RU2712638C1 - N-(2-(2-(диалкиламино)этокси)этил)карбоксамиды и их гидрохлориды, обладающие антиаритмической активностью, и фармацевтические композиции на их основе - Google Patents

N-(2-(2-(диалкиламино)этокси)этил)карбоксамиды и их гидрохлориды, обладающие антиаритмической активностью, и фармацевтические композиции на их основе Download PDF

Info

Publication number
RU2712638C1
RU2712638C1 RU2019109598A RU2019109598A RU2712638C1 RU 2712638 C1 RU2712638 C1 RU 2712638C1 RU 2019109598 A RU2019109598 A RU 2019109598A RU 2019109598 A RU2019109598 A RU 2019109598A RU 2712638 C1 RU2712638 C1 RU 2712638C1
Authority
RU
Russia
Prior art keywords
ethyl
compounds
washed
diethyl ether
nmr spectrum
Prior art date
Application number
RU2019109598A
Other languages
English (en)
Inventor
Надежда Юрьевна Борисова
Елена Юльевна Афанасьева
Елена Яковлевна Борисова
Евгений Вениаминович Арзамасцев
Александр Владимирович Крылов
Владислав Константинович Лесников
Екатерина Евгеньевна Виноградова
Дмитрий Борисович Виноградов
Нина Юрьевна Асилова
Ольга Сергеевна Калдыркаева
Ольга Александровна Терехова
Елена Леонидовна Левицкая
Эльвира Валерьевна Кудрявцева
Валентина Петровна Полуэктова
Татьяна Владимировна Гайсинюк
Арега Шмавоновна Амбарцумян
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет" (РТУ МИРЭА)
Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр кардиологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ кардиологии" Минздрава России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет" (РТУ МИРЭА), Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр кардиологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ кардиологии" Минздрава России) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "МИРЭА - Российский технологический университет" (РТУ МИРЭА)
Priority to RU2019109598A priority Critical patent/RU2712638C1/ru
Application granted granted Critical
Publication of RU2712638C1 publication Critical patent/RU2712638C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4453Non condensed piperidines, e.g. piperocaine only substituted in position 1, e.g. propipocaine, diperodon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/32Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • C07C235/34Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/14Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D295/145Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/14Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D295/145Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • C07D295/15Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Изобретение относится к области фармакологии, а именно к соединениям указанной ниже общей формулы, которые проявляют антиаритмическую активность. В указанной формуле когда R=С6Н5, а n=0, то NR1 2=NC5H10 или NC4H8O; когда R=С6Н5ОСН2, a n=1, то NR1 2=N(C2H5)2, NC4H8, NC5H10 или NC4H8O; когда R=С6Н5ОСН2, a n=0, то NR1 2=NC5H10 или NC4H8O; когда R=2,4-Cl26Н3ОСН2, а n=1, то NR1 2=N(C2H5)2, NC4H8, NC5H10 или NC4H8O; когда R=2,4-Cl26Н3ОСН2, а n=0, то NR1 2=NC5H10 или NC4H8O, при этом NC4H8 означает пирролидино, NC5H10 - пиперидино, NC4H8O - морфолино. Изобретение относится также к лекарственному средству и фармацевтической композиции, которые включают указанные соединения. 3 н.п. ф-лы, 4 табл., 3 ил., 20 пр.

Description

Изобретение относится к области фармакологии и касается создания новых лекарственных средств для профилактики и лечения нарушений сердечного ритма.
Несмотря на значительные достижения медицины, патология сердечно-сосудистой системы (ишемическая болезнь сердца, артериальная гипертония, атеросклероз, приобретенные и врожденные пороки сердца, заболевания миокарда воспалительной этиологии) по-прежнему занимают первое место среди других соматических заболеваний человека и являются основной причиной летального исхода. Часто заболевания сердечнососудистой системы осложняются развитием нарушений сердечного ритма различного генеза [Руководство по нарушениям ритма сердца / Под ред. Е.И. Чазова, С.П. Голицына. - М.: ГЭОТАР-Медиа, 2010]. Аритмия и фибрилляция желудочков наблюдаются в 94% случаев у пациентов с инфарктом миокарда и, как правило, являются непосредственной причиной смерти. Несмотря на то, что в последние годы для лечения стали широко использоваться хирургические методы и имплантация различных технических устройств для электроимпульсной терапии, основным методом предупреждения и лечения нарушений ритма сердца остается фармакотерапия.
В настоящее время клиника располагает значительным количеством антиаритмических средств. Однако большинство из них имеет серьезные недостатки, главным из которых является малая терапевтическая широта, а также наличие кардиальных и экстракардиальных побочных явлений [Каверина Н.В. Современные аспекты поиска и доклинического изучения антиаритмических средств / Кардиология, 1986, Т. 26, №8, с. 59-63]. Более того, как было показано в исследовании CAST I и CAST II, применение высокоэффективных препаратов группы IC у пациентов с ишемической болезнью сердца сопровождается увеличением случаев внезапной клинической смерти [The Cardiac Arrhythmia Suppression trial (CAST) Investigators. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction / The New England Journal of Medicine, 1989, V. 321, N. 6, pp. 406-412].
В этой связи разработка эффективной терапии нарушений сердечного ритма и поиск новых лекарственных препаратов с высокой антиаритмической активностью и лишенных нежелательных побочных эффектов являются одними из самых актуальных проблем современной кардиофармакологии.
Анализ литературы показывает, что из уровня техники [патент US 9670242 В2, дата публикации 06.06.2017] известны близкие по структуре соединения с формулой:
R'C(O)NHCH2CH2OCH2CH2NR2
Однако вышеприведенные соединения не обладают антиаритмическими свойствами.
Задача настоящего изобретения состояла в синтезе соединений, обладающих высокой антиаритмической активностью и перспективных для разработки на их основе лекарственных средств для лечения нарушений сердечного ритма.
Технический результат настоящего изобретения заключается в расширении арсенала средств, обладающих высокой антиаритмической активностью и перспективных для разработки на их основе лекарственных средств для лечения нарушений сердечного ритма.
Указанные задача и технический результат достигаются тем, что получен новый класс антиаритмических азотсодержащих соединений, представленных следующей общей формулой:
Figure 00000001
где
Figure 00000002
(при этом NC4H8 - пирролидино, NC5H10 - пиперидино, NC4H8O - морфолино).
Заявляемые соединения получали по схеме:
Figure 00000003
Гидроксиэтоксиэтиламиды (3а-с) получали ацилированием 2-(2-аминоэтокси)этанола (1) соответствующими хлорангидридами карбоновых кислот (2а-с) в среде хлористого метилена при перемешивании при комнатной температуре с последующей экстракцией и перекристаллизацией, получая продукты (3а-с) с выходами 72-80%.
Тозилоксиэтоксиэтиламиды (4а-с), необходимые для реакции амидоэтоксиэтилирования, синтезировали из соответствующих 2-гидроксиэтоксиэтиламидов (3а-с) реакцией последних в сухом пиридине при -16°С в течение 15-17 часов с n-толуолсульфохлоридом с последующим перемешиванием в воде в течение 1 часа до образования осадка. После фильтрования и высушивания получали тозилоксиэтоксиэтиламиды (4а-с) с выходами 67-75%.
Амидоэтоксиэтилирование вторичных аминов (5a-f) тозилоксиэтоксиэтиламидами (4а-с) проводили в кипящем пара-ксилоле (для моноаминов) или ацетонитриле в присутствии триэтиламина (для диаминов) при перемешивании в течение 20-70 часов с последующим осаждением гидрохлоридов полученных продуктов (6-19) в диэтиловом эфире с помощью раствора хлороводорода в диоксане, получая гидрохлориды N-(2-(2-(диалкиламино)этокси)этил)карбоксамидов (6-19) с выходами 43-78%.
Строение соединений (3а-с), (4а-с), (6-19) подтверждено данными ИК-, ЯМР 1Н-, 13С-спектроскопии, а также масс-спектрометрии, состав - элементным анализом. Физико-химические характеристики предлагаемых соединений представлены в таблицах 1-2.
Figure 00000004
Figure 00000005
Figure 00000006
Пример 1. Смесь 2-(2-аминоэтокси)этанола (1) (1,05 г, 0,01 моль) в 25 мл хлористого метилена и 8 мл водного раствора NaOH (10%) охлаждают до -6÷-4°С. К этому, интенсивно перемешиваемому раствору, добавляют по каплям раствор хлорангидрида бензойной кислоты (2а) (1,55 г, 0,011 моль) в 30 мл хлористого метилена. Затем смесь перемешивают при комнатной температуре в течение 10 часов. Оставляют на сутки при комнатной температуре. Добавляют 15 мл воды и отделяют органический слой. Водный слой промывают хлористым метиленом (2×25 мл) и объединенные органические экстракты промывают раствором соляной кислоты (1:1, 30 мл), насыщенным раствором NaCl (30 мл) и высушивают над Na2SO4. После удаления растворителя получают масло, которое перекристаллизовывают из диэтилового эфира. Выход N-[2-(2-гидроксиэтокси)этил]бензамида (3а) составил 1,51 г (72%). Спектр ЯМР 1Н (DMSO+CCl4): δ 7.7 (m, 2Н); 7.35 (m, 3Н); 6.90 (brd 1Н); 3.60 (m, 8Н); 2.8 (brd 1H). Масс-спектр, m/z: 210 (4), 164 (43), 148 (70), 134 (78), 105 (100), 77(85).
Пример 2. К смеси 1,17 г (0,011 моль) 2-(2-аминоэтокси)этанола (1) в 25 мл хлористого метилена и 8 мл 10% водного раствора NaOH при охлаждении до 0°С и интенсивном перемешивании по каплям добавляют раствор 1,71 г (0,01 моль) феноксиацетилхлорида (2b) в 30 мл хлористого метилена. Реакционную смесь перемешивают при комнатной температуре в течение двух часов. Затем добавляют 15 мл воды, отделяют органический слой, а водный слой промывают хлористым метиленом (2×25 мл). Объединенные органические экстракты промывают 30 мл раствора хлористого натрия и высушивают над Na2SO4. После удаления растворителя получают бесцветное масло, которое перекристаллизовывают из диэтилового эфира. Получают 1,85 г (77%) N-[2-(2-гидроксиэтокси)этил]феноксиацетамида (3b). Спектр ЯМР 1H (DMSO+CCl4): δ 7.91 (brds, 1H, NH); 7.29 (t, 2Н, Hm, Ph); 6.95 (brd, 1Н, ОН); 6.95 (t, 1H, Нр, Ph); 6.92 (d, 2Н, Ho, Ph); 4.41 (s, 2Н, СН2СО); 3.50 (m, 2Н, СН2СН2); 3.48 (m, 2Н, СН2СН2); 3.32 (m, 2Н, СН2СН2); 3.23 (m, 2Н, СН2СН2). Спектр ЯМР 13С: 167.52 (СО); 157.64 (Ci); 129.25 (Cm); 121.07 (Ср); 114.64 (Co); 72.21 (СН2СО); 68.97 (СН2СН2); 66.91 (СН2СН2); 60.37 (СН2СН2); 38.98 (СН2СН2). Масс-спектр, m/z: 239 (9), 194 (12), 177 (66), 151 (72), 107 (77), 93 (60).
Пример 3. Раствор 2,39 г (0,01 моль) 2,4-дихлорфеноксиацетилхлорида (2с) в 30 мл хлористого метилена по каплям при охлаждении до 0°С и интенсивном перемешивании добавляют к смеси 1,17 г (0,011 моль) 2-(2-аминоэтокси)этанола (1) в 25 мл хлористого метилена и 8 мл 10% водного раствора NaOH. Реакционную смесь перемешивают при комнатной температуре в течение двух часов. Затем добавляют 15 мл воды, отделяют органический слой, а водный слой промывают хлористым метиленом (2×25 мл). Объединенные органические экстракты промывают 30 мл раствора хлористого натрия и высушивают над сульфатом натрия. После удаления растворителя добавляют диэтиловый эфир. Выпавший осадок перекристаллизовывают из диэтилового эфира. Получают 2,46 г (80%) N-[2-(2-гидроксиэтокси)этил]-2,4-дихлорфеноксиацетамида (3с). Спектр ЯМР 1Н (DMSO): δ 7.92 (brds, 1Н, NH); 7.59 (s, 1H, Hm, Ph); 7.54 (d, 1Н, Hm, Ph); 7.31 (d, 2H, Ho, Ph); 7.03 (brd, 1H, OH); 4.65 (s, 2H, CH2CO); 3.50 (t, 2H, CH2CH2); 3.48 (t, 2H, CH2CH2); 3.35 (m, 2H, CH2CH2); 3.30 (m, 2H, CH2CH2). Спектр ЯМР 13C: 161.53 (CO); 148.34 (Ci); 127.26, 126.09 (Cm); 123.44 (Cp-Cl); 121.06 (Co-Cl); 117.56 (Co); 75.12 (CH2CO); 72.06 (CH2CH2); 71.16 (CH2CH2); 64.25 (CH2CH2); 44.38 (CH2CH2). Масс-спектр, m/z: 307 (5), 272 (100), 246 (31), 175 (65), 145 (40).
Пример 4. К охлажденному до 0°С раствору N-[2-(2-гидроксиэтокси)этил]бензамида (3а) (3,00 г, 0,0144 моль) в 15 мл сухого пиридина добавляют охлажденный до 0°С раствор n-толуолсульфохлорида (5,49 г, 0,0288 моль) в 15 мл сухого пиридина. Реакционную смесь выдерживают при - 18°С 3 суток. По окончании реакции (контроль по ТСХ, хлороформ) раствор аккуратно сливают с кристаллов в воду со льдом и перемешивают в течение 2 часов. Водный слой промывают эфиром, слои разделяют и органический слой промывают раствором соляной кислоты (1:1), 5% раствором NaHCO3 и водой. Органический слой высушивают над Na2SO4. После удаления растворителя получают 3,87 г (74%) N-[2-(2-n-толуолсульфонилэтокси)этил]бензамида (4а) в виде светло-желтого масла, которое перекристаллизовывают из диэтилового эфира. Спектр ЯМР 1Н (DMSO+CCl4): δ 8.35 (brds, 1Н, NH); 7.85, 7.4 (m, 5Н, Ph); 7.74 (d, 2Н, PhTs); 7.45 (d, 2Н, PhTs); 4.12 (t, 2H, CH2CH2); 3.61 (t, 2Н, СН2СН2); 3.48 (m, 2Н, СН2СН2); 3.40 (m, 2Н, СН2СН2); 2.45 (s, 3Н, CH3Ts). Спектр ЯМР 13С: 166.13 (СО); 154.95 (Ci); 144.55 (Ci-Ts); 130.74 (Cm); 129.89 (Cm-Ts); 127.90 (Co-Ts); 127.60 (Cp); 127.25 (Co); 95.70 (Ci-Ts); 69.48 (CH2CH2); 69.13 (CH2CH2); 67.76 (CH2CH2); 38.72 (CH2CH2); 21.25 (CH3). Масс-спектр, m/z: 363 (5), 199 (56), 164 (70), 155 (61), 148 (65), 134 (42), 105 (100), 91 (77), 77 (81).
Пример 5. К охлажденному до 0°С раствору N-[2-(2-гидроксиэтокси)этил]феноксиацетамида (3b) (3,00 г, 0,0125 моль) в 15 мл сухого пиридина добавляют охлажденный до 0°С раствор n-толуолсульфохлорида (4,77 г, 0,0251 моль) в 15 мл сухого пиридина. Реакционную смесь выдерживают в морозильнике 2,5 суток. По окончании реакции (контроль по ТСХ, хлороформ) раствор аккуратно сливают с кристаллов в воду со льдом и перемешивают в течение 2 часов. Водный слой промывают эфиром, слои разделяют и органический слой промывают раствором соляной кислоты (1:1), 5% раствором NaHCO3 и водой. Органический слой высушивают над Na2SO4. После удаления растворителя получают 3,28 г (67%) N-[2-(2-n-толуолсульфонилэтокси)этил]феноксиацетамида (4b) в виде светло-желтого масла, которое перекристаллизовывают из диэтилового эфира. Спектр ЯМР 1Н (DMSO+CCl4): δ 7.89 (t, 1H, NH); 7.75 (d, 2Н, PhTs); 7.45 (d, 2Н, PhTs); 7.25,6.93 (m, 5Н, Ph); 4.41 (s, 2H, CH2CO); 4.10 (t, 2Н, СН2СН2); 3.60 (t, 2Н, СН2СН2); 3.45 (t, 2Н, СН2СН2); 3.30 (m, 2Н, СН2СН2); 2.45 (s, 3Н, CH3Ts). Спектр ЯМР 13С: 167.44 (СО); 157.64 (Ci); 144.51 (Ci-Ts); 129.89 (Cm-Ts); 129.26 (Cm); 127.62 (Co-Ts); 121.04 (Cp); 114.66 (Co); 95.70 (Ci-Ts); 69.43 (CH2CO); 68.97 (CH2CH2); 67.72 (CH2CH2); 66.94 (CH2CH2); 38.08 (CH2CH2); 21.25 (CH3). Масс-спектр, m/z: 393 (15), 199 (65), 155 (82), 91 (93).
Пример 6. К охлажденному до 0°С раствору N-[2-(2-гидроксиэтокси)этил]-2,4-дихлорфеноксиацетамида (3с) (3,08 г, 0,01 моль) в 15 мл сухого пиридина добавляют охлажденный до 0°С раствор n-толуолсульфохлорида (2,86 г, 0,015 моль) в 15 мл сухого пиридина. Реакционную смесь выдерживают в морозильнике 2.5 суток. По окончании реакции (контроль по ТСХ, хлороформ) раствор аккуратно сливают с кристаллов в воду со льдом и перемешивают в течение 2 часов. Водный слой промывают эфиром, слои разделяют и органический слой промывают раствором соляной кислоты (1:1), 5% раствором NaHCO3 и водой. Органический слой высушивают над Na2SO4. После удаления растворителя получают 3,47 г (75%) N-[2-(2-n-толуолсульфонилэтокси)этил]-2,4-дихлорфеноксиацетамида (4с) в виде белых кристаллов. Спектр ЯМР 1Н (DMSO): δ 7.92 (brds, 1H, NH); 7.80 (d, 2Н, PhTs); 7.59 (s, 1Н, Hm, Ph); 7.49 (d, 2H, PhTs); 7.35 (d, 1H, Hm, Ph); 7.05 (d, 1H, Ho, Ph); 4.62 (s, 2H, CH2CO); 4.11 (t, 2H, CH2CH2); 3.60 (t, 2H, CH2CH2); 3.40 (t, 2H, CH2CH2); 3.25 (t, 2H, CH2CH2); 2.4 (s, 3H, CH3Ts). Спектр ЯМР 13C: 166.96 (CO); 152.50 (Ci); 144.95 (Ci-Ts); 130.18 (Cm-Ts);129.38, 128.06 (Cm); 127.64 (Co-Ts); 125.23 (Cp-Cl); 122.63 (Co-Cl); 115.51 (Co); 95.70 (Ci-Ts); 72.19 (CH2CO); 69.93 (CH2CH2); 68.8 (CH2CH2); 67.91 (CH2CH2); 38.21 (CH2CH2); 21.13 (CH3). Масс-спектр, m/z: 461 (1), 462 (100), 175 (33), 155 (70).
Пример 7. N-[2-(2-n-толуолсульфонилэтокси)этил]бензамид (4a) (3,63 г, 0,01 моль) и пиперидин (5а) (4,25 г, 0,05 моль) кипятят в 50 мл ксилола в течение 35 часов до исчезновения исходного тозильного производного (контроль ТСХ, ацетон). Растворитель и исходный амин отгоняют в вакууме, остаток растворяют в диэтиловом эфире и добавляют 3N раствор HCl/диоксан до постоянного значения рН=2. Осадок промывают диэтиловым эфиром (3×10 мл) и высушивают в вакууме. Получают 1,60 (51%) N-(2-(2-пиперидиноэтокси)этил)бензамида гидрохлорида (6). Спектр ЯМР 1Н (CDCl3): δ 10.85 (brd s, 1H, HCl); 7.77 (brd s, 1H, NH); 7.29 (t, 2H, Hm, Ph); 7.01 (t, 1H, Hp, Ph); 6.89 (d, 2H, Ho, Ph); 3.85-3.80 (m, 4H, CH2CH2); 3.30-3.20 (m, 4H, CH2CH2); 2.94 (m, 4H, NC5H10); 1.97 (m, 4H, NC5H10); 1.56 (m, 2H, NC5H10). Спектр ЯМР 13C: 167.39 (CO); 149.09 (Ci); 136.27 (Cm); 124.56 (Cp); 117.05 (Co); 73.11 (CH2CH2); 69.05 (CH2CH2); 61.73 (CH2CH2); 56.18 (NC5H10); 44.90 (CH2CH2); 25.07 (NC5H10); 19.70 (NC5H10).
Пример 8. N-[2-(2-n-толуолсульфонилэтокси)этил]бензамид (4a) (3,63 г, 0,01 моль) и морфолин (5b) (4,35 г, 0,05 моль) кипятят в 50 мл ксилола в течение 30 часов до исчезновения исходного тозильного производного (контроль ТСХ, ацетон). Растворитель и исходный амин отгоняют в вакууме, остаток растворяют в диэтиловом эфире и добавляют 3N раствор HCl/диоксан до постоянного значения рН=2. Осадок промывают диэтиловым эфиром (3×10 мл) и высушивают в вакууме. Получают 1,76 (56%) N-(2-(2-морфолиноэтокси)этил)бензамида гидрохлорида (7). Спектр ЯМР 1Н (CDCl3): δ 10.93 (brds, 1Н, HCl); 7.54 (brds, 1Н, NH); 7.30 (t, 2Н, Hm, С6Н5); 6.99 (t, 2Н, Нр, С6Н5); 6.83 (d, 2Н, Но, С6Н5); 3.84 (m, 4Н, NC4H8O); 3.65 (m, 2Н, СН2СН2); 3.55 (m, 2Н, СН2СН2); 3.30 (m, 2Н, СН2СН2); 2.63 (m, 2Н, СН2СН2); 2.43 (m, 4Н, NC4H8O). Спектр ЯМР 13С: 169.37 (СО); 147.64 (Ci); 135.12 (Cm); 123.90 (Ср); 121.07 (Co); 72.19 (NC4H8O); 70.56 (СН2СН2); 70.08 (СН2СН2); 69.72 (СН2СН2); 62.80 (NC4H8O); 57.20 (СН2СН2).
Пример 9. Смесь 0,76 г (3,69 ммоль) N-бензил-2-диэтиламиноэтиламина (5с) и 1,44 г (3,66 ммоль) N-[2-(2-n-толуолсульфонилэтокси)этил]феноксиацетамида (4b) в 35 мл ацетонитрила в присутствии 1,86 г (18,35 ммоль) триэтиламина нагревают при кипении растворителя в течение 60 часов (контроль с ТСХ, этанол). Затем под вакуумом отгоняют растворитель и триэтиламин, к остатку добавляют смесь Et2O/H2O (1:1, 40 мл). Органический слой отделяют.Водный слой промывают диэтиловым эфиром (3×20 мл). Экстракты объединяются, промываются насыщенным раствором NaCl (3×20 мл) и сушатся над Na2SO4. Растворитель отгоняют на роторе, остаток растворяют в диэтиловом эфире (40 мл) и добавляют 3N раствор HCl/диоксан до постоянного значения рН=2. Осадок промывают диэтиловым эфиром (3×10 мл) и высушивают в вакууме. Получают 1,2 г (66%) дигидрохлорида N-(2-(2-(бензил(2-(диэтиламино)этил)амино)этокси)этил)-феноксиацетамида в виде порошка (8). Спектр ЯМР 1Н (ДМСО-d6), 300.13 МГц, δ (м.д.), J (Гц): 1.22 (т, 6Н, 2СН3, J=7.2); 3.11-3.24 (м, 4Н, 2CH2N); 3.34-3.80 (м, 12Н, 2CH2O+4CH2N); 4.45 (с, 2Н, NCH2Ph); 4.53 (с, 2Н, CH2O); 76.9 (м, 3Н, Ar); 7.28 (м, 2Н, Ar); 7.44 (м, 3Н, Ar); 7.74 (м, 2Н, Ar); 8.48 (т, 1Н, NH, J=5.2); 11.29 (с, 1Н, HN+); 11.62 (с, 1Н, HN+). Спектр ЯМР 13С (ДМСО-d6), 75МГц, δ (м.д.): 8.32 (2СН3); 38.07 (CH2N); 44.70 (CH2N); 46.61 (2CH2N, NEt2); 46.88 (CH2N); 50.76 (CH2N); 57.20 (CH2N); 63.96 (CH2O); 66.71 (CH2O); 69.18 (CH2O); 114.64 (2CH, Ar); 121.07 (CH, Ar); 128.79 (2CH, Ar); 129.43 (C+2CH, Ar); 129.55 (CH, Ar); 131.58 (2CH, Ar); 157.69 (C, Ar); 167.83 (C=O). HRMS, m/z: Найдено 428.2888 [M-2Cl-H]+. C25H39N3O3Cl2. Вычислено M-2Cl-H=428.2913.
Пример 10. Смесь 0,280 г (1,38 ммоль) N-бензил-2-пирролидиноэтиламина (5d) и 0,54 г (1,38 ммоль) N-[2-(2-n-толуолсульфонилэтокси)этил]феноксиацетамида (4b) в 20 мл ацетонитрила в присутствии 0,7 г (6,9 ммоль) триэтиламина нагревают при кипении растворителя в течение 60 часов (контроль с ТСХ, этанол). Затем под вакуумом отгоняют растворитель и триэтиламин, к остатку добавляют смесь Et2O/H2O (1:1, 20 мл). Органический слой отделяют. Водный слой промывают диэтиловым эфиром (3×10 мл). Экстракты объединяются, промываются насыщенным раствором NaCl (3×10 мл) и сушатся над Na2SO4. Растворитель отгоняют на роторе, остаток растворяют в диэтиловом эфире (20 мл) и добавляют 3N раствор HCl/диоксан до постоянного значения рН=2. Осадок промывают диэтиловым эфиром (3×10 мл) и высушивают в вакууме. Получают 0,48 г (70%) дигидрохлорида N-(2-(2-(бензил(2-(N'-пирролидино)этил)амино)этокси)-этил)феноксиацетамида в виде порошка (9). Спектр ЯМР 1Н (CDCl3), 300.13 МГц, δ (м.д.): 2.02 (м, 4Н, 2СН2); 2.82-3.65 (м, 16Н, CH2O+7CH2N); 4.55 (с, 4Н, 2CH2O); 6.98-7.04 (м, 3Н, Ar); 7.22-7.39 (м, 5Н, Ar); 7.74 (м, 2Н, Ar); 8.03 (с, 1H, NH); 11.88 (с, 1H, NH+); 12.06 (с, 1H, NH+). Спектр ЯМР 13С (CDCl3), 75.47 МГц, δ (м.д.): 23.28 (2СН2); 38.83 (CH2N); 49.42 (CH2N); 50.37 (CH2N); 51.76 (CH2N); 54.50 (2CH2N); 59.79 (CH2N); 64.62 (CH2O); 67.36 (CH2O); 70.32 (CH2O); 114.89 (2CH, Ar); 121.82 (CH, Ar); 128.33 (C, Ar); 129.45 (2CH, Ar); 129.65 (2CH, Ar); 130.33 (CH, Ar); 131.56 (2CH, Ar); 157.47 (C, Ar); 168.72 (C=O).
Пример 11. Смесь 0,6 г (2,75 ммоль) N-бензил-2-пиперидиноэтиламина (5е) и 1,41 г (3,6 ммоль) N-[2-(2-n-толуолсульфонилэтокси)этил]феноксиацетамида (4b) в 25 мл ацетонитрила в присутствии 1,39 г (13,76 ммоль) триэтиламина нагревают при кипении растворителя в течение 60 часов (контроль с ТСХ, этанол). Затем под вакуумом отгоняют растворитель и триэтиламин, к остатку добавляют смесь Et2O/H2O (1:1, 30 мл). Органический слой отделяют. Водный слой промывают диэтиловым эфиром (3×15 мл). Экстракты объединяются, промываются насыщенным раствором NaCl (3×15 мл) и сушатся над Na2SO4. Растворитель отгоняют на роторе, остаток растворяют в диэтиловом эфире (30 мл) и добавляют 3N раствор HCl/диоксан до постоянного значения рН=2. Осадок промывают диэтиловым эфиром (3×10 мл) и высушивают в вакууме. Получают 1,05 г (75%) дигидрохлорида N-(2-(2-(бензил(2-(N'-пиперидино)этил)амино)этокси)-этил)феноксиацетамида в виде порошка (10). Спектр ЯМР 1Н (ДМСО-d6), 300.13 МГц, δ (м.д.), J (Гц): 1.38-1.77 (м, 6Н, Hβ+Hγ, NC5H10); 2.93 (с, 2Н, CH2N); 3.23 (с, 2Н, CH2N); 3.35-3.79 (м, 12Н, 2CH2O+4CH2N); 4.43 (с, 2Н, NCH2Ph); 4.53 (с, 2Н, CH2O); 6.95 (м, 3Н, 133 Ar); 7.29 (т, 2Н, Ar, J=7.9); 7.44 (м, 3Н, Ar); 7.72 (м, 2Н, Ar); 8.44 (т, 1Н, NH, J=5.4); 11.07 (с, 1Н, HN+); 11.40 (с, 1Н, HN+). Спектр ЯМР 13С (ДМСО-d6), 75МГц, δ (м.д.): 21.09 (Сγ, NC5H10); 22.22 (2Сβ, NC5H10); 38.08 (CH2N); 46.83 (CH2N); 49.58 (CH2N); 50.52 (CH2N); 52.36 (2Cα, NC5H10); 52.36 (2Cα, NC5H10); 57.22 (CH2N); 64.05 (CH2O); 66.75 (CH2O); 69.18 (CH2O); 114.66 (2CH, Ar); 121.09 (CH, Ar); 128.77 (2CH, Ar); 129.44 (С+3CH, Ar); 129.52 (CH, Ar); 131.62 (2CH, Ar); 157.69 (C, Ar); 167.84 (C=O). HRMS, m/z: Найдено 440.2884 [M-2Cl-H]+. C26H39N3O3Cl2. Вычислено M-2Cl-H=440.2913.
Пример 12. Смесь 0,64 г (2,9 ммоль) N-бензил-2-морфолиноэтиламина (5f) и 1,13 г (2,9 ммоль) N-[2-(2-n-толуолсульфонилэтокси)этил]феноксиацетамида (4b) в 25 мл ацетонитрила в присутствии 1,47 г (14,56 ммоль) триэтиламина нагревают при кипении растворителя в течение 60 часов (контроль с ТСХ, этанол). Затем под вакуумом отгоняют растворитель и триэтиламин, к остатку добавляют смесь Et2O/H2O (1:1, 30 мл). Органический слой отделяют. Водный слой промывают диэтиловым эфиром (3×15 мл). Экстракты объединяются, промываются насыщенным раствором NaCl (3×15 мл) и сушатся над Na2SO4. Растворитель отгоняют на роторе, остаток растворяют в диэтиловом эфире (30 мл) и добавляют 3N раствор HCl/диоксан до постоянного значения рН=2. Осадок промывают диэтиловым эфиром (3×10 мл) и высушивают в вакууме. Получают 0,64 г (43%) дигидрохлорида N-(2-(2-(бензил(2-морфолиноэтил)амино)этокси)этил)-феноксиацетамида в виде порошка (11). Спектр ЯМР 13С (CDCl3), 75.47 МГц, δ (м.д.): 38.66 (CH2N); 48.08 (CH2N); 51.12 (CH2N); 51.90 (CH2N); 52.24 (2CH2N, NC4H8O); 59.32 (CH2N); 63.48 (2CH2O, NC4H8O); 64.54 (CH2O); 67.12 (CH2O); 70.07 (CH2O); 114.26 (2CH, Ar); 121.80 (CH, Ar); 128.62 (C, Ar); 129.29 (2CH, Ar); 129.61 (2CH, Ar); 130.19 (CH, Ar); 131.50 (2CH, Ar); 157.33 (C, Ar); 168.80 (C=O).
Пример 13. N-[2-(2-n-толуолсульфонилэтокси)этил]феноксиацетамид (4b) (3,93 г, 0,01 моль) и пиперидин (5а) (4,25 г, 0,05 моль) кипятят в 50 мл ксилола в течение 35 часов до исчезновения исходного тозильного производного (контроль ТСХ, ацетон). Растворитель и исходный амин отгоняют в вакууме, остаток растворяют в диэтиловом эфире и добавляют 3N раствор HCl/диоксан до постоянного значения рН=2. Осадок промывают диэтиловым эфиром (3×10 мл) и высушивают в вакууме. Получают 1,97 г (58%) гидрохлорида N-(2-(2-пиперидиноэтокси)этил)феноксиацетамида (12). Спектр ЯМР 1Н (CDCl3): δ 11.49 (brds, 1H, HCl); 7.81 (brds, 1Н, NH); 7.21 (t, 2H, Hm, Ph); 6.83 (t, 1Н, Hp, Ph); 6.80 (d, 2H, Ho, Ph); 4.45 (s, 2H, CH2CO); 3.54 (m, 2H, CH2CH2); 3.50 (m, 2H, CH2CH2); 3.43 (m, 2H, CH2CH2); 3.33 (m, 2H, CH2CH2); 2.32 (m, 4H, NC5H10); 1.80 (m, 2H, NC5H10). Спектр ЯМР 13C: 175.90 (CO); 161.78 (Ci); 133.19 (Cm); 125.63 (Cp); 118.97 (Co); 74.01 (CH2CO); 73.25 (CH2CH2); 71.89 (CH2CH2); 71.03 (CH2CH2); 62.80 (NC5H10); 57.59 (CH2CH2); 41.37 (NC5H10); 23.07 (NC5H10).
Пример 14. N-[2-(2-n-толуолсульфонил-этокси)этил]феноксиацетамид (4b) (3,93 г, 0,01 моль) и морфолин (5b) (4,35 г, 0,05 моль) кипятят в 50 мл ксилола в течение 28 часов до исчезновения исходного тозильного производного (контроль ТСХ, ацетон). Растворитель и исходный амин отгоняют в вакууме, остаток растворяют в диэтиловом эфире и добавляют 3N раствор HCl/диоксан до постоянного значения рН=2. Осадок промывают диэтиловым эфиром (3×10 мл) и высушивают в вакууме. Получают 2,17 г (63%) гидрохлорида N-(2-(2-морфолиноэтокси)этил)феноксиацетамида (13). Спектр ЯМР 1H (CDCl3): δ 11.50 (brd s, 1H, HCl); 7.84 (brd s, 1H, NH); 7.19 (t, 2Н, Hm, Ph); 6.83 (m, 3Н, Hp+Ho, Ph); 4.10 (s, 2H, CH2CO); 3.55 (m, 2Н, NC4H8O); 3.51 (m, 2H, CH2CH2); 3.45 (m, 2Н, СН2СН2); 3.32 (m, 2Н, СН2СН2); 2.46 (m, 2Н, СН2СН2); 2.40 (m, 2Н, NC4H8O). Спектр ЯМР 13С: 176.29 (СО); 164.10 (Ci); 134.31 (Cm); 124.97 (Ср); 119.72 (Co); 73.89 (СН2СО); 73.12 (NC4H8O); 72.58 (СН2СН2); 71.78 (СН2СН2); 71.43 (СН2СН2); 62.84 (СН2СН2); 58.93 (NC4H8O).
Пример 15. Смесь 0,76 г (3,69 ммоль) N-бензил-N-(2-диэтиламиноэтил)амина (5с) и 1,7 г (3,69 ммоль) N-[2-(2-n-толуол-сульфонилэтокси)этил]-2,4-дихлорфеноксиацетамида (4с) в 30 мл ацетонитрила в присутствии 1,87 г (18,5 ммоль) триэтиламина нагревают при кипении растворителя в течение 60 часов (контроль ТСХ, этанол). Затем под вакуумом отгоняют растворитель и триэтиламин, к остатку добавляют смесь Et2O/H2O (1:1, 40 мл). Органический слой отделяют. Водный слой промывают диэтиловым эфиром (3×20 мл). Экстракты объединяются, промываются насыщенным раствором NaCl (3×20 мл) и сушатся над Na2SO4. Растворитель отгоняют на роторе, остаток растворяют в диэтиловом эфире (40 мл) и добавляют 3N раствор HCl/диоксан до постоянного значения рН=2. Осадок промывают диэтиловым эфиром (3×10 мл) и высушивают в вакууме. Получают 1,64 г (78%) дигидрохлорида N-(2-(2-(бензил(2-(диэтиламино)этил)амино)этокси)этил)-2,4-дихлорфеноксиацетамида в виде порошка (14). Спектр ЯМР 1Н (CDCl3), 300.13 МГц, δ (м.д.), J (Гц): 1.35 (т, 6Н, 2СН3, J=5.4; 3.17 (м, 4Н, 2CH2N); 3.41-3.80 (м, 12Н, 2CH2O+4CH2N); 4.56 (м, 2Н, NCH2Ph); 4.65 (с, 2Н, CH2O); 6.95 (д, 1H, Н(6), Ar, 3 J=8.6); 7.17 (дд, 1Н, Н(5), Ar, 4 J=2.4, 3 J=8.6); 7.32 (д, 1H, Н(3), Ar, 4 J=2.4); 7.75 (м, 2Н, Ar); 7.40 (м, 3Н, Ar); 7.86 (с, 1Н, NH); 11.77 (с, 1H, HN+); 11.92 (с, 1H, HN+). Спектр ЯМР 13C(CDCl3), 75МГц, δ (м.д.): 8.74 (2СН3); 38.30 (CH2N); 46.90 (2CH2N, NEt2); 47.84 (CH2N); 49.09 (CH2N); 52.00 (CH2N); 59.77 (CH2N); 64.70 (CH2O); 68.54 (CH2O); 70.13 (CH2O); 115.34 (CH, Ar); 123.57 (C-Cl, Ar); 126.99 (C-Cl, Ar); 127.89 (CH, Ar); 129.38 (2CH, Ar); 129.89 (C+CH, Ar); 130.29 (CH, Ar); 131.47 (2CH, Ar); 152.10 (C, Ar); 167.80 (C=O). HRMS, m/z: Найдено 496.2103 [M-2Cl-H]+. C25H37N3O3Cl4. Вычислено M-2Cl-H=496.2134.
Пример 16. Смесь 1,8 г (8,82 ммоль) N-бензил-N-(2-пирролидиноэтил)амина (5d) и 4,07 г (8,83 ммоль) N-[2-(2-n-толуол-сульфонилэтокси)этил]-2,4-дихлорфеноксиацетамида (4с) в 80 мл ацетонитрила в присутствии 4,46 г (44,15 ммоль) триэтиламина нагревают при кипении растворителя в течение 60 часов (контроль ТСХ, этанол). Затем под вакуумом отгоняют растворитель и триэтиламин, к остатку добавляют смесь Et2O/H2O (1:1, 80 мл). Органический слой отделяют. Водный слой промывают диэтиловым эфиром (3×40 мл). Экстракты объединяются, промываются насыщенным раствором NaCl (3×40 мл) и сушатся над Na2SO4. Растворитель отгоняют на роторе, остаток растворяют в диэтиловом эфире (80 мл) и добавляют 3N раствор HCl/диоксан до постоянного значения рН=2. Осадок промывают диэтиловым эфиром (3×10 мл) и высушивают в вакууме. Получают 2,43 г (49%) дигидрохлорида N-(2-(2-(бензил(2-пирролидиноэтил)амино)этокси)этил)-2,4-дихлорфеноксиацетамида в виде порошка (15). Спектр ЯМР 1Н (ДМСО-d6), 300.13 МГц, δ (м.д.), J (Гц): 1.98 (м, 4Н, 2СН2, NC4H8); 3.05 (м, 2Н, CH2N); 3.24 (м, 2Н, CH2N); 3.33-3.67 (м, 12Н, 2CH2O + 4CH2N); 4.52 (м, 2Н, NCH2Ph); 4.72 (с, 2Н, CH2O); 7.08 (д, 1Н, Н(6), Ar, 3 J=9); 7.36 (дд, 1H, Н(5), Ar, 4 J=2.6, 3 J=9); 7.44 (м, 3Н, Ar); 7.57 (д, 1H, Н(3), Ar, 4 J=2.6); 7.72 (м, 2Н, Ar); 8.44 (т, 1H, NH, J=5.1); 11.44 (с, 2Н, 2HN+). Спектр ЯМР 13С (ДМСО-d6), 75МГц, δ (м.д.): 22.64 (2СН2, NC4H8); 38.21 (CH2N); 47.39 (CH2N); 47.97 (CH2N); 50.76 (CH2N); 53.05 (2CH2N, NC4H8); 57.19 (CH2N); 64.00 (CH2O); 67.63 (CH2O); 69.16 (CH2O); 115.31 (CH, Ar); 122.41 (C-Cl, Ar); 124.93 (C-Cl, Ar); 127.99 (CH, Ar); 128.79 (2CH, Ar); 129.29 (C+CH, Ar); 129.53 (CH, Ar); 131.55 (2CH, Ar); 152.55 (C, Ar); 167.03 (C=O). 135 HRMS, m/z: Найдено 494.1952 [M-2Cl-H]+. C25H35N3O3Cl4. Вычислено M-2Cl-H=494.1977.
Пример 17. Смесь 0,7 г (3,2 ммоль) N-бензил-N-(2-пиперидиноэтил)амина (5е) и 1,48 г (3,2 ммоль) N-[2-(2-n-толуол-сульфонилэтокси)этил]-2,4-дихлорфеноксиацетамида (4с) в 25 мл ацетонитрила в присутствии 1,62 г (16,0 ммоль) триэтиламина нагревают при кипении растворителя в течение 60 часов (контроль с ТСХ, этанол). Затем под вакуумом отгоняют растворитель и триэтиламин, к остатку добавляют смесь Et2O/H2O (1:1, 30 мл). Органический слой отделяют. Водный слой промывают диэтиловым эфиром (3×15 мл). Экстракты объединяются, промываются насыщенным раствором NaCl (3×15 мл) и сушатся над Na2SO4. Растворитель отгоняют на роторе, остаток растворяют в диэтиловом эфире (30 мл) и добавляют 3N раствор HCl/диоксан до постоянного значения рН=2. Осадок промывают диэтиловым эфиром (3×10 мл) и высушивают в вакууме. Получают 1,3 г (70%) дигидрохлорида N-(2-(2-(бензил(2-пиперидино)этил)амино)этокси)этил)-2,4-дихлорфеноксиацетамида в виде порошка (16). Спектр ЯМР lH (CDCl3), 500 МГц, δ (м.д.) J (Гц): 1.40-2.07 (м, 6Н, Hβ+Hγ, NC5H10); 2.90 (шир.с, 2Н, Нα, NC5H10); 3.38-3.45 (м, 4Н, 2Нα в NC5H10+CH2N); 3.57-4.13 (с, 10Н, 2CH2O+3CH2N); 4.42-4.57 (м, 2Н, CH2Ph); 4.68 (д, 2Н, СН2СО); 6.98 (д, 1H, Н(6), Ar, 3 J=8.9), 7.20 (дд, 1H, Н(5), Ar, 4 J=2.5, 3 J=8.9); 7.35 (д, 1Н, Н(3), Ar, 4 J=2.5); 7.43 (м, 3Н, Ar); 7.73 (м, 2Н, Ar); 7.78 (с, 1H, NH); 11.78 (с, 1H, HN+); 12.01 (с, 1H, HN+). Спектр ЯМР 13С (CDCl3), 125МГц, δ (м.д.): 23.08 (Cr, NC5H10); 24.14 (2Сβ, NC5H10); 40.21 (CH2N); 50.04 (CH2N); 52.57 (CH2N); 53.39 (CH2N); 54.94 (2Сα, NC5H10); 61.30 (CH2Ph); 66.19 (CH2O); 70.19 (CH2O); 71.67 (CH2O); 117.03 (CH, Ar); 125.21 (C-Cl, Ar); 128.64 (C-Cl, Ar); 129.42 (CH, Ar); 130.91 (2CH, Ar); 131.43 (C+CH, Ar); 131.81 (CH, Ar); 132.93 (2CH, Ar); 153.63 (C, Ar); 169.31 (CO). MS/MS, m/z: 509.08 (100) [M-2Cl]+, 207 (21), 134 (8), 112 (10).
Пример 18. Смесь 0,71 г (3,2 ммоль) N-бензил-N-(2-морфолиноэтил)амина (5f) и 1,47 г (3,2 ммоль)N-[2-(2-n-толуол-сульфонилэтокси)этил]-2,4-дихлорфеноксиацетамида (4с) в 30 мл ацетонитрила в присутствии 1,62 г (16,0 ммоль) триэтиламина нагревают при кипении растворителя в течение 60 часов (контроль с ТСХ, этанол). Затем под вакуумом отгоняют растворитель и триэтиламин, к остатку добавляют смесь Et2O/H2O (1:1, 30 мл). Органический слой отделяют. Водный слой промывают диэтиловым эфиром (3×15 мл). Экстракты объединяются, промываются насыщенным раствором NaCl (3×15 мл) и сушатся над Na2SO4. Растворитель отгоняют на роторе, остаток растворяют в диэтиловом эфире (30 мл) и добавляют 3N раствор HCl/диоксан до постоянного значения рН=2. Осадок промывают диэтиловым эфиром (3×10 мл) и высушивают в вакууме. Получают 1,3 г (72%) дигидрохлорида N-(2-(2-(бензил(2-морфолино)этил)амино)этокси)этил)-2,4-дихлорфеноксиацетамида в виде порошка (17). Спектр ЯМР 1Н (CDCl3), 300.13 МГц, δ (м.д.), J (Гц): 3.01-3.97 (м, 20Н, 4CH2O+6CH2N); 4.56 (д, 2Н, NCH2Ph); 4.63 (с, 2Н, CH2O); 6.93 (д, 3 J=8.5, 136 1Н, Н(6), Ar); 7.18 (дд, 1H, Н(5), Ar, 4 J=2.15, 3 J=8.5); 7.32 (д, 1Н, Н(3), Ar, 4 J=2.1); 7.38 (м, 3Н, Ar); 7.71 (м, 3Н, NH+2H(Ar)); 11.63 (с, 1H, HN+); 12.27 (с, 1H, HN+). Спектр ЯМР 13С (CDCl3), 75МГц, δ (м.д.): 38.71 (CH2N); 47.17 (CH2N); 47.65 (CH2N); 48.18 (CH2N); 52.05 (2CH2N, NC4H8O); 59.53 (CH2N); 63.54 (2CH2O, NC4H8O); 64.78 (CH2O); 68.55 (CH2O); 70.20 (CH2O); 115.33 (CH, Ar); 123.56 (C-Cl, Ar); 127.12 (C-Cl, Ar); 127.96 (CH, Ar); 129.37 (2CH, Ar); 129.93 (C+CH, Ar); 130.27 (CH, Ar); 131.53 (2CH, Ar); 151.92 (C, Ar); 167.88 (C=O). HRMS, m/z: Найдено 510.1893 [M-2Cl-H]+. C25H35N3O4Cl4. Вычислено M-2Cl-H=510.1926.
Пример 19. N-[2-(2-n-толуолсульфонилэтокси)этил]-2,4-дихлорфеноксиацетамид (4c) (4,62 г, 0,01 моль) и пиперидин (5а) (4,25 г, 0,05 моль) кипятят в 50 мл ксилола в течение 25 часов до исчезновения исходного тозильного производного (контроль ТСХ, ацетон). Растворитель и исходный амин отгоняют в вакууме, остаток растворяют в диэтиловом эфире и добавляют 3N раствор HCl/диоксан до постоянного значения рН=2. Осадок промывают диэтиловым эфиром (3×10 мл) и высушивают в вакууме. Получают 2,42 г (59%) гидрохлорида N-(2-(2-пиперидиноэтокси)этил)-2,4-дихлорфеноксиацетамида (18). Спектр ЯМР 1Н (DMSO+CCl4): δ 11.52 (brds, 1H, HCl); 7.75 (brds, 1H.NH); 7.41 (m, 1H, HmPh); 7.27 (m, 1H, HmPh); 7.05 (m, 1H, HoPh); 4.58 (s, 2H, CH2CO); 3.53 (m, 2H, CH2CH2); 3.50 (m, 2H, CH2CH2); 3.48 (m, 2H, CH2CH2); 3.35 (m, 2H, CH2CH2); 2.45 (m, 4H, NC5H10); 2.4 (m, 4H, NC5H10); 1.56 (m, 2H, NC5H10). Спектр ЯМР 13C: 166.48 (CO); 152.24 (Ci); 129.22, 127.78 (Cm); 125.50 (Cp-Cl); 122.80 (Co-Cl); 115.31 (Co); 68.88 (CH2CO); 68.21 (CH2CH2); 67.91 (CH2CH2); 58.00 (CH2CH2); 54.51 (NC5H10); 38.34 (CH2CH2); 25.48,23.94 (NC5H10).
Пример 20. N-[2-(2-n-толуолсульфонилэтокси)этил]2,4-дихлорфеноксиацетамид (4c) (4,62 г, 0,01 моль) и морфолин (5b) (4,35 г, 0,05 моль) кипятят в 50 мл ксилола в течение 37 часов до исчезновения исходного тозильного производного (контроль ТСХ, ацетон). Растворитель и исходный амин отгоняют в вакууме, остаток растворяют в диэтиловом эфире и добавляют 3N раствор HCl/диоксан до постоянного значения рН=2. Осадок промывают диэтиловым эфиром (3×10 мл) и высушивают в вакууме. Получают 2,76 г (67%) гидрохлорида N-(2-(2-морфолиноэтокси)этил)-2,4-дихлорфенокси-ацетамида (19). Спектр ЯМР 1Н (DMSO+CCl4): δ 11,50 (brs s, 1Н, HCl); 7.73 (brs s, 1H, NH); 7.48 (s, 1H, Hm, Ph); 7.33 (d, 1H, Hm, Ph); 7.10 (d, 1H, Ho, Ph); 4.50 (s, 2H, CH2CO); 3.60 (m, 2H, CH2CH2); 3.50 (m, 2H, CH2CH2); 3.47 (m, 2H, CH2CH2); 3.30 (m, 2H, CH2CH2); 2.56 (m, 4H, NC4H8O); 1.93 (m, 4H, NC4H8O). Спектр ЯМР 13C: 166.93 (CO); 152.48 (Ci); 129.35, 127.84 (Cm); 125.63 (Cp-Cl); 122.73 (Co-Cl); 115.20 (Co); 71.04 (CH2CO); 69.27 (NC4H8); 68.51 (CH2CH2); 67.23 (CH2CH2); 65.48 (CH2CH2); 38.34 (CH2CH2); 34.25 (NC4H8O).
Исследование антиаритмических свойств изучаемых соединений проведено в соответствии с руководством по проведению доклинических исследований лекарственных средств [Руководство по проведению доклинических исследований лекарственных средств. Часть первая. - М: Гриф и К, 2012. - 944 с.].
Антиаритмические свойства веществ оценивались параллельно на различных моделях нарушения сердечного ритма, в которых аритмии возникают и поддерживаются различными механизмами. В качестве моделей использовали аконитиновую (аконитина гидробромид в дозах 40-50 мкг/кг), хлоридкальциевую (CaCl2 в дозе 200-250 мг/кг) и хлоридбариевую (BaCl2 в дозе 25 мг/кг) аритмии у крыс Wistar (самцы и самки, масса тела 180-240 г). Эффективность антиаритмического действия соединений характеризуется способностью предотвращать развитие аритмии или прекращать уже развившиеся аритмии, облегчать их течение и восстанавливать нормальный синусовый ритм.
Исследования токсичности и антиаритмической активности заявляемых соединений проведены на 380 мышах линии Balb/c (самцы и самки, масса тела 18-20 г), 760 крысах линии Wistar (самцы и самки, масса тела 180-240 г).
Животных содержали в соответствии с нормами группового размещения в условиях естественного освещения с принудительной 16-ти кратной вентиляцией при температуре 18-20°С и относительной влажности 40-70%. Животные имели свободный доступ к питьевой воде и стандартному (ГОСТ Р50258-92) гранулированному корму ПК 120-1 (ООО «Лабораторснаб», Россия). Условия содержания животных соответствовали приказу МЗ РФ №199н «Об утверждении правил надлежащей лабораторной практики» от 01.04.2016 и этическим нормам, изложенным в Правилах лабораторной практики (GLP) Хельсинской декларации (2000). Все исследовательские работы с лабораторными животными выполнялись в соответствии с общепринятыми нормами обращения с животными, которые соответствуют правилам, принятым Европейской Конвенцией по защите позвоночных животных, используемых для исследовательских и иных научных целей [European Convention for the protection of vertebrate animals used for experimental and other scientific purposes, Strasbourg, 18 March 1986].
Исследованию антиаритмических свойств впервые синтезированных соединений предшествовало изучение их острой токсичности на мышах линии Balb/c (самцы и самки, масса тела 18-22 г) при однократном внутрибрюшинном введении. На I этапе по методу [Deichmann W.B., LeBlanc T.J. Determination of the approximate lethal dose with about six animals / Journal of Industrial Hygiene and Toxicology, 1943, V. 25, pp. 415-417] на малом количестве животных (5-7) определяли показатели ориентировочной ЛД50. На втором этапе в развернутом эксперименте устанавливали точное значение параметров токсикометрии с использованием метода пробит-анализа по Литчфилду и Уилкоксону (развернутый опыт на трех группах животных, по 5-6 животных в каждой, с дозами выше и ниже установленных ориентировочно ЛД50). Наблюдение за животными осуществляли на протяжении 14 дней после введения веществ. Регулярно фиксировали общее состояние, особенности поведения и двигательной активности, регистрировали сроки развития интоксикации и гибели животных. Показатели острой токсичности ЛД10, ЛД16, ЛД50±m, ЛД84 определяли с использованием метода пробит-анализа по Литчфилду и Уилкоксону [Litchfield J.Т., Wilcoxon F.A simplified method of evaluating dose-effect experiments / Journal of Pharmacology and Experimental Therapeutics, 1949, V. 96, N. 2, pp. 99-113; Беленький M.Л. Элементы количественной оценки фармакологического эффекта / 2-е изд., перераб. и доп. - Ленинград: Медгиз, 1963. - 146 с.]. Как показали проведенные исследования, изучаемые соединения оказались малотоксичными при однократном внутрибрюшинном введении мышам линии BALB/c. При этом показатели ЛД50 находились в пределах 104-822 мг/кг. Результаты экспериментов представлены в таблице 3.
В качестве референтных препаратов использовали известные и широко применяемые в медицинской практике антиаритмические средства: амиодарон (Кордарон «Санофи-Авентис Франс»), пропранолол (Анаприлин «Татхимфармпрепараты»), верапамил (Алкалоид респ. Македония), новокаинамид (Мосхимфармпрепараты им. Н.А. Семашко).
Антиаритмическуюактивность соединений оценивали по величине среднеэффективной дозы (ЭД50), предотвращающей или снимающей нарушения сердечного ритма, антиаритмическому индексу (АИ) и индексу Шнейдера-Брокка (ЛД10/ЭД90). Последний позволяет более точно охарактеризовать фармакологическую активность препаратов, терапевтическую широту и перспективность создания на их основе лекарственных средств [Arzamastsev Е.V. The safety of drugs at the stage of screening and preclinical toxicological studies / Lab. Zhyvotnye, 1991, V. 1, N. 2, pp. 60-64]. Указанные параметры эффективности и токсичности устанавливали методом пробит-анализа по методу Литчфилду и Уилкоксона [Litchfield J.Т., Wilcoxon F.A simplified method of evaluating dose-effect experiments / Journal of Pharmacology and Experimental Therapeutics, 1949, V. 96, N. 2, pp. 99-113].
Figure 00000007
Аконитиновая модель аритмии на крысах Wistar. Эксперименты по первичной оценке антиаритмической активности выполнены на модели аконитиновой аритмии на наркотизированных уретаном (в/б, 1300 мг/кг) крысах Wistar. Внутривенное введение аконитина гидробромида в дозе 40-50 мкг/кг вызывает желудочковую экстрасистолию, быстро переходящую в тахисистолию, трепетание, мерцание и фибрилляцию желудочков, приводящих более чем в 90% случаев к гибели животных, и продолжается в случае отсутствия фибрилляции желудочков в среднем 49,3±10,4 мин. [Szekeres L. Experimental models for the study of antiarrhythmic agents / Progr. mPharmacol, 1979, V. 2, N. 4, pp. 25-31]. Электрокардиограмма представлена на фиг. 1A.
Наркотизированных животных (крысы Wistar, самцы и самки массой 180-240 г) (уретан 1300 мг/кг, в/б) фиксировали в положении на спине на операционном столе, катетеризировали бедренную вену для введения аконитина и изучаемых соединений. Перед началом эксперимента у животных регистрировали ЭКГ (II стандартное отведение, калибровочный сигнал 10 мм/мВ, скорость записи 25 мм/сек). В качестве регистратора использовали кардиограф CARDIOVITAT-1 VETSchiller (Швейцария). Затем подбирали дозу аконитина (n=10, в/в, болюсом), которая во всех экспериментах в пределах 1-2 мин после окончания его введения вызывает политопную предсердно-желудочковую экстрасистолию. Изучаемые соединения вводили в дозах 1/10-1/100 от ЛД50 для мышей при внутрибрюшинном введении, препараты сравнения в эффективных антиаритмических дозах. Регистрацию ЭКГ проводили через 3, 5, 10, 15 и 20 минут после введения аконитина. Каждую дозу исследуемых соединений испытывали на 5-10 животных.
Эффективность антиаритмического действия соединений оценивали по величине латентного периода, по продолжительности аритмии или ее предотвращению. По окончании эксперимента рассчитывали среднеэффективную дозу соединения - ЭД50 методом пробит-анализа по Литчфиллду и Уилкоксону. Для оценки эффективности антиаритмического действия изучаемых соединений и препаратов сравнения использовали антиаритмический индекс (ЛД50/ЭД50) и индекс Шнейдера-Брокка (ЛД90/ЭД90). На основании нескольких серий экспериментов, в которых исследовались антиаритмические свойства различных доз изучаемых веществ, методом пробит-анализа по Литчфилду и Уилкоксону определяли дозы, снимающие аритмию у 50 и 90% животных.
Введение исследуемых соединений в диапазоне испытанных доз 1/100-1/10 от ЛД50 (для мышей при внутрибрюшинном введении) приводило к 30-100% выживаемости животных на модели аконитиновой аритмии. Заявляемые соединения в испытанных дозах увеличивали длительность скрытого периода развития аконитиновой аритмии или полностью ее предотвращали. Кардиограммы представлены на фиг. 1-3.
Высокая антиаритмическая активность заявляемых соединений подтверждается другим использованным критерием - процентом снятых аритмий (таблица 4). Применение этого критерия свидетельствует о выраженных антиаритмических свойствах заявляемых соединений. На моделях аконитиновой аритмии у крыс ряд заявляемых соединений в дозах до 6 мг/кг (соединения (12), (6), (18)) в 50-100% случаев снимает аритмии, вызванные введением аконитина гидробромида. Наименьшими средними эффективными дозами (ЭД50) характеризуются соединения (12), (17), (18).
Выраженные антиаритмические свойства заявляемых соединений, выявленные на модели аконитиновой аритмии, были подтвержены также и на моделях хлоридбариевой и хлоридкальциевой аритмии. Электрокардиограммы представлены на фиг. 2, 3.
Хлоридбариевая модель аритмии на крысах Wistar. Внутривенное введение хлористого бария в дозе 25 мг/кг наркотизированным крысам (уретан 1300 мг/кг внутрибрюшинно) вызывает политопную желудочковую аритмию, обусловленную нарушением автоматизма сердца, изменением возбудимости миокарда и характеризующуюся тахиаритмией и желудочковой экстрасистолией. Аритмия возникает через 10-15 сек после введения хлористого бария и, по данным электрокардиографии, отмечается на протяжении 42,7±5,2 мин, после чего наблюдается восстановление синусового ритма или в 85% случаев отмечается гибель животных. Типичная электрокардиограмма представлена на фиг. 2А.
Хлоридкальциевая модель аритмии на крысах Wistar. Нарушения ритма сердца, индуцированные хлоридом кальция (200-250 мг/кг), получали при в/в введении его в виде 10% раствора. При этом через 30 сек - 1 мин возникала фибрилляция желудочков сердца. Исследуемые соединения и препарат сравнения (верапамил) вводили в/в за 1-2 мин до введения кальция хлорида. ЭКГ регистрировали во II стандартном отведении, начиная с 1-й минуты, и далее через 5, 10, 15 и 20 мин после введения кальция хлорида. Исследование каждого соединения проводилось на 3-6 группах животных, в зависимости от количества исследуемых доз. Латентный период до появления аритмии составляет 7,5±1,2 сек, продолжительность аритмии 18±7 мин. Об антиаритмическом эффекте судили по уменьшению количества случаев летальной фибрилляции желудочков сердца.
Типичная электрокардиограмма представлена на фиг. 3А.
Такой показатель как антиаритмический индекс (соотношение ЛД50/ЭД50), характеризующий широту терапевтического действия лекарственных препаратов, для ряда заявляемых соединений превышает показатель 100 и составляет для соединений (12) и (17) величины 718 и 112 соответственно.
В качестве иллюстраций на графических изображениях (фиг. 1-3) представлены электрокардиограммы крыс с нарушениями сердечной деятельности, вызванных аконитином гидробромидом, хлористым барием и хлористым кальцием.
Впервые синтезированные N-(2-(2-(диалкиламино)этокси)этил)карбоксамиды и их гидрохлориды являются малотоксичными соединениями. Полученные в экспериментах данные свидетельствуют о выраженных антиаритмических свойствах и заметных преимуществах заявленных соединений. По сравнению с известными антиаритмиками соединения обладают меньшей токсичностью, большими терапевтическими индексами (ЛД50/ЭД50 и ЛД10/ЭД90) - важнейшими показателями, необходимыми для дальнейшего изучения и перспективности клинических испытаний, и практического применения в качестве лекарственных средств для профилактики и лечения нарушений ритма сердца.
Таким образом, проведенные исследования показали, что заявляемые аминоамиды являются малотоксичными веществами, обладают выраженными антиаритмическими свойствами, не уступающим по эффективности действия применяемым в настоящее время известным лекарственным средствам амиодарону, верапамилу и пропранололу. Заявляемые соединения являются препаратами комбинированного действия и перспективны для разработки на их основе новых высокоэффективных и безопасных лекарственных средств для лечения и профилактики нарушений сердечного ритма.
Figure 00000008
Figure 00000009
Figure 00000010

Claims (10)

1. Соединения, проявляющие антиаритмическую активность и представленные общей формулой
Figure 00000011
где когда R=С6Н5, а n=0, то NR1 2=NC5H10 или NC4H8O;
когда R=С6Н5ОСН2, a n=1, то NR1 2=N(C2H5)2, NC4H8, NC5H10 или NC4H8O;
когда R=С6Н5ОСН2, a n=0, то NR1 2=NC5H10 или NC4H8O;
когда R=2,4-Cl26Н3ОСН2, а n=1, то NR1 2=N(C2H5)2, NC4H8, NC5H10 или NC4H8O;
когда R=2,4-Cl26Н3ОСН2, а n=0, то NR1 2=NC5H10 или NC4H8O,
при этом NC4H8 - пирролидино, NC5H10 - пиперидино, NC4H8O - морфолино.
2. Лекарственное средство, обладающее антиаритмической активностью, включающее в качестве активного агента соединения по п. 1.
3. Фармацевтическая композиция, обладающая антиаритмической активностью, включающая в качестве активного агента соединения по п. 1 совместно с одним или несколькими фармацевтически приемлемыми носителями или эксципиентами.
RU2019109598A 2019-04-02 2019-04-02 N-(2-(2-(диалкиламино)этокси)этил)карбоксамиды и их гидрохлориды, обладающие антиаритмической активностью, и фармацевтические композиции на их основе RU2712638C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019109598A RU2712638C1 (ru) 2019-04-02 2019-04-02 N-(2-(2-(диалкиламино)этокси)этил)карбоксамиды и их гидрохлориды, обладающие антиаритмической активностью, и фармацевтические композиции на их основе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019109598A RU2712638C1 (ru) 2019-04-02 2019-04-02 N-(2-(2-(диалкиламино)этокси)этил)карбоксамиды и их гидрохлориды, обладающие антиаритмической активностью, и фармацевтические композиции на их основе

Publications (1)

Publication Number Publication Date
RU2712638C1 true RU2712638C1 (ru) 2020-01-30

Family

ID=69624914

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019109598A RU2712638C1 (ru) 2019-04-02 2019-04-02 N-(2-(2-(диалкиламино)этокси)этил)карбоксамиды и их гидрохлориды, обладающие антиаритмической активностью, и фармацевтические композиции на их основе

Country Status (1)

Country Link
RU (1) RU2712638C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2130922C1 (ru) * 1996-11-13 1999-05-27 Московская государственная академия тонкой химической технологии им.М.В.Ломоносова Арилалифатические аминоамиды бензойной (замещенной бензойной), циклогексан- и 1-адамантанкарбоновых кислот, обладающие антиаритмической, местноанестезирующей и анальгетической активностью
RU2645080C1 (ru) * 2017-07-13 2018-02-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский технологический университет" (МИРЭА) N,N-бис(2-(диалкиламино)этил)карбоксамиды и их дигидрохлориды, проявляющие антиаритмическую активность, и фармацевтические композиции на их основе

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2130922C1 (ru) * 1996-11-13 1999-05-27 Московская государственная академия тонкой химической технологии им.М.В.Ломоносова Арилалифатические аминоамиды бензойной (замещенной бензойной), циклогексан- и 1-адамантанкарбоновых кислот, обладающие антиаритмической, местноанестезирующей и анальгетической активностью
RU2645080C1 (ru) * 2017-07-13 2018-02-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский технологический университет" (МИРЭА) N,N-бис(2-(диалкиламино)этил)карбоксамиды и их дигидрохлориды, проявляющие антиаритмическую активность, и фармацевтические композиции на их основе

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Е.Я. БОРИСОВА и др. Антиаритмики нового поколения класса N-замещенных аминоамидов. Лекарственный дизайн, МИКРОЭЛЕМЕНТЫ В МЕДИЦИНЕ, 2005, 6(3), стр. 56-61. *

Similar Documents

Publication Publication Date Title
EP0043807B1 (en) 1-(dihydroxyphenyl)-2-amino-ethanol derivatives; preparation, compositions and intermediates
US4999377A (en) Chemical compounds
EP0245997A2 (en) N-substituted p-aminoethylsulphon anilides as antiarrhythmic agents, and intermediates therefor
DE69104615T2 (de) Diphenylpiperazinderivat.
FR2459235A1 (fr) Nouveaux derives de sulfonyl-aniline, leur procede de preparation et leur application therapeutique
US4731383A (en) Aminoguanidine compounds, their compositions and pharmaceutical uses
US20020147195A1 (en) Piperidine derivatives and anti-platelet agents containing the same
LT3671B (en) Substituted 1-(1h-imidazol-4-il)alkylbenzamides
US4500529A (en) Method of treating cardiac disorders with N-(aryloxyalkyl)-N'-(aminoalkyl)ureas
KR100416674B1 (ko) 크로몬유도체
RU2712638C1 (ru) N-(2-(2-(диалкиламино)этокси)этил)карбоксамиды и их гидрохлориды, обладающие антиаритмической активностью, и фармацевтические композиции на их основе
US4558155A (en) N-(Aryloxyalkyl)-N'-(aminoalkyl)thioureas
EP0221958B1 (en) 3-aminopropyloxyphenyl derivatives their preparation and pharmaceutical compositions containing them
US5236956A (en) Compounds for the treatment of urinary incontinence
JP3093419B2 (ja) 1,4‐ベンゾチアゼピン誘導体
DK150902B (da) Analogifremgangsmaade til fremstilling af n-(3-alkylaminopropyl)-n'-(disubstitueret)-phenylurinstoffer
RU2645080C1 (ru) N,N-бис(2-(диалкиламино)этил)карбоксамиды и их дигидрохлориды, проявляющие антиаритмическую активность, и фармацевтические композиции на их основе
EP0367040B1 (en) Compounds for the treatment of urinary incontinence
US3910871A (en) Novel glycylglycine amides
HU199817B (en) Process for production of new derivatives of alkylendiamin and medical compositions containing them
US5747508A (en) Amidinohydrazones of ketones derived from benzo B!furan, methods for their production, and pharmaceuticals containing these compounds
CA1055044A (en) Phenylalkyl esters of amino-acids having antidepressive activity
RU2775616C2 (ru) 2-(2-(диалкиламинополиэтокси))этилкарбоксилаты и их гидрохлориды, обладающие антиаритмической активностью, и фармацевтические композиции на их основе.
US5118708A (en) Use of 5-phenyl-2-furan esters, amides and ketones as neuroprotective agents
IE53319B1 (en) N-(aryloxyalkyl)-n'-(aminoalkyl)ureas