RU2704997C1 - Способ и устройство управления участком обрушения верхней части угольного пласта за счет применения технологии импульсного гидравлического разрыва пласта - Google Patents

Способ и устройство управления участком обрушения верхней части угольного пласта за счет применения технологии импульсного гидравлического разрыва пласта Download PDF

Info

Publication number
RU2704997C1
RU2704997C1 RU2019126284A RU2019126284A RU2704997C1 RU 2704997 C1 RU2704997 C1 RU 2704997C1 RU 2019126284 A RU2019126284 A RU 2019126284A RU 2019126284 A RU2019126284 A RU 2019126284A RU 2704997 C1 RU2704997 C1 RU 2704997C1
Authority
RU
Russia
Prior art keywords
hydraulic fracturing
pump
high pressure
hydraulic
hose
Prior art date
Application number
RU2019126284A
Other languages
English (en)
Inventor
Бинсян ХУАН
Синлун ЧЖАО
Шулян ЧЭНЬ
Луин ШАО
Original Assignee
Китайский Университет Горного Дела И Технологии
Сюйчжоу Узуре Майнинг Технолоджи Ко., Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Китайский Университет Горного Дела И Технологии, Сюйчжоу Узуре Майнинг Технолоджи Ко., Лтд filed Critical Китайский Университет Горного Дела И Технологии
Application granted granted Critical
Publication of RU2704997C1 publication Critical patent/RU2704997C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C45/00Methods of hydraulic mining; Hydraulic monitors
    • E21C45/02Means for generating pulsating fluid jets
    • E21C45/04Means for generating pulsating fluid jets by use of highly pressurised liquid
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

Изобретение относится к способу управления участком обрушения верхней части угольного пласта, в частности к способу и устройству управления участком обрушения верхней части угольного пласта за счёт применения технологии импульсного гидравлического разрыва пласта, которые относятся к области применения технологии добычи угля. Устройство в настоящем изобретении состоит из импульсного насоса с малой подачей и обычного насоса с большой подачей, которые управляются при помощи трехпутёвого гидрораспределителя и переключающего клапана. Сначала в конструкции подключается один путь импульсного насоса, трубопровод обычного насоса высокого давления закрывается, канал импульса закрывается после окончания импульсного разрыва и открывается обычный канал разрыва. Способ сочетает в себе преимущества использования методов импульсного и традиционного гидравлического разрыва пласта. Во-первых, формирование сети трещин происходит в массиве угля посредством импульсного гидравлического разрыва пласта. Далее, используя метод традиционного гидравлического разрыва пласта с большим продвижением, сеть трещин продолжает расширяться, структура массива угля в достаточной степени трансформируется, снижается фрагментация верхней части угольного пласта и повышается способность к обрушению этой части угольного пласта. Применяя данный способ и устройство, в верхней части угольного пласта может образоваться достаточное количество трещин, верхняя часть угольного пласта может быть ослаблена, а также может быть повышена способность к обрушению верхней части угольного пласта и уменьшено её дробление, конструкция же удобна, достигнут надлежащий уровень безопасности и надежности, а также может быть снижено непродуктивное использование ресурсов. 2 н. и 7 з.п. ф-лы, 7 ил.

Description

ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯ
[0001] Настоящее изобретение относится к способу управления участком обрушения верхней части угольного пласта, и в частности к способу и устройству управления участком обрушения верхней части угольного пласта за счёт применения технологии импульсного гидравлического разрыва пласта, которые относятся к области применения технологии добычи угля.
ОПИСАНИЕ ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ
[0002] Запасы и разработка мощных и очень мощных угольных пластов в Китае насчитывают 40% и более от общих запасов угля и общего уровня разработки. Полностью механизированное обрушение верхней части угольного пласта - это высокопродуктивный и высокоэффективный способ разработки угля, используемый для разработки мощных угольных пластов, который стремительно развивается в Китае. В настоящее время, технология полностью механизированного обрушения пород стала основным способом добычи угля из мощных и очень мощных угольных пластов. Основными требованиями, которые предъявляются к полностью механизированной разработке шахт, являются "завершение до поддержки и разбивка на части после поддержки". Из-за ограничений технических характеристик в шахте снижается давление на плотные и очень плотные угольные пласты или на покрывающие породы верхней части угольного пласта на рабочей поверхности обрушения выработки. Данное давление не может обеспечить своевременное и достаточное дробление верхней части угольного пласта Таким образом, требование к механизированному обрушению верхней части угольного пласта не выполняется, что приводит к низкой скорости выброса верхней части угольного пласта.
[0003] Традиционные способы управления участком обрушения верхней части угольного пласта включают в себя технологию проведения предварительных буровзрывных работ методом глубоких скважин, технологию гидравлического разрыва угольного пласта с закачкой в него воды и комбинированную предварительно интегрированную технологию ослабления угольного пласта при взрывной закачке воды. В отношении твёрдых угольных пластов и пластов высокой мощности три способа дробления верхней части угольного пласта имеют следующие проблемы:
[0004] Технология проведения предварительных буровзрывных работ методом глубоких скважин и комбинированная предварительно интегрированная технология ослабления угольного пласта при взрывной закачке воды предусматривают умение обращаться с взрывчатыми веществами и детонаторами, а также их транспортировку. "Система проведения трёхуровнего контроля после выполнения взрывных работ" и "система выполнения взрывных работ в количестве трёх человек" строго соблюдаются при выполнении взрывных работ. Управление безопасностью является сложным процессом. Большое количество вредного газа, такого как CO, который мгновенно образуется в результате проведения крупномасштабных взрывных работ, крайне негативно влияет на процесс управления безопасностью шахтной вентиляции. В отношении месторождения высококалорийного газа, взрывающиеся колонковые заряды для раздробленного угольного массива не могут использоваться из-за скрытой опасности взрыва газа, которое может произойти путем попадания искры. Длина очистного комплексно-механизированного забоя обычно составляет 200 м, взрывные работы методом глубоких скважин осуществляются в верхнем и нижнем направлении; излучение, которое исходит из скважен, должно распространяться на всю площадь; скважины являются протяженными, поэтому для проведения взрывных работ требуется большое количество пиротехнических средств, таких как порох и детонаторы, при этом стоимость выполнения таких работ остается высокой. Для взрывных работах при помощи взрывчатых веществ, плотно расположенные скважины обычно располагаются в определенном диапазоне, поэтому диапазон регулирования на одну скважину достаточно мал.
[0005] В соответствии с технологией гидравлического разрыва угольного пласта, учитывая тот факт, что давление закачки воды в угольный пласт обычно составляет приблизительно 5 МП, направление расширения трещин, вызванных гидравлическим разрывом, регулируется трехмерным полем напряжения, а создаваемые трещины немногочисленны и разреженны, степень же ослабления прочности массива угля ограничена. Следовательно, не может быть сформировано достаточное количество трещин, поэтому эффект дробления верхней части угольного пласта не является очевидным.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0006] Для устранения вышеуказанных недостатков предшествующего уровня техники в настоящем изобретении предложены способ и устройство управления участком обрушения верхней части угольного пласта за счёт применения технологии импульсного гидравлического разрыва пласта, который может создавать достаточно трещин в верхней части угольного пласта, ослабляя её, повышать способность к обрушению этой части угольного пласта и уменьшать её дробление. Способ удобен в конструкции, безопасен и надежен, а также снижает непродуктивное использование ресурсов.
[0007] Для решения вышеуказанных проблем в настоящем изобретении предлагается устройство управления участком обрушения верхней части угольного пласта за счёт применения технологии импульсного гидравлического разрыва пласта, которое включает в себя насосный агрегат для гидравлического разрыва пласта, шланг высокого давления, пакер и монтажный стержень уплотнения высокого давления. Конец монтажного стержня уплотнения высокого давления, который доходит до нижней части скважины, снабжен пакером. Другой конец монтажного стержня уплотнения высокого давления соединен с насосным агрегатом для гидравлического разрыва пласта при помощи шланга высокого давления. Пакер соединен с ручным насосом через тонкий шланг высокого давления. Насосный агрегат для гидравлического разрыва пласта состоит из насоса высокого давления и импульсного насоса для гидравлического разрыва пласта. Шланг высокого давления, исходящий из насоса высокого давления для гидравлического разрыва, и шланг высокого давления, исходящий из импульсного насоса для гидравлического разрыва, соединены при помощи трёхпутевого гидрораспределителя. Трубопровод между насосом высокого давления для гидравлического разрыва и трёхпутевым гидрораспределителем снабжен переключающим клапаном I. Трубопровод между импульсным насосом для гидравлического разрыва и трёхпутевым гидрораспределителем снабжен переключающим клапаном II. Другой конец трёхпутевого гидрораспределителя соединен с монтажным стержнем уплотнения высокого давления при помощи шланга высокого давления. Шланг высокого давления соединен с монтажным стержнем уплотнения высокого давления через переходник.
[0008] Кроме того, трубопровод шланга высокого давления между трёхпутевым гидрораспределителем и адаптером снабжен клапаном для сброса давления.
[0009] В то же время трубопровод для шланга высокого давления между трёхпутевым гидрораспределителем и клапаном для сброса давления снабжен прибором для измерения и контроля гидравлического разрыва пласта.
[0010] Способ управления участком обрушения верхней части угольного пласта за счёт применения импульсного гидравлического разрыва пласта включает в себя следующие шаги:
[0011] шаг 1. Построить ориентированные длинные скважины, параллельные друг другу и перпендикулярные стене угля в разрезанном угольном пласте, также построить наклонные длинные скважины I и наклонные длинные скважины II, параллельные друг другу и перпендикулярные стене угля, в транспортном выемочном штреке и вентиляционном выемочном штреке соответственно, скважины двух выемочных штреков расположены в шахматном порядке;
[0012] шаг 2. Установить и отладить импульсный насос для гидравлического разрыва пласта;
[0013] шаг 3. Поместить пакер на забой скважины, последовательно подсоединить монтажный стержень уплотнения высокого давления, переходник и шланг высокого давления, а также подсоединить шланг высокого давления к импульсному насосу для гидравлического разрыва пласта;
[0014] шаг 4. Закачать воду под высоким давлением в пакер с помощью ручного насоса, чтобы пакер расширился, для герметизации отверстия;
[0015] шаг 5. Открыть переключающий клапан II, запустить импульсный насос для импульсного гидравлического разрыва и в режиме реального времени отслеживать изменение давления воды в скважинах с трещинами и просачивание воды в стену угля зоны трещин, наблюдая за прибором для измерения и контроля гидравлического разрыва пласта, установленным в трубопроводе во время процесса разрыва;
[0016] шаг 6. Если прибор для измерения и контроля гидравлического разрыва пласта показывает, что давление воды в скважине с трещинами составляет менее 5 МПа или продолжительность «запотевания» угольного пласта превышает 5-7 мин, то нужно закрыть импульсный насос для гидравлического разрыва пласта, открыть клапан для сброса давления, установить пакер в заданную вторую позицию разрыва для повторной герметизации и повторять этот шаг до тех пор, пока весь участок бурения не будет разрушен; а также
[0017] шаг 7. Снять пакер, установить пакер на следующую скважину и повторять шаги c-f до тех пор, пока все скважины не будут разрушены.
[0018] Поскольку дробление верхней части угольного пласта является характерной особенностью, отражающей способность обрушения участка верхней части угольного пласта, которая контролируется главным образом двумя ключевыми факторами: физическими и механическими свойствами верхней части угольного пласта и напряжением, вызванным ведением горных работ, то есть давлением в шахте. Импульсный гидравлический разрыв пласта используется для контроля способности обрушения участка верхней части угольного пласта по принципу, согласно которому вода под высоким давлением с периодической подачей закачивается в скважины угольного пласта импульсным насосом высокого давления, таким образом, что стенки скважины подвергаются множественному образованию трещин при периодической усталостной нагрузке, тем самым генерируя больше трещин вне контроля трехмерного поля напряжения. Помимо этого, высокочастотная ударная волна может активировать естественные трещины в угольном пласте, чтобы заставить их повторно расширяться и распространяться через них, образуя таким образом сложную сеть трещин в угольном пласте, полностью разрезая массив угля и ослабляя его общие физико-механические свойства. Между тем, проницаемость массива угля также может быть изменена, вследствие чего массив угля может быть увлажнен путем полного поглощения воды и дальнейшего его размягчения. Таким образом, технология управления импульсного гидравлического разрыва пласта твердого угля относится к: использованию способа импульсного гидравлического разрыва пласта для предварительного разрушения макро- и микроструктур верхней его части, ослаблению прочности массива угля путем разрушения и размягчения и, таким образом, удовлетворения требования в повышении способности к обрушению этой части угольного пласта в зависимости от разрушаемости угля при давлении шахты.
[0019] В качестве дальнейшего усовершенствования настоящего изобретения, основанного на импульсном гидравлическом разрыве и ослаблении угольного пласта, в сочетании с преимуществами импульсного гидравлического разрыва пласта и традиционного гидравлического разрыва пласта, применяется технология ослабления верхней части угольного пласта посредством «импульсного гидравлического разрыва пласта», после которого следует, как предполагается, традиционный гидравлический разрыв пласта.
[0020] Основываясь на вышеупомянутом способе, в шаге 2 монтируется и отлаживается насос высокого давления для гидравлического разрыва, одновременно устанавливается и импульсный насос для гидравлического разрыва, и импульсный насос для гидравлического разрыва и насос высокого давления для гидравлического разрыва соединены параллельно вместе посредством трёхпутевого гидрораспределителя.
[0021] В шаге 5, после того как импульсный насос для гидравлического разрыва приводится в действие для проведения импульсного гидравлического разрыва в течение 30 минут, импульсный насос для гидравлического разрыва и переключающий клапан II закрываются, затем переключающий клапан I и насос высокого давления для гидравлического разрыва открываются, образуется трещина при импульсном гидравлическом разрыве, далее продолжает расширяться посредством насосной закачки с большой подачей, тем самым увеличивается дальность распространения трещины.
[0022] В шаге 6, если прибор для измерения и контроля гидравлического разрыва пласта показывает, что давление воды в скважине с трещинами составляет менее 5 МПа или продолжительность «запотевания» угольного пласта превышает 5-7 мин, то закрывается насос высокого давления для гидравлического разрыва пласта, клапан сброса давления открывается, пакер устанавливается в заданную вторую позицию разрыва для повторной герметизации и этот шаг повторяется до тех пор, пока весь участок бурения не будет разрушен.
[0023] Усовершенствованный способ включает в себя: в первую очередь закачку постоянно подаваемой импульсной воды с высоким давлением в угольный пласт посредством импульсного насоса высокого давления и многократное воздействие на угольный пласт периодическим высоким давлением для создания множественных трещин в угольном пласте; а затем, используя традиционный гидравлический разрыв пласта с большим продвижением, чтобы расширить дальнейшее распространение сети трещин, генерируемой импульсным гидравлическим разрывом, таким образом что сквозные трещины между соседними скважинами распространяются, массив угля делится на массы определенного размера и формы, структура угля полностью трансформируется, целостность угольного пласта разрушается, прочность массива угля снижается, а общие физико-механические свойства угольного пласта ослабляются, тем самым делая его более раздробленным в процессе выброса рабочей поверхности, уменьшая фрагментацию верхней части угольного пласта и повышая способность к обрушению этой части угольного пласта.
[0024] Кроме того, в шаге 1 сначала строятся незаряжаемые скважины, а затем строятся скважины с двумя выемочными штреками, причем бурение этих штреков выполняется последовательно от направления выемки к направлению главного штрека; и последовательность гидравлического разрыва в шагах с 3 по 6 является такая же, как последовательность построения скважины, гидравлический разрыв и строительство скважины же выполняются одновременно и осуществляются параллельно, и если скорость строительства будет соответствовать, то скважины могут быть построены досрочно.
[0025] Также для того, чтобы обеспечить эффект разрушения длинных скважин и повысить однородность трещин и их количество, в процессе гидравлического разрыва используют сегментированный возвратный разрыв, длина сегментированного разрыва составляет от 10 до 20 м, и шаги в частности следующие:
[0026] (a) запуск импульсного насоса для гидравлического разрыва пласта или насоса высокого давления для гидравлического разрыва пласта;
[0027] (b) закачка воды в одну скважину с трещинами для цикличного гидравлического разрыва пласта;
[0028] (c) если прибор для измерения и контроля гидравлического разрыва пласта показывает, что давление воды в скважине с трещинами составляет менее 5 МПа или продолжительность «запотевания» угольного пласта превышает 5-7 мин, то закрывается импульсный насос для гидравлического разрыва пласта или насос высокого давления для гидравлического разрыва пласта и открывается клапан для сброса давления для завершения цикличного гидравлического разрыва;
[0029] (d) затем, отступая от пакера на расстояние от 10 до 20 м в направлении устья скважины, снова выполняется цикличный гидравлический разрыв пласта;
[0030] (e) действие повторяется до тех пор, пока пакер не отступит на глубину 15 м от отверстия скважины с трещинами для последнего цикличного гидравлического разрыва пласта; а также
[0031] (f) извлечение пакера для завершения возвратного сегментированного гидравлического разрыва.
[0032] Кроме того, насос высокого давления для гидравлического разрыва пласта выдает диапазон давления от 0 до 20 МПа и номинальный расход 6,7 м3/ч.
[0033] Пакер включает в себя уплотнитель отверстия переднего расширения шланга и уплотнитель отверстия заднего расширения шланга. Уплотнитель отверстия переднего расширения шланга и уплотнитель отверстия заднего расширения шланга расположены в скважине на расстоянии друг от друга. Соединительная труба и тонкий насос высокого давления расположены между уплотнителями отверстий переднего и заднего расширений шланга. Уплотнитель отверстия переднего шланга включает в себя первый быстродействующий гидравлический соединитель, первую неподвижную втулку, первую скользящую втулку, первую металлическую трубу и первое углубление уплотнителя отверстия. Один конец первой металлической трубы проходит через первую скользящую втулку и соединен с первым быстродействующим гидравлическим соединителем, а другой конец проходит через первую скользящую втулку. Уплотнитель отверстия заднего шланга включает в себя второй быстродействующий гидравлический соединитель, третий быстродействующий гидравлический соединитель, резьбовой соединитель, вторую скользящую втулку, вторую неподвижную втулку, вторую металлическую трубу и второе углубление уплотнителя отверстия. Один конец второй металлической трубы проходит через вторую скользящую втулку и соединен со вторым быстродействующим гидравлическим соединителем, а другой конец соединен со второй скользящей втулкой. Первый быстродействующий гидравлический соединитель соединен со вторым быстродействующим гидравлическим соединителем при помощи соединительной трубы. Один конец тонкого шланга высокого давления проходит через первую неподвижную втулку и соединен с уплотнителем отверстия переднего расширения шланга, а другой конец последовательно проходит через вторую неподвижную втулку, второе углубление уплотнителя отверстия, вторую скользящую втулку и резьбовой соединитель и подключен к внешнему ручному насосу. Когда на ручной насос производится нажим, уплотнитель отверстия капсулы расширяется в радиальном направлении и втягивается в продольном направлении, а первая скользящая втулка и вторая скользящая втулка свободно скользят по первой металлической трубе и второй металлической трубе соответственно. Соединительная труба снабжена сквозным отверстием для выпуска воды под высоким давлением для разрушения угольной породы.
[0034] По сравнению с традиционными технологиями взрывных работ для ослабления верхней части угольного пласта и традиционной технологии гидравлического разрыва для ослабления пласта, технология импульсного гидравлического разрыва для ослабления верхней части пласта, принятая в настоящем изобретении, имеет следующие полезные эффекты:
[0035] 1. Большее количество гидравлических разрывов в угольном пласте может быть получено в результате импульсного гидравлического разрыва, в то время как первичные трещины в угольном пласте активируются, и в угольном пласте образуется сложная сеть трещин, чтобы разрезать массив угля, тем самым полностью ослабляя верхнюю часть угольного пласта, повышая способность к обрушению этой части угольного пласта и уменьшая ее фрагментацию.
[0036] 2. Применяется сегментированный импульсный гидравлический возвратный разрыв, что улучшает однородность трещин в массиве угля и их количество, чтобы способствовать улучшению общей способности к фрагментации обрушения верхней части угольного пласта.
[0037] 3. Отверстия герметизируются с помощью пакера для гидравлического разрыва пласта. По сравнению с традиционным гидравлическим разрывом с однослойным уплотнителем отверстия двухслойный пакер может герметизировать воду под высоким давлением между двумя уплотнителями отверстий капсул для достижения сегментированного разрыва одной скважины, тем самым значительно уменьшая вероятность пробивки и улучшая стабильность процесса гидравлического разрыва.
[0038] 4. Способ управления участком обрушения верхней части угольного пласта за счёт применения технологии импульсного гидравлического разрыва пласта прост в применении, удобен для конструирования, безопасен и надежен, а также способствует повышению скорости обрушения верхней части угольного пласта на полностью механизированной поверхности обрушения и сокращению непродуктивного использования ресурсов, и имеет широкое практическое применение.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0039] ФИГУРА 1 представляет собой устройство и вид конструкции в соответствии с первым вариантом осуществления настоящего изобретения;
[0040] ФИГУРА 2 представляет собой устройство и вид конструкции в соответствии со вторым вариантом осуществления настоящего изобретения;
[0041] ФИГУРА 3 представляет собой изображение способа устройства скважины в соответствии с настоящим изобретением;
[0042] ФИГУРА 4 - вид в разрезе по линии 1-1 на ФИГУРЕ 3;
[0043] ФИГУРА 5 - вид в разрезе по линии 2-2 на ФИГУРЕ. 3;
[0044] ФИГУРА 6 - вид в разрезе по линии 3-3 на ФИГУРЕ 3; а также
[0045] ФИГУРА 7 представляет собой схематический вид конструкции пакера.
[0046] На фигурах: 1: Транспортный выемочный штрек; 2: Угольный пласт; 3: Кровля; 4: Наклонная длинная скважина I; 5: Монтажный стержень уплотнения высокого давления; 6: Пакер; 6-1: Уплотнитель отверстия переднего расширения шланга; 6-2: Уплотнитель отверстия заднего расширения шланга; 6-3: Соединительная труба; 6-4: Первый быстродействующий гидравлический соединитель; 6-5: Первая неподвижная втулка; 6-6: Первая скользящая втулка; 6-7: Первая металлическая труба; 6-8: Второй быстродействующий гидравлический соединитель; 6-9: Третий быстродействующий гидравлический соединитель; 6-10: Вторая неподвижная втулка; 6-11: Вторая металлическая труба; 6-13: Вторая скользящая втулка; 6-14: Первое углубление уплотнителя отверстия; 6-15: Второе углубление уплотнителя отверстия; 6-16: Резьбовой соединитель; 7: Насосный агрегат гидравлического разрыва пласта; 7-1: Импульсный насос для гидравлического разрыва пласта; 7-2: Насос высокого давления для гидравлического разрыва пласта; 8: Шланг высокого давления; 9: Клапан для сброса давления; 10: Прибор для измерения и контроля гидравлического разрыва пласта; 11: Разрез угольного пласта; 12: Вентиляционный выемочный штрек; 13: Переключающий клапан II; 14: Переключающий клапан I; 15: Трехпутевой гидрораспределитель; 16: Адаптер; 17: Тонкий шланг высокого давления; 18: Ручной насос; 19: Ориентированная длинная скважина; и 20: Наклонная длинная скважина II.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[0047] Настоящее изобретение более подробно описывается ниже, со ссылкой на сопроводительные чертежи.
[0048] Первый вариант осуществления
[0049] Как показано на ФИГ. 1 и ФИГ. 3-6, средняя толщина угольного пласта шахты составляет 7,5 м; непосредственная кровля из крупнозернистого песчаника, покрытого мелкой галькой, местами глинистым сланцем и песчаным сланцем, средней толщиной 6,32 м; верхняя кровля из крупнозернистого песчаника, средней толщиной 4,06 м; и непосредственное дно из тонкозернистого песчаника со средней толщиной 2,10 м. Резка рабочей поверхности: оттяжка, сеть и трос объединяются для поддержки прямоугольного штрека шириной сети 8,5 м, высотой сети 3,2 м и площадью поперечного сечения 27,2 м2. Транспортный выемочный штрек рабочей поверхности: оттяжка, сеть и трос объединяются для поддержки прямоугольного штрека шириной сети 4,6 м, высотой сети 3,2 м и площадью поперечного сечения 14,72 м2. Вентиляционный выемочный штрек рабочей поверхности: вариант поддержки такой же как и для транспортного выемочного штрека, прямоугольный штрек также шириной сети 4,6 м, высотой сети 3,2 м и площадью поперечного сечения 14,72 м2.
[0050] Как показано на ФИГ. 3 и ФИГ. 4, ориентированные длинные скважины 19, параллельные друг другу и перпендикулярные стене угля, построены в разрезе угольного пласта, место начала отверстия находится на расстоянии 1,2 м от дна, место завершения отверстия находится на расстоянии 1 м от кровли, а скважины имеют длину 50 м и диаметр 75 мм.
[0051] Как показано на ФИГ. 3 и ФИГ. 5, наклонные длинные скважины 14, параллельные друг другу и перпендикулярные стене угля, построены в транспортном выемочном штреке, место начала отверстия находится на расстоянии 1,2 м от дна, место завершения отверстия находится на расстоянии 1 м от кровли, а скважины имеют длину 105 м и диаметр 75 мм.
[0052] Как показано на ФИГ. 3 и ФИГ. 6, наклонные длинные скважины 1120, параллельные друг другу и перпендикулярные стене угля, построены вентиляционном выемочном штреке, место начала отверстия находится на расстоянии 1,2 м от дна, место завершения отверстия находится на расстоянии 1 м от кровли, скважины имеют длину 105 м и диаметр 75 мм, а скважины двух выемочных штреков расположены в шахматном порядке. При размещении скважин следует избегать геологических структурных поясов, таких как разломы, насколько это возможно в соответствии с геологическими данными, и избегать влияния геологических структур на эффект разрыва верхней части угольного пласта.
[0053] Сначала строятся незаряжаемые скважины, а затем строятся скважины двух выемочных штреков, причем бурение двух выемочных штреков выполняется последовательно от направления среза к направлению главного штрека. Последовательность гидравлического разрыва такая же, как последовательность построения скважины, гидравлический разрыв и строительство скважины выполняются одновременно и осуществляются параллельно, и если скорость строительства будет соответствовать, то скважины могут быть построены досрочно.
[0054] Для обеспечения эффекта трещинообразования длинных скважин и повышения однородности трещин и их количества используется сегментированный возвратный разрыв, для герметизации отверстий используется специальный пакер, длина сегментированного разрыва составляет от 10 до 20 м. и определяется после нескольких испытаний в соответствии с обстановкой на месте.
[0055] Шаги проводятся следующим образом:
[0056] Как показано на ФИГ. 3, в шаге 1 ориентированные длинные скважины 19, параллельные друг другу и перпендикулярные стене угля в разрезанном угольном пласте 11, а наклонные длинные скважины I 14 и наклонные длинные скважины II 1120, параллельные друг другу и перпендикулярные стене угля, построены в транспортном выемочном штреке 1 и вентиляционном выемочном штреке 20 соответственно, скважины двух выемочных штреков расположены в шахматном порядке.
[0057] Как показано на ФИГ. 1, в шаге 2, устанавливается и отлаживается импульсный насос для гидравлического разрыва пласта 7-1.
[0058] В шаге 3 пакер 6 переносится к нижней части скважины 4, скважины 19 или скважины 20, монтажный стержень уплотнения высокого давления 5, переходник 16 и шланг высокого давления 8 соединяются последовательно, а шланг высокого давления соединяется с импульсным насосом для гидравлического разрыва 7-1.
[0059] В шаге 4 вода под высоким давлением закачивается в пакер с помощью ручного насоса 18, чтобы пакер 6 расширился для герметизации отверстия.
[0060] В шаге 5 открывается переключающий клапан II, импульсный насос 7-1 запускается для гидравлического разрыва, где импульсный насос для гидравлического разрыва 7-1 выдает гидравлический импульс, имеющий давление в 20 МПа и номинальный расход 6,7 м3/ч; а изменение давления воды в скважинах с трещинами и просачивание воды в стену угля зоны трещин контролируют в режиме реального времени, наблюдая за прибором для измерения и контроля гидравлического разрыва пласта 10, установленным в трубопроводе во время процесса гидравлического разрыва.
[0061] В шаге 6, если прибор для измерения и контроля гидравлического разрыва пласта 10 показывает, что давление воды в скважине с трещинами составляет менее 5 МПа или продолжительность «запотевания» угольного пласта превышает 5-7 мин, то закрывается импульсный насос для гидравлического разрыва пласта 7-1, клапан сброса давления 9 открывается, а пакер 6 устанавливается в заданную вторую позицию разрыва для повторной герметизации. Шаг повторяется до тех пор пока пока весь участок бурения не будет разрушен.
[0062] В шаге 7 пакер удаляется и монтируется на следующую скважину. Шаги 3-6 повторяются до тех пор, пока все скважины не будут разрушены.
[0063] Шаги сегментированного возвратного разрыва в частности следующие:
[0064] (a) Запустите импульсный насос для гидравлического разрыва пласта 7-1.
[0065] (b) Закачать воду в одну скважину с трещинами для цикличного гидравлического разрыва пласта;
[0066] (c) Закрыть импульсный насос для гидравлического разрыва пласта 7-1, если прибор для измерения и контроля гидравлического разрыва пласта 10 показывает, что давление воды в скважине с трещинами составляет менее 5 МПа или продолжительность «запотевания» угольного пласта превышает 5-7 мин, и открыть клапан для сброса давления 9 для завершения цикличного гидравлического разрыва;
[0067] (d) Затем сделайте отступ от пакера 6 на 10-20 м в направлении отверстия скважины и снова выполните цикличный гидравлический разрыв пласта.
[0068] (e) Повторить действие до тех пор, пока пакер 6 не отступит на глубину 15 м от отверстия скважины с трещинами для последнего цикличного гидравлического разрыва пласта.
[0069] (f) Извлечь пакер 6 для завершения возвратного сегментированного гидравлического разрыва.
[0070] Второй вариант осуществления
[0071] Как показано на ФИГ. 2, ФИГ. 3-6, средняя толщина угольного пласта шахты составляет 9 метров. Непосредственная кровля из крупнозернистого песчаника, покрытого мелкой галькой, местами глинистым сланцем и песчаным сланцем, средней толщиной 7 м; верхняя кровля из крупнозернистого песчаника, средней толщиной 4 м; и непосредственное дно из тонкозернистый песчаника со средней толщиной 2 м. Резка рабочей поверхности: оттяжка, сеть и трос объединяются для поддержки прямоугольного штрека шириной сети 9 м, высотой сети 3 м и площадью поперечного сечения 27 м2. Транспортный выемочный штрек рабочей поверхности: оттяжка, сеть и трос объединяются для поддержки прямоугольного штрека шириной сети 4,6 м, высотой сети 3,2 м и площадью поперечного сечения 14,72 м2. Вентиляционный выемочный штрек рабочей поверхности: вариант поддержки такой же как и для транспортного выемочного штрека, прямоугольный штрек также шириной сети 4,6 м, высотой сети 3,2 м и площадью поперечного сечения 14,72 м2.
[0072] Как показано на ФИГ. 3 и ФИГ. 4, ориентированные длинные скважины 19, параллельные друг другу и перпендикулярные стене угля, построены в разрезе угольного пласта, место начала отверстия находится на расстоянии 1,2 м от дна, место завершения отверстия находится на расстоянии 1 м от кровли, а скважины имеют длину 50 м и диаметр 75 мм.
[0073] Как показано на ФИГ. 3 и ФИГ. 5, наклонные длинные скважины 14, параллельные друг другу и перпендикулярные стене угля, построены в транспортном выемочном штреке, место начала отверстия находится на расстоянии 1,2 м от дна, место завершения отверстия находится на расстоянии 1 м от кровли, а скважины имеют длину 105 м и диаметр 75 мм.
[0074] Как показано на ФИГ. 3 и ФИГ. 6, наклонные длинные скважины 1120, параллельные друг другу и перпендикулярные стене угля, построены вентиляционном выемочном штреке, место начала отверстия находится на расстоянии 1,2 м от дна, место завершения отверстия находится на расстоянии 1 м от кровли, скважины имеют длину 105 м и диаметр 75 мм, а скважины двух выемочных штреков расположены в шахматном порядке. При размещении скважин следует избегать геологических структурных поясов, таких как разломы, насколько это возможно в соответствии с геологическими данными, и избегать влияния геологических структур на эффект разрыва верхней части угольного пласта.
[0075] Сначала строятся незаряжаемые скважины, а затем строятся скважины двух выемочных штреков, причем бурение двух выемочных штреков выполняется последовательно от направления среза к направлению главного штрека. Последовательность гидравлического разрыва такая же, как последовательность построения скважины, гидравлический разрыв и строительство скважины выполняются одновременно и осуществляются параллельно, и если скорость строительства будет соответствовать, то скважины могут быть построены досрочно.
[0076] Для обеспечения эффекта трещинообразования длинных скважин и повышения однородности трещин и их количества используется сегментированный возвратный разрыв, для герметизации отверстий используется специальный пакер, длина сегментированного разрыва составляет от 10 до 20 м. и определяется после нескольких испытаний в соответствии с обстановкой на месте.
[0077] Шаги проводятся следующим образом:
[0078] В шаге 1 ориентированные длинные скважины 19, параллельные друг другу и перпендикулярные стене угля в разрезанном угольном пласте 11, а наклонные длинные скважины I 14 и наклонные длинные скважины II 1120, параллельные друг другу и перпендикулярные стене угля, построены в транспортном выемочном штреке 1 и вентиляционном выемочном штреке 12 соответственно, скважины двух выемочных штреков расположены в шахматном порядке.
[0079] В шаге 2 монтируется и отлаживается насос высокого давления для гидравлического разрыва 7-2, в то время как устанавливается импульсный насос для гидравлического разрыва пласта 7-1, и импульсный насос для гидравлического разрыва 7-1 и насос высокого давления для гидравлического разрыва 7-2 соединяются параллельно вместе посредством трёхпутевого гидрораспределителя.
[0080] В шаге 3 пакер 6 переносится к нижней части скважины 4, монтажный стержень уплотнения высокого давления 5, переходник 16 и шланг высокого давления 8 соединяются последовательно, а шланг высокого давления соединяется с импульсным насосом для гидравлического разрыва 7-1 и насосом высокого давления для гидравлического разрыва 7-2.
[0081] В шаге 4 вода под высоким давлением закачивается в пакер с помощью ручного насоса 18, чтобы пакер 6 расширился для герметизации отверстия.
[0082] В шаге 5 открывается переключающий клапан II 13 на трубопроводе импульсного насоса для гидравлического разрыва 7-1, закрывается переключающий клапан I 14 на трубопроводе насоса высокого давления для гидравлического разрыва 7-2, запускается импульсный насос для гидравлического разрыва 7-1, выдает гидравлический импульс, имеющий давление в МПа и номинальный расход 12 м3/ч.
[0083] В шаге 6, после того, как импульсный насос для гидравлического разрыва 7-1 приводится в действие для проведения импульсного гидравлического разрыва в течение 30 минут, импульсный насос для гидравлического разрыва 7-1 гидроразрыва и переключающий клапан II 13 закрываются, затем переключающий клапан I 14 и насос высокого давления для гидравлического разрыва 7-2 открываются, образуется трещина, при импульсном гидравлическом разрыве, далее продолжает расширяться посредством насосной закачки с большой подачей, тем самым увеличивается дальность распространения трещины, а насос высокого давления для гидравлического разрыва пласта 7-2 имеет допустимое давление 63 МПа и номинальный расход 12 м3/ч.
[0084] В шаге 7, если прибор для измерения и контроля гидравлического разрыва пласта 10 показывает, что давление воды в скважине с трещинами составляет менее 5 МПа или продолжительность «запотевания» угольного пласта превышает 5-7 мин, то закрывается насос высокого давления для гидравлического разрыва пласта 7-2, клапан сброса давления 9 открывается, а пакер 6 устанавливается в заданную вторую позицию разрыва для повторной герметизации. Шаг повторяется до тех пор, пока пока весь участок бурения не будет разрушен.
[0085] В шаге 8 пакер 6 удаляется и монтируется на следующую скважину. Шаги 3-7 повторяются до тех пор, пока все скважины не будут разрушены.
[0086] Шаги сегментированного возвратного разрыва в частности следующие:
[0087] (a) Запустите импульсный насос для гидравлического разрыва пласта 7-1 или насос высокого давления для гидравлического разрыва пласта 7-2.
[0088] (b) Закачать воду в одну скважину с трещинами для цикличного гидравлического разрыва пласта;
[0089] (c) Закрыть импульсный насос для гидравлического разрыва пласта 7-1 или насос высокого давления 7-2 для гидравлического разрыва, если прибор для измерения и контроля гидравлического разрыва пласта 10 показывает, что давление воды в скважине с трещинами составляет менее 5 МПа или продолжительность «запотевания» угольного пласта превышает 5-7 мин, и открыть клапан для сброса давления 9 для завершения цикличного гидравлического разрыва;
[0090] (d) Затем сделайте отступ от пакера 6 на 10-20 м в направлении отверстия скважины и снова выполните цикличный гидравлический разрыв пласта.
[0091] (e) Повторить действие до тех пор, пока пакер не отступит на глубину 15 м от отверстия скважины с трещинами для последнего цикличного гидравлического разрыва пласта.
[0092] (f) Извлечь пакер 6 для завершения возвратного сегментированного гидравлического разрыва.
[0093] Как показано на ФИГ. 7, пакер включает в себя уплотнитель отверстия переднего расширения шланга 6-1 и уплотнитель отверстия заднего расширения шланга 6-2. Уплотнитель отверстия переднего расширения шланга 6-1 и уплотнитель отверстия заднего расширения шланга 6-2 расположены в скважине на расстоянии друг от друга. Соединительная труба 6-3 и тонкий насос высокого давления17 расположены между уплотнителями отверстий переднего и заднего расширений шланга. Уплотнитель отверстия переднего шланга включает в себя первый быстродействующий гидравлический соединитель 6-4, первую неподвижную втулку 6-5, первую скользящую втулку 6-6, первую металлическую трубу 6-7 и первое углубление уплотнителя отверстия 6-14. Один конец первой металлической трубы 6-7 проходит через первую скользящую втулку 6-6 и соединен с первым быстродействующим гидравлическим соединителем 6-4, а другой конец проходит через первую скользящую втулку 6-6. Уплотнитель отверстия заднего шланга включает в себя второй быстродействующий гидравлический соединитель 6-8, третий быстродействующий гидравлический соединитель 6-9, резьбовой соединитель 6-16, вторую скользящую втулку 6-13, вторую неподвижную втулку 6-10, вторую металлическую трубу 6-11 и второе углубление уплотнителя отверстия 6-15. Один конец второй металлической трубы 6-11 проходит через вторую скользящую втулку 6-10 и соединен со вторым быстродействующим гидравлическим соединителем 6-8, а другой конец соединен со второй скользящей втулкой 6-13. Первый быстродействующий гидравлический соединитель 6-4 соединен со вторым быстродействующим гидравлическим соединителем 6-8 при помощи соединительной трубы 6-3. Один конец тонкого шланга высокого давления 17 проходит через первую неподвижную втулку 6-5 и соединен с уплотнителем отверстия переднего расширения шланга 6-1, а другой конец последовательно проходит через вторую неподвижную втулку 6-10, второе углубление уплотнителя отверстия 6-15, вторую скользящую втулку 6-13 и резьбовой соединитель 6-16 и подключен к внешнему ручному насосу 18. Когда на ручной насос производится нажим, уплотнитель отверстия капсулы расширяется в радиальном направлении и втягивается в продольном направлении, а первая скользящая втулка 6-6 и вторая скользящая втулка 6-13 свободно скользят по первой металлической трубе 6-7 и второй металлической трубе 6-11 соответственно. Соединительная труба 6-3 снабжена сквозным отверстием для выпуска воды под высоким давлением для разрушения угольной породы.
[0094] После завершения строительства скважины соединительная труба 6-3 соответствующей длины выбирается в соответствии с длиной гидравлического разрыва конструкции, ручной насос 18 закачивает воду через тонкий шланг высокого давления 17 в уплотнители отверстий переднего и заднего расширений шланга для герметизации расширений уплотнителей отверстий, затем импульсный насос для гидравлического разрыва 7-1 или насос высокого давления для гидравлического разрыва 7-2 закачивает воду под высоким давлением в скважины через первую металлическую трубу 6-7 и вторую металлическую трубу 6-11, а сквозное отверстие на соединительной трубе 6-3 используются для выпуска воды под высоким давлением для разрушения угольной породы. Уплотнитель отверстия переднего расширения шланга 6-1 и уплотнитель отверстия заднего расширения шланга 6-2 после закачки воды расширяются радиально и вытягиваются в продольном направлении, первая скользящая втулка 6-6 и вторая скользящая втулка 6-13 свободно скользят вдоль первой металлической трубы 6-7 и второй металлической трубы 6-11 соответственно, между металлической трубой и скользящей втулкой предусмотрено уплотнительное кольцо для предотвращения вытекания воды из пакера, и вода закачивается до тех пор, пока сегмент скважины, находящийся между двумя уплотнителями отверстий расширения шланга, не будет полностью разломан. Сбрасывается давление воды и два уплотнителя отверстий возвращаются в состояние, которое было до закачки воды, и могут быть перемещены непосредственно в следующую скважину для осуществления гидравлического разрыва.

Claims (25)

1. Устройство управления участком обрушения верхней части угольного пласта за счёт применения технологии импульсного гидравлического разрыва пласта, которое объединяет в себе насосный агрегат для гидравлического разрыва пласта (7), шланг высокого давления (8), пакер (6) и монтажный стержень уплотнения высокого давления (5), конец монтажного стержня уплотнения высокого давления (5), который доходит до нижней части скважины, снабжен пакером (6), другой конец монтажного стержня уплотнения высокого давления (5) соединен с насосным агрегатом для гидравлического разрыва пласта (7) при помощи шланга высокого давления (8), пакер (6) соединен с ручным насосом (18) через тонкий шланг высокого давления (17), при этом насосный агрегат для гидравлического разрыва пласта (7) содержит насос высокого давления для гидравлического разрыва пласта (7-2) и импульсный насос для гидравлического разрыва пласта (7-1), шланг высокого давления (8), исходящий из насоса высокого давления для гидравлического разрыва (7-2), и шланг высокого давления (8), исходящий из импульсного насоса для гидравлического разрыва (7-1), соединены при помощи трёхпутевого гидрораспределителя (15), трубопровод между насосом высокого давления для гидравлического разрыва (7-2) и трёхпутевым гидрораспределителем (15) снабжен переключающим клапаном I (14), трубопровод между импульсным насосом для гидравлического разрыва (7-1) и трёхпутевым гидрораспределителем (15) снабжен переключающим клапаном II (13), другой конец трёхпутевого гидрораспределителя (15) соединен с монтажным стержнем уплотнения высокого давления (5) при помощи шланга высокого давления (8), шланг высокого давления (8) соединен с монтажным стержнем уплотнения высокого давления (5) через переходник (16).
2. Устройство управления участком обрушения верхней части угольного пласта за счёт применения технологии импульсного гидравлического разрыва пласта по п. 1, отличающееся тем, что трубопровод шланга высокого давления между трёхпутевым гидрораспределителем (15) и переходником (16) снабжен клапаном сброса давления (9).
3. Устройство управления участком обрушения верхней части угольного пласта за счёт применения технологии импульсного гидравлического разрыва пласта по п. 1, отличающееся тем, что трубопровод шланга высокого давления между трёхпутевым гидрораспределителем (15) и клапаном сброса давления (9) снабжен прибором для измерения и контроля гидравлического разрыва пласта (10).
4. Способ управления участком обрушения верхней части угольного пласта за счёт применения технологии импульсного гидравлического разрыва пласта состоит из следующих шагов:
шаг 1. построение ориентированных длинных скважин (19), параллельных друг другу и перпендикулярных стене угля в разрезанном угольном пласте (11), и наклонных длинных скважин I (4) и наклонных длинных скважин II (20), параллельных друг другу и перпендикулярных стене угля, в транспортном выемочном штреке (1) и вентиляционном выемочном штреке (12) соответственно, скважины двух выемочных штреков располагаются в шахматном порядке;
шаг 2. установка и отлаживание импульсного насоса для гидравлического разрыва (7-1);
шаг 3. перемещение пакера (6) в нижнюю часть скважины (4), последовательное соединение монтажного стержня уплотнения высокого давления (5), переходника (16) и шланга высокого давления (8) и соединение шланга высокого давления с импульсным насосом для гидравлического разрыва (7-1);
шаг 4. закачка воды под высоким давлением в пакер с помощью ручного насоса (18), чтобы пакер (6) расширился для герметизации отверстия;
шаг 5. открытие переключающего клапана II, запуск импульсного насоса (7-1) для гидравлического разрыва, контроль изменения давления воды в скважинах с трещинами и просачивания воды в стену угля зоны трещин в режиме реального времени, во время наблюдения за прибором для измерения и контроля гидравлического разрыва пласта (10), установленным в трубопроводе во время процесса гидравлического разрыва;
шаг 6. если прибор для измерения и контроля гидравлического разрыва пласта (10) показывает, что давление воды в скважине с трещинами составляет менее 5 МПа или продолжительность «запотевания» угольного пласта превышает 5-7 мин, то закрывается импульсный насос для гидравлического разрыва пласта (7-1), клапан сброса давления (9) открывается, а пакер (6) устанавливается в заданную вторую позицию разрыва для повторной герметизации, и этот шаг повторяется до тех пор, пока весь участок бурения не будет разрушен;
шаг 7. снятие пакера (6), установка пакера на следующую скважину, повтор выполнения шагов 3-6 до тех пор, пока все скважины не будут разрушены.
5. Способ управления участком обрушения верхней части угольного пласта за счёт применения технологии импульсного гидравлического разрыва пласта по п. 4, отличающийся тем, что
в шаге 2 монтируется и отлаживается насос высокого давления для гидравлического разрыва (7-2), в то время как устанавливается импульсный насос для гидравлического разрыва пласта (7-1), и импульсный насос для гидравлического разрыва (7-1) и насос высокого давления для гидравлического разрыва (7-2) соединяются параллельно вместе посредством трёхпутевого гидрораспределителя;
в шаге 5, после того как импульсный насос для гидравлического разрыва (7-1) приводится в действие для проведения импульсного гидравлического разрыва в течение 30 мин, импульсный насос для гидравлического разрыва (7-1) и переключающий клапан II (13) закрываются, затем переключающий клапан I (14) и насос высокого давления для гидравлического разрыва (7-2) открываются, образуется трещина при импульсном гидравлическом разрыве, далее продолжает расширяться посредством насосной закачки с большой подачей, тем самым увеличивается дальность распространения трещины; а также
в шаге 6, если прибор для измерения и контроля гидравлического разрыва пласта (10) показывает, что давление воды в скважине с трещинами составляет менее 5 МПа или продолжительность «запотевания» угольного пласта превышает 5-7 мин, то закрывается насос высокого давления для гидравлического разрыва пласта (7-2), клапан сброса давления (9) открывается, пакер (6) устанавливается в заданную вторую позицию разрыва для повторной герметизации, и этот шаг повторяется до тех пор, пока весь участок бурения не будет разрушен.
6. Способ управления участком обрушения верхней части угольного пласта за счёт применения технологии импульсного гидравлического разрыва по п. 4 или 5, отличающийся тем, что в шаге 1 сначала строятся незаряжаемые скважины, а затем строятся скважины с двумя выемочными штреками, причем бурение этих штреков выполняется последовательно от направления выемки к направлению главного штрека; и последовательность гидравлического разрыва в шагах с 3 по 6 является такой же, как последовательность построения скважины, гидравлический разрыв и строительство скважины выполняются одновременно и осуществляются параллельно, и если скорость строительства будет соответствовать, то скважины могут быть построены досрочно.
7. Способ управления участком обрушения верхней части угольного пласта за счёт применения технологии импульсного гидравлического разрыва пласта по п. 6, отличающийся тем, что используется сегментированный возвратный разрыв, длина сегментированного разрыва составляет от 10 до 20 м, и шаги в частности следующие:
(a) запуск импульсного насоса для гидравлического разрыва пласта (7-1) или насоса высокого давления для гидравлического разрыва пласта (7-2);
(b) закачка воды в одну скважину с трещинами для цикличного гидравлического разрыва пласта;
(с) если прибор для измерения и контроля гидравлического разрыва пласта (10) показывает, что давление воды в скважине с трещинами составляет менее 5 МПа или продолжительность «запотевания» угольного пласта превышает 5-7 мин, то закрывается импульсный насос для гидравлического разрыва пласта (7-1) или насос высокого давления для гидравлического разрыва пласта (7-2) и открывается клапан для сброса давления (9) для завершения цикличного гидравлического разрыва;
(d) затем, отступая от пакера (6) на расстояние от 10 до 20 м в направлении устья скважины, снова выполняется цикличный гидравлический разрыв пласта;
(e) действие повторяется до тех пор, пока пакер (6) не отступит на глубину 15 м от отверстия скважины с трещинами для последнего цикличного гидравлического разрыва пласта; а также
(f) извлечение пакера (6) для завершения возвратного сегментированного гидравлического разрыва.
8. Способ управления участком обрушения верхней части угольного пласта за счёт применения технологии импульсного гидравлического разрыва пласта по п. 7, отличающийся тем, что насос высокого давления для гидравлического разрыва пласта (7-1) выдает диапазон давления от 0 до 20 МПа и номинальный расход 6,7 м3/ч.
9. Способ управления участком обрушения верхней части угольного пласта за счёт применения технологии импульсного гидравлического разрыва пласта по п. 8, отличающийся тем, что пакер содержит уплотнитель отверстия переднего расширения шланга (6-1) и уплотнитель отверстия заднего расширения шланга (6-2), уплотнитель отверстия переднего расширения шланга (6-1) и уплотнитель отверстия заднего расширения шланга (6-2) расположены в скважине на расстоянии друг от друга, а соединительная труба (6-3) и тонкий насос высокого давления 17 расположены между уплотнителями отверстий переднего и заднего расширений шланга; уплотнитель отверстия переднего шланга содержит уплотнитель отверстия переднего шланга, включает в себя первый быстродействующий гидравлический соединитель (6-4), первую неподвижную втулку (6-5), первую скользящую втулку (6-6), первую металлическую трубу (6-7) и первое углубление уплотнителя отверстия (6-14), один конец первой металлической трубы (6-7) проходит через первую скользящую втулку (6-6) и соединен с первым быстродействующим гидравлическим соединителем (6-4), а другой конец проходит через первую скользящую втулку (6-6); уплотнитель отверстия заднего шланга включает в себя второй быстродействующий гидравлический соединитель (6-8), третий быстродействующий гидравлический соединитель (6-9), резьбовой соединитель (6-16), вторую скользящую втулку (6-13), вторую неподвижную втулку (6-10), вторую металлическую трубу (6-11) и второе углубление уплотнителя отверстия (6-15), один конец второй металлической трубы (6-11) проходит через вторую скользящую втулку (6-10) и соединен со вторым быстродействующим гидравлическим соединителем (6-8), а другой конец соединен со второй скользящей втулкой (6-13); первый быстродействующий гидравлический соединитель (6-4) соединен со вторым быстродействующим гидравлическим соединителем (6-8) при помощи соединительной трубы (6-3), один конец тонкого шланга высокого давления (17) проходит через первую неподвижную втулку (6-5) и соединен с уплотнителем отверстия переднего расширения шланга (6-1), а другой конец последовательно проходит через вторую неподвижную втулку (6-10), второе углубление уплотнителя отверстия (6-15), вторую скользящую втулку (6-13) и резьбовой соединитель (6-16) и подключен к внешнему ручному насосу (18); когда на ручной насос производится нажим, уплотнитель отверстия капсулы расширяется в радиальном направлении и втягивается в продольном направлении, а первая скользящая втулка (6-6) и вторая скользящая втулка (6-13) свободно скользят по первой металлической трубе (6-7) и второй металлической трубе (6-11) соответственно; и соединительная труба (6-3) снабжена сквозным отверстием для выпуска воды под высоким давлением для разрушения угольной породы.
RU2019126284A 2018-04-28 2018-11-02 Способ и устройство управления участком обрушения верхней части угольного пласта за счет применения технологии импульсного гидравлического разрыва пласта RU2704997C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810398499.4 2018-04-28
CN201810398499.4A CN108678747B (zh) 2018-04-28 2018-04-28 一种脉冲水力致裂控制顶煤冒放性的方法及设备
PCT/CN2018/113600 WO2019205558A1 (zh) 2018-04-28 2018-11-02 一种脉冲水力致裂控制顶煤冒放性的方法及设备

Publications (1)

Publication Number Publication Date
RU2704997C1 true RU2704997C1 (ru) 2019-11-05

Family

ID=63801495

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019126284A RU2704997C1 (ru) 2018-04-28 2018-11-02 Способ и устройство управления участком обрушения верхней части угольного пласта за счет применения технологии импульсного гидравлического разрыва пласта

Country Status (4)

Country Link
CN (1) CN108678747B (ru)
AU (1) AU2018405437B2 (ru)
RU (1) RU2704997C1 (ru)
WO (1) WO2019205558A1 (ru)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108678747B (zh) * 2018-04-28 2019-08-30 中国矿业大学 一种脉冲水力致裂控制顶煤冒放性的方法及设备
CN112709575A (zh) * 2019-10-24 2021-04-27 西安闪光能源科技有限公司 一种基于可控冲击波预裂的坚硬厚煤层放顶煤方法
CN111255454A (zh) * 2020-01-17 2020-06-09 天地科技股份有限公司 一种煤矿坚硬顶板定向切顶卸压的方法
CN111636872B (zh) * 2020-06-09 2021-10-22 中煤科工集团重庆研究院有限公司 一种水力压裂增加顶煤冒放性的方法
CN111908301B (zh) * 2020-07-15 2021-03-30 中南大学 一种地下矿石提升方法
CN112343570A (zh) * 2020-10-16 2021-02-09 煤科集团沈阳研究院有限公司 一种煤矿多孔水力压裂***及控制方法
CN113914858B (zh) * 2021-02-07 2024-04-12 中国矿业大学 一种浅埋双硬特厚煤层基本顶与顶煤同步预裂设计方法
CN113006796B (zh) * 2021-04-14 2021-11-23 中国矿业大学 煤与接触共生油页岩压裂共采方法
CN113011048B (zh) * 2021-04-23 2022-02-18 西南石油大学 一种致密砾岩油藏水平井重复压裂模拟方法
CN113217099B (zh) * 2021-06-08 2024-04-05 国能神东煤炭集团有限责任公司 水力定向顶板切割装置
CN114165197B (zh) * 2021-12-09 2022-07-05 中国矿业大学(北京) 一种脉冲水力裂切煤层卸压增透装置及卸压增透方法
CN115217458B (zh) * 2022-05-25 2023-11-28 中国矿业大学 矿井下压裂及注支撑剂一体化装置及施工方法
CN115749713B (zh) * 2022-10-14 2023-06-16 中国矿业大学 岩层变频脉冲缝网压裂方法与装备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU622988A1 (ru) * 1975-10-13 1978-09-05 Восточный научно-исследовательский институт по безопасности работ в горной промышленности Устройство дл импульсного нагнетани жидкости в скважины
SU883509A1 (ru) * 1980-03-24 1981-11-23 Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Институт Горного Дела Им.А.А.Скочинского Способ проведени гидравлической обработки угольного пласта
RU2209968C2 (ru) * 2001-09-06 2003-08-10 ОАО "Промгаз" Способ разупрочнения угольного пласта
RU2342531C1 (ru) * 2007-06-27 2008-12-27 ЗАО "Межведомственная комиссия по взрывному делу при Академии горных наук" (ЗАО "МВК по ВД при АГН") Комбинированный способ разупрочнения угольного массива и устройство для его осуществления
CN101539028A (zh) * 2009-04-30 2009-09-23 中国矿业大学(北京) 高压脉动注水防治煤岩动力灾害的方法及装备
RU2511329C1 (ru) * 2012-11-02 2014-04-10 Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ПРОБЛЕМ КОМПЛЕКСНОГО ОСВОЕНИЯ НЕДР РОССИЙСКОЙ АКАДЕМИИ НАУК (ИПКОН РАН) Способ воздействия на угольный пласт
CN105909228A (zh) * 2016-06-29 2016-08-31 中国矿业大学(北京) 脉冲高压水力割缝-压裂装置及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1029677A1 (ru) * 1981-07-20 1985-08-07 Предприятие П/Я В-2683 Способ отбойки горных пород и устройство дл его осуществлени
RU2151877C1 (ru) * 1998-10-12 2000-06-27 Национальный научный центр горного производства - Институт горного дела им. А.А. Скочинского Способ нагнетания жидкости в горный массив и устройство для его осуществления
RU2280163C1 (ru) * 2004-12-14 2006-07-20 Дальневосточный государственный технический университет Способ гидроразрыва горных пород
CN101644156B (zh) * 2009-07-17 2011-06-08 中国矿业大学 煤岩体水力***致裂弱化方法
CN202023547U (zh) * 2011-04-29 2011-11-02 中国矿业大学 煤矿井下脉动水力压裂设备
US9057262B2 (en) * 2012-07-27 2015-06-16 Tempress Technologies, Inc. Hyper-pressure pulse excavator
CN102797448B (zh) * 2012-08-31 2015-06-17 中国矿业大学 后退分段式水力致裂方法
CN103196762B (zh) * 2013-04-25 2014-10-15 重庆地质矿产研究院 一种脉冲水力压裂改造页岩气储层的实验装置及方法
CN103527198B (zh) * 2013-10-21 2016-02-24 中国矿业大学 切眼坚硬顶板/顶煤水力致裂控制方法
CN204754895U (zh) * 2015-02-12 2015-11-11 中国矿业大学(北京) 煤矿井下脉冲水力割缝-压裂一体化增透抽采装置
CN105464638A (zh) * 2015-10-29 2016-04-06 中国石油大学(北京) 煤层气井脉冲径向钻孔与双脉动水力压裂方法
CN105909225A (zh) * 2015-12-24 2016-08-31 天地科技股份有限公司 综放工作面架间定向水压致裂顶煤弱化方法
CN108678747B (zh) * 2018-04-28 2019-08-30 中国矿业大学 一种脉冲水力致裂控制顶煤冒放性的方法及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU622988A1 (ru) * 1975-10-13 1978-09-05 Восточный научно-исследовательский институт по безопасности работ в горной промышленности Устройство дл импульсного нагнетани жидкости в скважины
SU883509A1 (ru) * 1980-03-24 1981-11-23 Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Институт Горного Дела Им.А.А.Скочинского Способ проведени гидравлической обработки угольного пласта
RU2209968C2 (ru) * 2001-09-06 2003-08-10 ОАО "Промгаз" Способ разупрочнения угольного пласта
RU2342531C1 (ru) * 2007-06-27 2008-12-27 ЗАО "Межведомственная комиссия по взрывному делу при Академии горных наук" (ЗАО "МВК по ВД при АГН") Комбинированный способ разупрочнения угольного массива и устройство для его осуществления
CN101539028A (zh) * 2009-04-30 2009-09-23 中国矿业大学(北京) 高压脉动注水防治煤岩动力灾害的方法及装备
RU2511329C1 (ru) * 2012-11-02 2014-04-10 Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ПРОБЛЕМ КОМПЛЕКСНОГО ОСВОЕНИЯ НЕДР РОССИЙСКОЙ АКАДЕМИИ НАУК (ИПКОН РАН) Способ воздействия на угольный пласт
CN105909228A (zh) * 2016-06-29 2016-08-31 中国矿业大学(北京) 脉冲高压水力割缝-压裂装置及方法

Also Published As

Publication number Publication date
AU2018405437A1 (en) 2019-11-14
AU2018405437B2 (en) 2020-07-16
CN108678747B (zh) 2019-08-30
WO2019205558A1 (zh) 2019-10-31
CN108678747A (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
RU2704997C1 (ru) Способ и устройство управления участком обрушения верхней части угольного пласта за счет применения технологии импульсного гидравлического разрыва пласта
US20240110465A1 (en) Cracking permeability increasing method combining hydraulic fracturing and methane in-situ combustion explosion
US9062545B2 (en) High strain rate method of producing optimized fracture networks in reservoirs
US9714555B2 (en) Method of plugging a well
RU2373398C1 (ru) Способ дегазации и разупрочнения горных пород
CN106761852B (zh) 广域水下煤岩深孔承压微爆注浆堵水方法
CN108643877A (zh) 煤矿井下煤层长钻孔分段压裂增透与抽采瓦斯方法
WO2016046521A1 (en) Perforating gun assembly and method of use in hydraulic fracturing applications
RU2432460C2 (ru) Способы гидравлического разрыва пласта и добычи углеводородной текучей среды из пласта
CN110067558A (zh) 一种急倾斜特厚煤层回采巷道联合卸压防治冲击矿压方法
CN110344806B (zh) 一种小井眼***造缝辅助水力压裂方法
CN115749713A (zh) 岩层变频脉冲缝网压裂方法与装备
RU2396429C1 (ru) Способ разупрочнения приконтурного массива горных выработок при разработке угольных пластов
CN113389548B (zh) 一种煤矿回采工作面快速通过无煤区的方法
CN106121644B (zh) 基于煤岩钻孔平面交联孔网结构的充水承压***卸压和支护补强方法
CN102619496B (zh) 含油气岩分层分段多级***扩孔增裂方法
CN113338873B (zh) 一种页岩气藏多分支井爆压强化抽采方法
CN114961682A (zh) 一种水力压裂装置及其压裂施工方法
CN106437666A (zh) 一种用于油气储层内***压裂专用***的引爆新技术
RU2464421C2 (ru) Извлечение руды с использованием взрыва и термического дробления
CN113338888B (zh) 一种水平分支井燃爆压裂促进竖井页岩气开采的方法
CN114856684A (zh) 长壁开采端头悬顶及采空区瓦斯抽采的压裂协同控制方法
CN209416187U (zh) 一种煤炭开采用的顶板致裂装置
CN113446004A (zh) 同时预裂煤矿巷道侧向顶板和走向顶板的射孔布置方法
CN109539920A (zh) 一种煤炭开采用的顶板致裂方法及装置