监视
JP2023547765A (ja) * 2020-09-18 2023-11-14 ビーエーエスエフ ソシエタス・ヨーロピア 化学生産管理
CN112296357B (zh) * 2020-10-29 2021-11-30 福州大学 面向激光选区熔融工艺的增材制造相同并行机调度方法
US20220134647A1 (en) * 2020-11-02 2022-05-05 General Electric Company In-process optical based monitoring and control of additive manufacturing processes
US11904538B2 (en) * 2020-11-27 2024-02-20 The Boeing Company Systems and methods for simultaneously manufacturing a plurality of objects
CN114846414A (zh) * 2020-11-30 2022-08-02 西安交通大学 工业过程智能控制方法和***
CN112643053B (zh) * 2020-12-17 2023-04-07 浙江亚通新材料股份有限公司 基于光电信息的激光增材制造缺陷的在线诊断方法
JP2024500818A (ja) * 2020-12-18 2024-01-10 ストロング フォース ヴィーシーエヌ ポートフォリオ 2019,エルエルシー バリューチェーンネットワークのためのロボットフリート管理及び付加製造
CN112651080A (zh) * 2020-12-18 2021-04-13 重庆忽米网络科技有限公司 基于工业ai技术的焊接结构件工艺优化方法及***
CN112329275B (zh) * 2021-01-04 2021-04-02 四川大学 一种激光金属增材沉积融合状态实时预测方法及***
US20220212301A1 (en) * 2021-01-06 2022-07-07 Machina Labs, Inc. System and Method for Fast Part Forming Using Intelligent Robotic System with Interchangeable Tools
US20220219381A1 (en) * 2021-01-08 2022-07-14 Xerox Corporation Building an object with a three-dimensional printer using vibrational energy
US20220230292A1 (en) * 2021-01-20 2022-07-21 Scott Powers Machine learning and computer vision based 3d printer monitoring systems and related methods
CN112651968B (zh) * 2021-01-20 2021-09-07 广东工业大学 一种基于深度信息的木板形变与凹坑检测方法
WO2022157914A1 (ja) * 2021-01-22 2022-07-28 株式会社ニコン 加工方法
CN112801091B (zh) * 2021-01-26 2023-06-13 汕头大学 一种基于深度学习的增材制造制件成形质量监控与预测方法
IL299917A (en) * 2021-01-28 2023-03-01 Scoutcam Ltd Systems and methods for monitoring potential failure in the machine or its parts
US11797744B1 (en) * 2021-02-18 2023-10-24 Ansys Inc. Methods and systems for predicting silicon density for a metal layer of semi-conductor chip via machine learning
US20240131591A1 (en) * 2021-03-01 2024-04-25 Baker Hughes Oilfield Operations Llc Anomaly detection in additive manufacturing using meltpool monitoring, and related devices and systems
CN112883518B (zh) * 2021-03-09 2023-05-26 西安石油大学 一种预测tig增材与轧制复合制造件残余应力及变形的方法
WO2022211434A1 (ko) * 2021-03-29 2022-10-06 오엔제이 주식회사 머신러닝 알고리즘을 이용하여 wps를 자동으로 생성하는 방법 및 장치
WO2022215056A1 (en) * 2021-04-09 2022-10-13 Inegi - Instituto De Ciência E Inovação Em Engenharia Mecânica E Engenharia Industrial Device and method for adaptive control of a fused deposition modeling printer using thermography
CN113325068B (zh) * 2021-04-29 2024-02-02 河南工业大学 基于模糊控制的焊缝焊接质量检测方法和检测***
BE1029294B1 (nl) * 2021-04-30 2023-02-03 Aluzon Productie van structuren opgebouwd uit bouwkundige elementen
WO2022235261A1 (en) * 2021-05-04 2022-11-10 Hewlett-Packard Development Company, L.P. Object sintering states
WO2022233991A2 (de) 2021-05-06 2022-11-10 Fronius International Gmbh Wärmequellenmodell für ein lichtbogenschmelzschweissverfahren
CN113359453A (zh) * 2021-06-11 2021-09-07 刘颖妮 一种基于人工智能的零件加工装置及其智能车间***
DE102021116167A1 (de) 2021-06-22 2023-01-12 Daniel Beck Vorrichtung zur additiven Fertigung eines Produkts und Verfahren zur Überwachung einer additiven Fertigung eines Produkts
EP4113229A1 (en) * 2021-06-29 2023-01-04 AM-Flow Holding B.V. Manufacturing facility and manufacturing method
EP4116064A1 (de) * 2021-07-06 2023-01-11 DENTSPLY SIRONA Inc. Optimierung der dosisverteilung im 3d-druck mittels eines neuronalen netzes
WO2023283308A1 (en) * 2021-07-07 2023-01-12 University Of Southern California Extended fabrication-aware convolution learning framework for predicting 3d shape deformation in additive manufacturing
EP4116697A1 (en) 2021-07-09 2023-01-11 Siemens Industry Software NV Method and system for generating a test coupon specification for predicting fatigue life of a component
DE102021207503A1 (de) 2021-07-14 2023-01-19 Volkswagen Aktiengesellschaft Verfahren zum Erzeugen von Steuerdaten für ein Fertigungsbauteil für zumindest eine Fertigungsvorrichtung mittels einer elektronischen Recheneinrichtung, Computerprogrammprodukt sowie elektronische Recheneinrichtung
WO2023287430A1 (en) * 2021-07-16 2023-01-19 Hewlett-Packard Development Company, L.P. Object sintering predictions
CN113442442B (zh) * 2021-07-23 2022-05-10 大连理工大学 基于强化学习的双激光器路径缺陷自适应调整方法
WO2023009137A1 (en) * 2021-07-30 2023-02-02 Hewlett-Packard Development Company, L.P. Model compensations
CN113592813B (zh) * 2021-07-30 2023-05-02 深圳大学 基于深度学习语义分割的新能源电池焊接缺陷检测方法
CN113732557B (zh) * 2021-07-30 2022-07-08 武汉理工大学 一种基于数字孪生的焊接监控方法
CN113751920B (zh) * 2021-08-04 2022-07-22 华南理工大学 一种锁孔tig焊焊接质量实时检测的嵌入式装置及方法
WO2023038844A1 (en) * 2021-09-10 2023-03-16 Nutech Ventures Systems and methods for combining thermal simulations with sensor data to detect flaws and malicious cyber intrusions in additive manufacturing
JPWO2023042387A1 (ru) * 2021-09-17 2023-03-23
CN113962091B (zh) * 2021-10-25 2022-06-07 西南交通大学 一种处理混合废旧产品的多人共站不完全拆卸线平衡设计方法
CN113987828B (zh) * 2021-11-10 2023-06-09 中国兵器装备集团自动化研究所有限公司 一种基于时间序列的多能场增材制造工艺规划方法
US20230195074A1 (en) * 2021-12-21 2023-06-22 Applied Materials, Inc. Diagnostic methods for substrate manufacturing chambers using physics-based models
WO2023122004A1 (en) * 2021-12-23 2023-06-29 Inkbit, LLC Machine learning for additive manufacturing
JP2023098237A (ja) * 2021-12-28 2023-07-10 株式会社日立製作所 付加製造条件探索装置、および、付加製造条件探索方法
WO2023140860A1 (en) * 2022-01-21 2023-07-27 Hewlett-Packard Development Company, L.P. Print jobs by three-dimensional printers
US20230281439A1 (en) * 2022-03-07 2023-09-07 Applied Materials, Inc. Synthetic time series data associated with processing equipment
EP4245440A1 (en) 2022-03-15 2023-09-20 Amiquam SA Method for optimizing process parameters of an additive manufacturing process
EP4272932A1 (en) * 2022-05-06 2023-11-08 United Grinding Group Management AG Manufacturing assistance system for an additive manufacturing system
FR3135637B1 (fr) 2022-05-17 2024-05-10 Fse Dispositif et procédé pour le contrôle d’un apport de matière en fabrication additive
CN115180461B (zh) * 2022-07-14 2023-09-01 青岛科技大学 新能源汽车压缩机电机生产装备的张力数据驱动控制方法
WO2024036213A1 (en) * 2022-08-09 2024-02-15 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for decoding speech from neural activity
CN115328062B (zh) * 2022-08-31 2023-03-28 济南永信新材料科技有限公司 水刺布生产线智能控制***
WO2024057100A1 (en) * 2022-09-12 2024-03-21 L&T Technology Services Limited System for detecting and correcting welding defects in real-time and method thereof
US20240094702A1 (en) * 2022-09-15 2024-03-21 Baker Hughes Oilfield Operations Llc Machine learning based rapid parameter development for additive manufacturing and related methods
CN115307731B (zh) * 2022-09-23 2022-12-23 江苏傲勋电子科技有限公司 一种激光投线仪的出射激光线检测方法
GB2623964A (en) * 2022-10-31 2024-05-08 Donaa Ltd Vision system and software detecting defects in real-time during additive manufacturing.
EP4369125A1 (en) * 2022-11-08 2024-05-15 JSP International SARL A method of operating at least one apparatus for processing expandable or expanded polymer particles
DE102022130090A1 (de) * 2022-11-14 2024-05-16 1000 Kelvin GmbH Verfahren zur bereitstellung einer verfahrensanweisung
CN116441554A (zh) * 2023-04-19 2023-07-18 珠海凤泽信息科技有限公司 一种基于强化学习的金纳米棒AuNRs合成方法、***
CN116680944B (zh) * 2023-05-05 2023-12-22 哈尔滨工业大学 基于数值模拟及深度学习的电弧增材构件工艺预测方法
CN116561706B (zh) * 2023-07-07 2023-09-15 广东易初科技股份有限公司 瓷性阻燃线材的性能数据处理方法及***
CN116975581B (zh) * 2023-07-20 2024-04-26 快速直接(深圳)精密制造有限公司 一种基于step格式的钣金件快速识别方法
CN117392471B (zh) * 2023-12-12 2024-03-26 深圳市智能派科技有限公司 基于多参数协同的3d打印监测方法及***
CN117784849B (zh) * 2024-02-27 2024-05-07 泰安德图自动化仪器有限公司 一种基于人工智能的制冷恒温槽自动控制***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6553275B1 (en) * 1999-03-11 2003-04-22 Jyoti Mazumder In-situ stress monitoring during direct material deposition process
US20040060639A1 (en) * 2002-08-13 2004-04-01 Dawn White Method of apparatus for ensuring uniform build quality during object consolidation
US20150045928A1 (en) * 2013-08-07 2015-02-12 Massachusetts Institute Of Technology Automatic Process Control of Additive Manufacturing Device
US20150055085A1 (en) * 2013-08-22 2015-02-26 Bespoke, Inc. Method and system to create products
US20150217520A1 (en) * 2014-02-05 2015-08-06 MetaMason, Inc. System and Methods for Additively Manufacturing Highly Customized Structures
US9507555B2 (en) * 2014-04-23 2016-11-29 Inventec Appliances Corp. System for the network monitoring of 3D printing and method thereof
WO2016196382A1 (en) * 2015-06-01 2016-12-08 Velo3D, Inc. Three-dimensional printing and three-dimensional objects formed using the same
US20170032281A1 (en) * 2015-07-29 2017-02-02 Illinois Tool Works Inc. System and Method to Facilitate Welding Software as a Service

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107470A (ja) 1989-09-21 1991-05-07 Mazda Motor Corp 摺動部材の製造方法
US5394509A (en) * 1992-03-31 1995-02-28 Winston; Patrick H. Data processing system and method for searching for improved results from a process
US5751910A (en) 1995-05-22 1998-05-12 Eastman Kodak Company Neural network solder paste inspection system
US6122564A (en) 1998-06-30 2000-09-19 Koch; Justin Apparatus and methods for monitoring and controlling multi-layer laser cladding
US7286893B1 (en) 1998-06-30 2007-10-23 Jyoti Mazumder Tailoring residual stress and hardness during direct metal deposition
US6937921B1 (en) 1998-06-30 2005-08-30 Precision Optical Manufacturing (Pom) Production of smart dies and molds using direct metal deposition
US6925346B1 (en) 1998-06-30 2005-08-02 Jyoti Mazumder Closed-loop, rapid manufacturing of three-dimensional components using direct metal deposition
US7765022B2 (en) 1998-06-30 2010-07-27 The P.O.M. Group Direct metal deposition apparatus utilizing rapid-response diode laser source
US6859681B1 (en) 1999-09-27 2005-02-22 The Pom Group Multi-material toolpath generation for direct metal deposition
US6793140B2 (en) 2001-01-10 2004-09-21 The P.O.M. Group Machine-readable code generation using direct metal deposition
US6710280B2 (en) 2001-05-22 2004-03-23 The P.O.M. Group Focusing optics for adaptive deposition in rapid manufacturing
US6680456B2 (en) 2001-06-09 2004-01-20 Honeywell International Inc. Ion fusion formation
GB0124762D0 (en) 2001-10-16 2001-12-05 Rolls Royce Plc Apparatus and method for forming a body
US9269043B2 (en) * 2002-03-12 2016-02-23 Knowm Tech, Llc Memristive neural processor utilizing anti-hebbian and hebbian technology
US6822194B2 (en) 2002-05-29 2004-11-23 The Boeing Company Thermocouple control system for selective laser sintering part bed temperature control
US7139633B2 (en) 2002-08-29 2006-11-21 Jyoti Mazumder Method of fabricating composite tooling using closed-loop direct-metal deposition
US8613846B2 (en) 2003-02-04 2013-12-24 Microfabrica Inc. Multi-layer, multi-material fabrication methods for producing micro-scale and millimeter-scale devices with enhanced electrical and/or mechanical properties
US8639489B2 (en) 2003-11-10 2014-01-28 Brooks Automation, Inc. Methods and systems for controlling a semiconductor fabrication process
US7326377B2 (en) 2005-11-30 2008-02-05 Honeywell International, Inc. Solid-free-form fabrication process and apparatus including in-process workpiece cooling
US8629368B2 (en) 2006-01-30 2014-01-14 Dm3D Technology, Llc High-speed, ultra precision manufacturing station that combines direct metal deposition and EDM
US8219234B2 (en) 2007-03-07 2012-07-10 Objet Geometries Ltd. Rapid production apparatus with production orientation determination
GB0704753D0 (en) 2007-03-13 2007-04-18 Airbus Uk Ltd Preparation of a component for use in a joint
US8784723B2 (en) 2007-04-01 2014-07-22 Stratasys Ltd. Method and system for three-dimensional fabrication
US9044827B2 (en) 2007-05-31 2015-06-02 Dm3D Technology, Llc Real-time implementation of generalized predictive algorithm for direct metal deposition (DMD) process control
WO2009154484A2 (en) 2008-06-20 2009-12-23 Business Intelligence Solutions Safe B.V. Methods, apparatus and systems for data visualization and related applications
US8153183B2 (en) 2008-10-21 2012-04-10 Stratasys, Inc. Adjustable platform assembly for digital manufacturing system
US20110103656A1 (en) * 2009-04-17 2011-05-05 Gheorghe Iordanescu Quantification of Plaques in Neuroimages
US7965754B1 (en) 2009-04-21 2011-06-21 The Boeing Company Spherical array laser source
US8546717B2 (en) 2009-09-17 2013-10-01 Sciaky, Inc. Electron beam layer manufacturing
WO2011059621A1 (en) 2009-11-13 2011-05-19 Sciaky, Inc. Electron beam layer manufacturing using scanning electron monitored closed loop control
AU2011233678B2 (en) 2010-03-31 2015-01-22 Sciaky, Inc. Raster methodology, apparatus and system for electron beam layer manufacturing using closed loop control
WO2012000650A1 (en) * 2010-06-28 2012-01-05 Precitec Kg A method for classifying a multitude of images recorded by a camera observing a processing area and laser material processing head using the same
US8467978B2 (en) 2010-08-31 2013-06-18 The Boeing Company Identifying features on a surface of an object using wavelet analysis
US9522501B2 (en) 2010-09-21 2016-12-20 The Boeing Company Continuous linear production in a selective laser sintering system
US8647102B2 (en) 2010-12-22 2014-02-11 Stratasys, Inc. Print head assembly and print head for use in fused deposition modeling system
US8419996B2 (en) 2010-12-22 2013-04-16 Stratasys, Inc. Print head assembly for use in fused deposition modeling system
US8663533B2 (en) 2010-12-22 2014-03-04 Stratasys, Inc. Method of using print head assembly in fused deposition modeling system
DE102012005087A1 (de) 2011-03-28 2012-10-04 Heidelberger Druckmaschinen Aktiengesellschaft Vorrichtung zum Bedrucken von Oberflächen mit mehreren, bewegbaren Druckköpfen
GB2489493B (en) 2011-03-31 2013-03-13 Norsk Titanium Components As Method and arrangement for building metallic objects by solid freeform fabrication
US9038368B2 (en) 2011-08-01 2015-05-26 The Aerospace Corporation Systems, methods, and apparatus for providing a multi-fuel hybrid rocket motor
US8626331B2 (en) 2012-01-04 2014-01-07 Keyme, Inc. Systems and methods for managing key information
US8665479B2 (en) 2012-02-21 2014-03-04 Microsoft Corporation Three-dimensional printing
WO2013142902A2 (en) 2012-03-29 2013-10-03 Rosebank Engineering Pty Ltd Methods for treating aircraft structures
US8836934B1 (en) 2012-05-15 2014-09-16 The Boeing Company Contamination identification system
US9120151B2 (en) 2012-08-01 2015-09-01 Honeywell International Inc. Methods for manufacturing titanium aluminide components from articles formed by consolidation processes
US9168697B2 (en) 2012-08-16 2015-10-27 Stratasys, Inc. Additive manufacturing system with extended printing volume, and methods of use thereof
US9327350B2 (en) 2012-08-16 2016-05-03 Stratasys, Inc. Additive manufacturing technique for printing three-dimensional parts with printed receiving surfaces
US9365021B2 (en) 2012-12-26 2016-06-14 Daniel Judge Villamar Systems and methods for layered manufacturing
DE102013003760A1 (de) 2013-03-06 2014-09-11 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätsbeurteilung eines mittels eines generativen Lasersinter- und/oder Laserschmelzverfahrens hergestellten Bauteils
US9399320B2 (en) 2013-03-08 2016-07-26 Stratasys, Inc. Three-dimensional parts having interconnected hollow patterns, and method for generating and printing thereof
US10093039B2 (en) 2013-03-08 2018-10-09 Stratasys, Inc. Three-dimensional parts having interconnected Hollow patterns, method of manufacturing and method of producing composite part
US9751262B2 (en) 2013-06-28 2017-09-05 General Electric Company Systems and methods for creating compensated digital representations for use in additive manufacturing processes
KR101780049B1 (ko) * 2013-07-01 2017-09-19 한국전자통신연구원 레이저 용접 비드 검사 장치 및 방법
US10183329B2 (en) 2013-07-19 2019-01-22 The Boeing Company Quality control of additive manufactured parts
US20160170387A1 (en) 2013-07-29 2016-06-16 Nec Solution Innovators, Ltd. 3d printer device, 3d printing method and method for manufacturing stereolithography product
JP2015033717A (ja) 2013-08-09 2015-02-19 三菱重工業株式会社 補修方法
US20150048209A1 (en) 2013-08-16 2015-02-19 Robert Hoyt Structures with Internal Microstructures to Provide Multifunctional Capabilities
EP2839905A1 (en) 2013-08-22 2015-02-25 Astrium GmbH Manufacturing of components from parts made from different materials, particularly of space transportation components such as combustion chambers for thrusters
DE102013217598A1 (de) 2013-09-04 2015-03-05 MTU Aero Engines AG Vorrichtung zur Laser-Materialbearbeitung
US9579850B2 (en) 2013-09-05 2017-02-28 The Boeing Company Three dimensional printing of parts
TWI618640B (zh) 2013-09-13 2018-03-21 Silicon Touch Technology Inc. 立體列印系統以及立體列印方法
US9793613B2 (en) 2013-10-09 2017-10-17 The Boeing Company Additive manufacturing for radio frequency hardware
US20160243762A1 (en) 2013-11-15 2016-08-25 Fleming Robert J Automated design, simulation, and shape forming process for creating structural elements and designed objects
US20150158244A1 (en) 2013-12-05 2015-06-11 Stratasys Ltd. Object Of Additive Manufacture With Encoded Predicted Shape Change And Method Of Manufacturing Same
DE102014202020B4 (de) 2014-02-05 2016-06-09 MTU Aero Engines AG Verfahren und Vorrichtung zur Bestimmung von Eigenspannungen eines Bauteils
US9777674B2 (en) 2014-02-26 2017-10-03 Deepak Atyam Injector plate for a rocket engine
US9990446B2 (en) 2014-04-15 2018-06-05 The Boeing Company Predictive shimming for flexible surfaces
US10078325B2 (en) 2014-05-06 2018-09-18 Autodesk, Inc. Systems and methods for designing programmable parts for models and optimizing 3D printing
US10073424B2 (en) 2014-05-13 2018-09-11 Autodesk, Inc. Intelligent 3D printing through optimization of 3D print parameters
US9597843B2 (en) 2014-05-15 2017-03-21 The Boeing Company Method and apparatus for layup tooling
FR3022527B1 (fr) 2014-06-23 2017-12-01 Airbus Operations Sas Procede et dispositif pour la fabrication directe d'une piece sur une structure
WO2015198352A2 (en) 2014-06-26 2015-12-30 Ipengine Management (India) Private Limited Medical implants and fabrication of medical implants
US20150378348A1 (en) 2014-06-27 2015-12-31 Hcl Technologies Ltd. Integrated platform for 3d printing ecosystem interfaces and services
CN104118120B (zh) 2014-07-10 2016-09-14 广州中国科学院先进技术研究所 一种用于3d打印的光学***及其控制方法
JP6470135B2 (ja) 2014-07-14 2019-02-13 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 付加製造された表面仕上げ
US9678545B2 (en) 2014-08-21 2017-06-13 Raytheon Company Additive ELX and mech interfaces for adapting to COTS plug-and-play variance
DE102015011013B4 (de) 2014-08-22 2023-05-04 Sigma Additive Solutions, Inc. Verfahren zur Überwachung von generativen Fertigungsprozessen
EP3186732B1 (en) 2014-08-29 2021-11-10 Microsoft Technology Licensing, LLC Fabricating three-dimensional objects
US10222144B2 (en) 2014-09-23 2019-03-05 The Boeing Company Methods and apparatus for a microtruss heat exchanger
WO2016047874A1 (ko) 2014-09-26 2016-03-31 이상호 3d 프린팅 제어방법
GB2531704A (en) 2014-10-17 2016-05-04 Airbusgroup Ltd Method of additive maufacturing and heat treatment
UA112682C2 (uk) 2014-10-23 2016-10-10 Приватне Акціонерне Товариство "Нво "Червона Хвиля" Спосіб виготовлення тривимірних об'єктів і пристрій для його реалізації
US10204406B2 (en) 2014-11-05 2019-02-12 Illinois Tool Works Inc. System and method of controlling welding system camera exposure and marker illumination
US10016852B2 (en) 2014-11-13 2018-07-10 The Boeing Company Apparatuses and methods for additive manufacturing
DE102014116938A1 (de) 2014-11-19 2016-05-19 Airbus Operations Gmbh Herstellung von Komponenten eines Fahrzeugs unter Anwendung von Additive Layer Manufacturing
EP3023237B1 (en) 2014-11-21 2020-11-11 Airbus Operations GmbH Method and system for manufacturing a three-dimensional object by means of additive manufacturing
US11848534B2 (en) 2014-11-24 2023-12-19 Evolve Additive Solutions, Inc. Additive manufacturing system with laser assembly
EP3026638B1 (en) 2014-11-25 2020-04-01 Airbus Operations GmbH Method and system for adapting a 3D printing model
GB2533102B (en) 2014-12-09 2018-10-31 Bae Systems Plc Additive Manufacturing
US20160169821A1 (en) 2014-12-15 2016-06-16 Airbus Defence and Space GmbH Method of quality assurance of an additive manufacturing build process
US10227145B2 (en) 2015-02-27 2019-03-12 Space Systems/Loral, Llc Truss structure
DE102015204800B3 (de) 2015-03-17 2016-12-01 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätsbeurteilung eines mittels eines additiven Herstellungsverfahrens hergestellten Bauteils
EP3082102A1 (de) 2015-04-13 2016-10-19 MTU Aero Engines GmbH Verfahren zum evaluieren wenigstens einer mittels eines generativen pulverschichtverfahrens hergestellten bauteilschicht
WO2016179121A1 (en) 2015-05-02 2016-11-10 Fleming Robert J Automated design, simulation, and shape forming process for creating structural elements and designed objects
AU2016202759B2 (en) 2015-05-21 2021-04-29 Rosebank Engineering Pty Ltd Methods for restoring an aircraft frame element
US20160356245A1 (en) 2015-06-03 2016-12-08 Raytheon Company Rocket motor produced by additive manufacturing
US10816491B2 (en) * 2015-10-09 2020-10-27 Amir Khajepour System and method for real time closed-loop monitoring and control of material properties in thermal material processing
EP3383573B1 (en) 2015-12-04 2023-11-08 Raytheon Company Electron beam additive manufacturing
US20180104742A1 (en) * 2016-10-18 2018-04-19 General Electric Company Method and system for thermographic inspection of additive manufactured parts
US10234848B2 (en) 2017-05-24 2019-03-19 Relativity Space, Inc. Real-time adaptive control of additive manufacturing processes using machine learning
US10394229B2 (en) 2017-09-27 2019-08-27 International Business Machines Corporation Orchestration of learning and execution of model predictive control tool for manufacturing processes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6553275B1 (en) * 1999-03-11 2003-04-22 Jyoti Mazumder In-situ stress monitoring during direct material deposition process
US20040060639A1 (en) * 2002-08-13 2004-04-01 Dawn White Method of apparatus for ensuring uniform build quality during object consolidation
US20150045928A1 (en) * 2013-08-07 2015-02-12 Massachusetts Institute Of Technology Automatic Process Control of Additive Manufacturing Device
US20150055085A1 (en) * 2013-08-22 2015-02-26 Bespoke, Inc. Method and system to create products
US20150217520A1 (en) * 2014-02-05 2015-08-06 MetaMason, Inc. System and Methods for Additively Manufacturing Highly Customized Structures
US9507555B2 (en) * 2014-04-23 2016-11-29 Inventec Appliances Corp. System for the network monitoring of 3D printing and method thereof
WO2016196382A1 (en) * 2015-06-01 2016-12-08 Velo3D, Inc. Three-dimensional printing and three-dimensional objects formed using the same
US20170032281A1 (en) * 2015-07-29 2017-02-02 Illinois Tool Works Inc. System and Method to Facilitate Welding Software as a Service

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2787293C1 (ru) * 2022-06-06 2023-01-09 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Способ изготовления медицинских изделий из пластика методом SLA технологии с градиентной засветкой
RU2811418C1 (ru) * 2023-05-19 2024-01-11 федеральное государственное автономное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Автоматическая система управления процессом 3d печати изделий полного цикла

Also Published As

Publication number Publication date
US20240142941A1 (en) 2024-05-02
JP2020527475A (ja) 2020-09-10
US20210191363A1 (en) 2021-06-24
WO2018217903A1 (en) 2018-11-29
ES2955982T3 (es) 2023-12-11
EP4306241A1 (en) 2024-01-17
US20180341248A1 (en) 2018-11-29
US10539952B2 (en) 2020-01-21
EP3635640A1 (en) 2020-04-15
JP2021008113A (ja) 2021-01-28
EP3635640B1 (en) 2023-07-12
JP6741883B1 (ja) 2020-08-19
US20190227525A1 (en) 2019-07-25
US10234848B2 (en) 2019-03-19
NZ760534A (en) 2020-08-28
EP3635640A4 (en) 2021-03-10
US20200096970A1 (en) 2020-03-26
JP7084964B2 (ja) 2022-06-15
CA3064593C (en) 2022-05-31
CA3064593A1 (en) 2018-11-29
US10921782B2 (en) 2021-02-16

Similar Documents

Publication Publication Date Title
RU2722525C1 (ru) Адаптивное управление процессами аддитивного производства в реальном масштабе времени с использованием машинного обучения
US20200166909A1 (en) Real-time adaptive control of manufacturing processes using machine learning
Qin et al. Research and application of machine learning for additive manufacturing
Leach et al. Geometrical metrology for metal additive manufacturing
Mercado Rivera et al. Additive manufacturing methods: techniques, materials, and closed-loop control applications
US20200307174A1 (en) Systems and methods for structurally analyzing and printing parts
Di Angelo et al. A reliable build orientation optimization method in additive manufacturing: The application to FDM technology
WO2018031594A1 (en) Systems and methods for structurally analyzing and printing parts
Fang et al. Process monitoring, diagnosis and control of additive manufacturing
Jones et al. Hybrid modeling of melt pool geometry in additive manufacturing using neural networks
Budinoff Geometric manufacturability analysis for additive manufacturing
Chen et al. Prediction of multi-bead profile of robotic wire and arc additive manufactured components recursively using axisymmetric drop shape analysis
Okaro et al. Automatic Fault Detection for Selective Laser Melting using Semi-Supervised Machine Learning
Taufik et al. Computer aided visualization tool for part quality analysis of additive manufacturing process
O’Regan et al. Engineering a more sustainable manufacturing process for metal Additive Layer Manufacturing using a productive process pyramid
Haghighi Smart Process-Aware Tolerance Design and Quality Assurance for Additive and Hybrid Manufacturing
Rupal Geometric tolerance quantification and prediction framework for additive manufacturing processes
Kaji In-situ monitoring and intermittent controller for adaptive trajectory generation during laser directed energy deposition via powder feeding
Das Optimum part build orientation in additive manufacturing for minimizing part errors and build time
Kai Thermal Analyses for Optimal Scanning Path Evaluation in Laser Metal Deposition
Sparks A framework for a successful additive repair system
Krishna On Characterization and Optimization of Surface Topography in Additive Manufacturing Processes
Yaseer Process Planning of Robotic Wire Arc Additive Manufacturing (WAAM) Using Machine Learning
Ogunsanya Digital Twinning of Additive Manufacturing Processes
Nsiempba Coupled Experimentally-Driven Constraint Functions and Topology Optimization utilized in Design for Additive Manufacturing