RU2708785C1 - Способ автоматического управления продольным движением летательного аппарата на посадке - Google Patents

Способ автоматического управления продольным движением летательного аппарата на посадке Download PDF

Info

Publication number
RU2708785C1
RU2708785C1 RU2018143954A RU2018143954A RU2708785C1 RU 2708785 C1 RU2708785 C1 RU 2708785C1 RU 2018143954 A RU2018143954 A RU 2018143954A RU 2018143954 A RU2018143954 A RU 2018143954A RU 2708785 C1 RU2708785 C1 RU 2708785C1
Authority
RU
Russia
Prior art keywords
aircraft
landing
flight
control
height
Prior art date
Application number
RU2018143954A
Other languages
English (en)
Inventor
Евгений Константинович Кичигин
Артем Валерьевич Комаров
Артем Евгеньевич Кичигин
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации filed Critical Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Priority to RU2018143954A priority Critical patent/RU2708785C1/ru
Application granted granted Critical
Publication of RU2708785C1 publication Critical patent/RU2708785C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

Изобретение относится к способу автоматического управления продольным движением летательного аппарата (ЛА). Способ состоим в том, что используют управляющие сигналы, поступающие с датчиков системы измерения параметров полета в вычислительную систему автоматического управления полетом, в которой формируются управляющие сигналы на привод руля высоты таким образом, чтобы обеспечить автоматическую посадку летательного аппарата с заданной высоты снижения до точки плавного касания взлетно-посадочной полосы по кривой быстрейшего спуска - нисходящей ветви брахистохроны, координаты которой вводят в бортовую цифровую вычислительную машину перед подготовкой ЛА к вылету. Обеспечивается повышение точности и безопасности движения ЛА на участке снижения «Выравнивание». 4 ил.

Description

Изобретение относится к области автоматического управления летательного аппарата (ЛА) при движении объекта по заданной нелинейной траектории посадки в режиме «Выравнивание» до точки плавного касания взлетно-посадочной полосы (ВПП).
Выполнение посадки является наиболее сложным и ответственным этапом полета для всех типов летательных аппаратов, при этом активно используется самолетная посадка, которая проводится в несколько этапов.
На первом этапе ЛА снижается до высоты 25 метров и начинает планирование, то есть прямолинейное и равномерное движение по наклонной вниз траектории (по глиссаде) до высоты 12-10 метров. Затем происходит режим «Выравнивание» ЛА - нелинейный участок движения до высоты, примерно 1 метр. Третий этап - выдерживание, предназначенное для уменьшения скорости движения ЛА по задаваемой траектории. Заключительный этап - посадка, то есть касание ЛА посадочной полосы и пробег с торможением по взлетно-посадочной полосе.
Известны различные способы автоматического управления ЛА на посадке, например по патентам РФ №2539620 В64С 25/50, №2581215, G08G 5/00, В64С 19/00.
К недостаткам известных способов следует отнести отсутствие автоматического управления полетом ЛА при заходе на посадку и посадке в наиболее сложном и ответственном режиме полета «Выравнивание» до точки плавного касания ВПП.
Наиболее близким аналогом по технической сущности к предлагаемому является «Способ автоматического управления самолетом на посадке и система для его реализации» по патенту РФ №2588173, В64С 23/00, принятый за прототип.
Способ-прототип основан на использовании управляющих сигналов, поступающих с датчиков системы измерения параметров полета в вычислительную систему автоматического управления полетом, в которой формируется основной управляющий сигнал на привод руля высоты и вспомогательный управляющий сигнал на привод секций интерцепторов, величина которых оказывает влияние на строгость автоматического управления самолетом и изменяется в зависимости от величины угла между вектором траекторной скорости самолета и направлением на программно-имитируемую «цель», движущуюся по заданной траектории на заданном расстоянии от центра масс самолета, а также скоростью изменения упомянутого угла. При этом основной и вспомогательный управляющие сигналы на руль высоты и секции интерцепторов реализованы по общему принципу дискретно-непрерывного, форсированного управления, основанного на формировании и адаптивном отслеживании заданной высоты полета самолета посредством определения и минимизации угла между вектором траекторной скорости полета самолета и направлением на программно-имитируемую «цель», движущуюся по заданной траектории на заданном расстоянии от центра масс самолета с подключением вспомогательного сигнала на секции интерцепторов для активной коррекции траектории на этапах захвата и стабилизации глиссады, выравнивания с реализацией, при необходимости, возможности ухода на второй круг.
При достижении высоты начала выравнивания (по радиовысотомеру) заданная высота по сформированной программно-имитируемой «цели», принимается равной нулю. При этом «цель» начинает двигаться по оси ВПП на высоте 0 м над уровнем ВПП (Нц = 0 м) на постоянном заданном удалении (Lц) от центра масс самолета.
На этапе «Выравнивание» расстояние до цели оказывает влияние на точку приземления (длину воздушного участка от начала выравнивания до касания ВПП): с увеличением расстояния до цели Lц длина воздушного участка увеличивается, что позволяет минимизировать нормальную перегрузку касания ВПП (обеспечить мягкую посадку). На режиме «Выравнивание» (с высоты начала выравнивания до касания ВПП) подключается вспомогательное управление интерцепторами (самолет Ту-204СМ). При этом должно выполняться условие нахождения самолета выше глиссады (ΔНг ≥ 0).
Недостаток способа-прототипа - сложность управления на посадке вследствие трудности точного определения углового положения вектора траекторной скорости на конечном этапе посадки (точка касания ВПП).
Задачей изобретения является разработка способа автоматического управления полетом ЛА, обеспечивающего повышение точности и безопасности движения на нелинейном участке снижения «Выравнивание» и более точного выхода в заданную точку касания взлетно-посадочной полосы.
Для решения поставленной задачи в способе автоматического управления продольным движением летательного аппарата (ЛА), основанном на использовании управляющих сигналов, поступающих с датчиков системы измерения параметров полета в вычислительную систему автоматического управления полетом, в которой формируются управляющие сигналы на привод руля высоты, согласно изобретению, автоматическая посадка летательного аппарата с заданной высоты снижения до точки плавного касания взлетно-посадочной полосы выполняется по кривой быстрейшего спуска - нисходящей ветви брахистохроны, координаты которой введены в бортовую цифровую вычислительную машину перед подготовкой ЛА к вылету, при этом координаты нисходящей ветви брахистохроны заданы формулой
Figure 00000001
где
Figure 00000002
- константа; y = Нбр.
Предлагаемый способ иллюстрируется следующими графическими материалами: фиг. 1 - брахистохрона - кривая, получаемая перемещением точки А, расположенной на окружности круга заданного радиуса, при его вращении без скольжения; фиг. 2 - графическое построение брахистохроны, выполненное с целью получения формулы, описывающей ее поведение; фиг. 3 - кривая автоматической посадки ЛА в режиме «Выравнивание» (нелинейный участок посадки) и выхода его в точку плавного касания ВПП; фиг. 4 - структурная схема устройства канала автоматического управления ЛА при заходе на посадку (режим «Выравнивание» и плавное касание ВПП).
Заявляемый способ заключается в том, что на конечном и наиболее ответственном участке полета ЛА «Выравнивание» и выхода в точку касания ВПП по брахистохроне, выполняется следующим образом.
Брахистохрона - кривая, получаемая перемещением точки А, расположенной на окружности круга заданного радиуса, при его вращении без скольжения (фиг. 1) [1, 2]. Брахистохрона обеспечивает наименьшее время движения по кривой посадки, что уменьшает вероятность поражения ЛА на посадке (боевые ЛА) [3, 4].
В предлагаемом способе автоматического управления ЛА при посадке с помощью руля высоты используются сигналы глиссадного радиомаяка (полет по глиссаде), сигналы радиовысотомера до высоты 12-10 м, запрограммированного полета по нисходящей ветви брахистохроны (кривой посадки) при выполнении режима выравнивание и (скорость изменения высоты) и угловой скорости, которые поступают в вычислитель бортовой цифровой вычислительной машины (БЦВМ). Наличие этих параметров позволяет исключить уход ЛА с заданной траектории посадки. Траектория полета (кривая посадки) в вертикальной плоскости вводится в БЦВМ посредством пульта ввода данных перед подготовкой ЛА к полету.
Кривая посадки, находящаяся в вертикальной плоскости в каждой своей точке описывается относительно осей координат двумя параметрами: высотой Y(Нбр) относительно ВПП при посадке и соответствующей точкой X на средней линии ВПП.
Рассмотрим построение траектории автоматической посадки летательного аппарата по кривой посадки с момента включения режима посадки до точки плавного касания ВПП.
При этом начальная точка включения автоматического полета ЛА по кривой посадки и конечная точки приземления определяются высотой выбранной начальной точки выполнения кривой посадки.
Графическое построение брахистохроны, выполненное с целью получения формулы (швейцарский математик И. Бернулли, 1596 г.), описывающей поведение брахистохроны, поясняется кривой, представленной на фиг. 2. Потенциальная энергия материальной точки в начальный момент будет определяться высотой, с которой начинается движение по нисходящей ветви брахистохроны y0 = H0.
Для пояснения построения брахистохроны вертикальная ось OY разбивается на n равных частей. Через точки разбиения проводятся прямые, параллельные оси ОХ. Путь катящегося без скольжения шарика представляет собой кусочно-линейную траекторию. Задача состоит в определении угла, под которым направлен отрезок в каждой полосе. С этой целью И. Бернулли обращается к принципу Ферма, а именно к тому, что свет всегда проходит расстояние за кратчайшее время. Если V1 - скорость в одной полосе, направленная под углом α1 к вертикали, a V2 - скорость в следующей полосе, направленная под углом α2 к вертикали, то согласно закону синуса имеем [2, 3]:
Figure 00000003
Выражая скорость движения шарика равной
Figure 00000004
получим общую формулу
Figure 00000005
где g - ускорение свободного падения, у - высота места нахождения, катящегося без скольжения шарика в момент времени t, относительно заданной начальной точки.
Для большого количества отрезков по оси OY формулу (2) можем записать в следующем виде:
Figure 00000006
Возведем в квадрат значение скорости движения шарика
Figure 00000007
и подставим полученную формулу в выражение (2), имеем:
Figure 00000008
Определим производную из фиг. 3, которая равна
y = dy/dx = ctgα = cosα/sinα
Введем тождество sin2 α + cos2 = 1 и поделим его на sin2 α, получим
1 + ctg2 α=1/sin2α
Поставляя sin2 α = 1/(1 + ctg2α) в выражение (4) и учитывая, что
sin2 α = у, получаем формулу брахистохроны
Figure 00000009
где
Figure 00000010
- константа.
В том случае, когда горизонтальные прямые расположены бесконечно близко друг к другу, кусочно-линейная траектория становится кривой линией. Для этой кривой в каждой произвольно выбранной точке xm, ym угол между касательной, проведенной к кривой и вертикальным отрезком - угол αm.
Если V - скорость в точке xm, ym и угол αm, который составляет касательная с вертикалью, то кривая удовлетворяет уравнению (5) и является брахистохроной.
Уравнение брахистохроны (5), полученное И. Бернулли, совпадает с уравнением циклоиды (6).
Figure 00000011
Чтобы убедиться в этом, возводим в квадрат левую и правую части формулы (6) и переносим параметры правой части, кроме k2 в левую часть, получая при этом выражение (для константы k2 = 2h), аналогичное формуле (5).
На фиг. 3 представлена кривая автоматической посадки ЛА в режиме «Выравнивание» (нелинейный участок посадки) с выходом ЛА в точку плавного касания ВПП. Существующая траектория посадки ЛА обозначена тремя тонкими линейными отрезками.
Точка А характеризует пролет ЛА по глиссаде торца взлетно-посадочной полосы на высоте 15-12 м. Точка В есть начало траектории автоматического полета по брахистохроне с высоты 12-10 м, точка С - пересечение брахистохроны с горизонтальной линией на высоте 1,5…2,0 м и точка D - точка плавного касания ВПП (касание задних колес).
Предлагаемый способ, реализуемый в системе автоматического управления, обеспечивает управление на конечном этапе захода на посадку в режиме «Выравнивание» и плавное касание ВПП. Управление выполняется по нисходящей ветви брахистохроны (точки кривой посадки В, С, D).
Траектория (кривая) посадки - нисходящая ветвь брахистохроны вводится в вычислитель БЦВМ в период подготовки ЛА к полетам с пульта ввода данных (фиг. 4). На самолете может быть использована БЦВМ «БАГЕТ-53-31М Серия 1».
Вычислитель представляет собой электронный блок БЦВМ, включающий все необходимые измерительные устройства: процессор, память и средства ввода - вывода.
Измеренная информация подвергается в вычислителе определенной обработке - фильтрации, масштабированию, линеаризации, калибровке, при этом по величине сигнала рассчитывается значение соответствующей физической величины - скорости полета, температуры воздуха, параметров, необходимых для выполнения заданного режима полета.
Рассчитанное значение выдается из вычислителя всем заинтересованным в ней потребителям, в том числе и в системы автоматизированного и автоматического управления полетом (САУП), системы индикации и сигнализации. В вычислителе формируется закон управления полетом.
Законом регулирования или управления автопилота называется простейшее уравнение, отображающее наиболее существенные связи и операции, выполняемые автопилотом. Закон управления - это тот идеальный алгоритм или оператор, к которому стремятся при построении системы управления [5].
Следует отметить, что система автоматического управления ЛА включает в себя три канала управления: тангажа (высоты), крена и курса (рыскания). Нами рассматривается только канал высоты.
Управление продольным движением (по высоте) осуществляется через канал руля высоты. Отклонение руля высоты вызывает изменение угла атаки и, как следствие, изменение высоты полета.
Структурная схема устройства канала автоматического управления ЛА при заходе на посадку (режим «Выравнивание» и плавное касание ВПП) представлена на фиг. 4, где обозначено:
1 - пилотажные измерители (датчики информации) параметров;
2 - устройство согласования;
3 - схема сравнения;
4 - блок переключения управления высотой полета;
5 - усилитель;
6 - пульт ввода данных кривой посадки;
7 - бортовая цифровая вычислительная машина. Может применяться на борту ЛА БЦВМ «БАГЕТ-53-31М Серия 1;
8 - вычислитель БЦВМ;
9 - сервопривод;
9.1 - усилитель сервопривода;
9.2 - рулевой агрегат сервопривода;
9.3 - обратная связь.
Структурная схема, реализующая предлагаемый способ, содержит последовательно соединенные пилотажные измерители (датчики информации) параметров 1, устройство согласования 2, схему сравнения 3, блок переключения управления высотой полета 4, усилитель 5, пульт ввода данных параметров кривой посадки в БЦВМ 6, бортовую цифровую вычислительную машину 7 с вычислителем 8 и сервопривод 9. Сервопривод (исполнительное устройство канала управления высотой полета) включает в себя: магнитный усилитель мощности 9.1, рулевой агрегат 9.2, где ХРА - перемещение рулевого агрегата. При автоматическом управлении высотой полета в сервоприводе могут применяться 3 вида различных обратных связей: жесткая (ЖОС), скоростная (СОС) и изодромная обратная связь (ИОС). Чаще всего применяется жесткая или скоростная обратная связь.
Пилотажные измерители (датчики информации) 1 измеряют следующие параметры:
Нрв - высота полета, измеряемая радиовысотомером;
Нбр - высота ЛА при движении по кривой посадки (брахистохроне) в момент времени ti;
ωZ - угловая скорость ЛА, относительно поперечной оси (измеряется датчиком угловой скорости ДУС).
Устройство согласования 2 обеспечивает согласование выходов измерителей 1 с последующими блоками вычислителя 8 и фиксацию заданного углового положения, которое соответствует желаемой высоте полета в момент включения режима автоматического управления. При этом не происходит резкой перекладки рулевых поверхностей (безударное включение), так как до включения автоматического управления сигнал, поступающий в вычислитель 8 обнулялся устройством согласования 2. После включения режима автоматического управления сигналы с устройства управления 2 поступают в схему сравнения 3, которая обеспечивает сравнение сигналов Нбр и Нрв. При этом, если сигнал Нбр больше, чем Нрв до точки В кривой посадки, то управление снижением ЛА происходит по сигналу радиовысотомера Нрв. При равенстве сигналов в точке В сигнал от радиовысотомера может быть использован для формирования сигнала корректировки движения по кривой посадки. Управление посадкой переходит на реализацию введенных параметров кривой посадки по сигналам Нбр. Для кривой посадки высота Нбр отождествляется с нормальной осью OY, а средняя линия взлетно-посадочной полосы с осью ОХ (фиг. 2, 3). Блок переключения управления высотой полета 4 от радиовысотомера на кривую посадки осуществляет переход ЛА на траекторию кривой посадки. Усилитель 5 усиливает сигналы высоты Нрв радиовысотомера и сигналы Нбр, формирующие полет ЛА. Эти данные находятся в памяти БЦВМ. В вычислителе БЦВМ 8 формируются законы управления рулем высоты ЛА на посадке. Сервопривод 9 обеспечивает перемещение рулевого агрегата и соответственно этому перемещению, отклонение рулевой поверхности ЛА. Сервопривод включает в себя усилитель 9.1, рулевой агрегат 9.2 и обратную связь 9.3. В зависимости от вида обратной связи 9.3 меняется точность управления.
Закон управления высотой по кривой посадки имеет следующий вид:
Figure 00000012
где Нвкл - высота перехода управления ЛА по кривой посадки;
Δδв РА - отклонение руля высоты от балансировочного положения;
Figure 00000013
- передаточные числа.
Нвкл - Нбр - изменение высоты ЛА по кривой посадки до точки плавного касания ВПП;
р(Нвклбр) - сигнал вертикальной скорости, устраняющий колебания центра масс ЛА относительно траектории полета;
Δϑ - приращение начального невозмущенного угла тангажа;
ωz - проекция вектора угловой скорости вращения самолета на связанную ось oz.
Включение режима «Выравнивание» и движение по кривой посадки происходит автоматически следующим образом.
Обозначим высоту Нвкл включения управления ЛА относительно ВПП в момент перехода управления по кривой посадки. Относительно этой высоты будет выполняться корректировка полета, если ЛА уходит с высоты кривой посадки.
Отклонение ЛА от осевой линии ВПП при боковом ветре, вызывающем появление угла скольжения во время посадки, устраняется перемещением руля направления.
Технический результат - повышение эффективности управления ЛА при заходе на посадку и посадке в автоматическом режиме полета по нисходящей ветви брахистохроны (кривой наискорейшего спуска) и повышение точности выхода в точку касания ВПП. Кроме того, по сравнению с прототипом предлагаемый способ проще в осуществлении, т.к. кривая наискорейшего спуска (нисходящая ветвь брахистохроны) вводится в вычислитель ЛА заранее, при подготовке к полету, с пульта ввода данных и при снижении до высоты полета 12-10 м и скорости, рекомендуемой для конкретного типа ЛА, автоматическое управление полетом выполняется по уже заданной траектории (кривой) быстрейшего спуска, именуемой брахистохроной (она же циклоида, фиг. 1).
Следует отметить существенную эффективность посадки беспилотного летательного аппарата (БЛА), обусловленную отсутствием на борту летчика.
Применение БЛА позволит выполнять не только режим «Выравнивание», но и построить траекторию всей нисходящей ветви брахистохроны до точки касания ВПП. При этом траектория посадки может быть рассчитана для любого типа БЛА.
Помимо этого может быть построена траектория увода БЛА от преследования противником при автоматическом наборе высоты по восходящей траектории брахистохроны.
БЛА имеет преимущество перед пилотируемым ЛА. При уходе от преследования противником возможно создание больших отрицательных перегрузок при снижении, с последующим набором высоты полета.
Источники информации.
1. Большая Советская Энциклопедия.
2. Prosdo.ru>ouazob/Задача о брахистохроне b/mail.html.ru.
3. Брахистохрона - кривая наискорейшего спуска - old.msun.ru>Vector/GMP/Upragnenia/upr11 - 1.htm/
4. Сумбатов А.С. Вычислительный центр им. А.А. Дородницына ФИЦ ИУ РАН. Задача о брахистохроне (классификация обобщений и некоторые последние результаты). Труды МФТИ. 2017. Том 9, №3.
5. Справочник по теории автоматического управления. Под редакцией А.А. Красовского. М.: Наука. Главная редакция физико-математической литературы. 1987. 712 с.
6. А.А. Красовский, Ю.А. Вавилов, А.И. Сучков. Системы автоматического управления летательных аппаратов. ВВИА им. проф. Н.Е. Жуковского, 1986. 480 с.
7. Патент РФ №2040434, 1993. МПК В64, С 13/18 G05D 1/00. Система автоматического управления посадкой самолета.
8. RU 2040434 С1, 25.07.1995.
9. Система автоматического управления самолетом при заходе на посадку. RU 2206873 С1, 20.06. 2003.
10. Устройство определения параметров полета для автоматической посадки самолета. RU 2284058 С2, 20.09.2006.
11. Система автоматической посадки летательных аппаратов. RU 2287838 С2, 20.11.2006. МПК S 1.100

Claims (5)

  1. Способ автоматического управления продольным движением летательного аппарата (ЛА), основанный на использовании управляющих сигналов, поступающих с датчиков системы измерения параметров полета в вычислительную систему автоматического управления полетом, в которой формируются управляющие сигналы на привод руля высоты, отличающийся тем, что автоматическая посадка летательного аппарата с заданной высоты снижения до точки плавного касания взлетно-посадочной полосы выполняется по кривой быстрейшего спуска - нисходящей ветви брахистохроны, координаты которой введены в бортовую цифровую вычислительную машину перед подготовкой ЛА к вылету, при этом координаты нисходящей ветви брахистохроны заданы формулой
  2. Figure 00000014
    где:
  3. Figure 00000015
    - константа ;
  4. y=Hбр;
  5. Hбр – высота относительно ВПП при посадке.
RU2018143954A 2018-12-11 2018-12-11 Способ автоматического управления продольным движением летательного аппарата на посадке RU2708785C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018143954A RU2708785C1 (ru) 2018-12-11 2018-12-11 Способ автоматического управления продольным движением летательного аппарата на посадке

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018143954A RU2708785C1 (ru) 2018-12-11 2018-12-11 Способ автоматического управления продольным движением летательного аппарата на посадке

Publications (1)

Publication Number Publication Date
RU2708785C1 true RU2708785C1 (ru) 2019-12-11

Family

ID=69006740

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018143954A RU2708785C1 (ru) 2018-12-11 2018-12-11 Способ автоматического управления продольным движением летательного аппарата на посадке

Country Status (1)

Country Link
RU (1) RU2708785C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2061624C1 (ru) * 1993-05-11 1996-06-10 Глот Владимир Николаевич Способ автоматической посадки самолета
US6600991B1 (en) * 2001-08-14 2003-07-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Neighboring optimal aircraft guidance in a general wind environment
RU2381563C1 (ru) * 2006-02-20 2010-02-10 Эрбюс Франс Устройство для помощи в пилотировании летательного аппарата во время этапа захода на посадку с целью приземления
RU2549506C2 (ru) * 2013-02-18 2015-04-27 Открытое акционерное общество "Раменское приборостроительное конструкторское бюро" (ОАО "РПКБ") Способ управления траекторией летательного аппарата при заходе на посадку
RU2581215C1 (ru) * 2014-12-22 2016-04-20 Акционерное общество "Московский институт электромеханики и автоматики" (АО "МИЭА") Способ автоматического управления самолетом на посадке и система для его реализации

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2061624C1 (ru) * 1993-05-11 1996-06-10 Глот Владимир Николаевич Способ автоматической посадки самолета
US6600991B1 (en) * 2001-08-14 2003-07-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Neighboring optimal aircraft guidance in a general wind environment
RU2381563C1 (ru) * 2006-02-20 2010-02-10 Эрбюс Франс Устройство для помощи в пилотировании летательного аппарата во время этапа захода на посадку с целью приземления
RU2549506C2 (ru) * 2013-02-18 2015-04-27 Открытое акционерное общество "Раменское приборостроительное конструкторское бюро" (ОАО "РПКБ") Способ управления траекторией летательного аппарата при заходе на посадку
RU2581215C1 (ru) * 2014-12-22 2016-04-20 Акционерное общество "Московский институт электромеханики и автоматики" (АО "МИЭА") Способ автоматического управления самолетом на посадке и система для его реализации

Similar Documents

Publication Publication Date Title
CN107992074B (zh) 一种基于飞行路径角规划的再入轨迹设计方法
US9274529B2 (en) Safe emergency landing of a UAV
CN109085849A (zh) 一种舰载无人机定点着陆的自主控制方法
JP4328660B2 (ja) 航空機の自動離陸装置、自動着陸装置及び自動離着陸装置並びに航空機の自動離陸方法、自動着陸方法及び自動離着陸方法
US4029271A (en) Automatic approach to hover system
CN106054604B (zh) 基于模型预测控制理论的再入飞行器鲁棒最优制导方法
EP0321876A2 (en) Control system for helicopters
CN101441478A (zh) 一种小型无人机自动着陆拉平控制方法及其装置
CN103245257A (zh) 基于Bezier曲线的多约束飞行器导引方法
US9684309B2 (en) Aircraft guidance based on partial differential equation for miss distance
US5522567A (en) Energy management system for a gliding vehicle
US3382351A (en) Rollout guidance display
RU2708785C1 (ru) Способ автоматического управления продольным движением летательного аппарата на посадке
CN103048997A (zh) 一种无缆自治水下航行体的航迹控制方法
RU2649287C2 (ru) Способ планирования траектории движения летательного аппарата
RU2585204C1 (ru) Способ управления летательным аппаратом при заходе на навигационную точку с заданного направления
RU2242800C2 (ru) Способ захода на посадку
US2984435A (en) Missile terminal guidance system controller
JP5166349B2 (ja) 固定翼機、固定翼機システムおよび固定翼機の着陸方法
RU2628043C1 (ru) Способ вывода самолета в точку начала посадки
RU2786276C1 (ru) Способ и устройство управления полетом группы летательных аппаратов
RU2364943C1 (ru) Способ выполнения захода на посадку
Looye Helical flight path trajectories for autopilot evaluation
US3559481A (en) Descent-approach method and apparatus for aircraft
Lungu et al. Control of the aircraft lateral-directional motion during landing using the H-inf control and the dynamic inversion