RU2701436C1 - Способ изготовления детали из металлического порошкового материала - Google Patents

Способ изготовления детали из металлического порошкового материала Download PDF

Info

Publication number
RU2701436C1
RU2701436C1 RU2018134456A RU2018134456A RU2701436C1 RU 2701436 C1 RU2701436 C1 RU 2701436C1 RU 2018134456 A RU2018134456 A RU 2018134456A RU 2018134456 A RU2018134456 A RU 2018134456A RU 2701436 C1 RU2701436 C1 RU 2701436C1
Authority
RU
Russia
Prior art keywords
layer
powder material
metal powder
laser
layers
Prior art date
Application number
RU2018134456A
Other languages
English (en)
Inventor
Эътибар Юсиф Оглы Балаев
Наталья Анатольевна Тихомирова
Жесфина Михайловна Бледнова
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ")
Priority to RU2018134456A priority Critical patent/RU2701436C1/ru
Application granted granted Critical
Publication of RU2701436C1 publication Critical patent/RU2701436C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/63Rollers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

Изобретение относится к изготовлению деталей из металлического порошкового материала с применением технологий 3D-печати. Способ послойного аддитивного изготовления детали включает получение первого слоя путем нанесения металлического порошкового материала на платформу и обработки лазером, получение второго и последующих слоев путем нанесения металлического порошкового материала на первый и предыдущие слои соответственно и обработки его лазером. Нанесение металлического порошкового материала осуществляют путем высокоскоростного газопламенного напыления с углом напыления 45-60° на расстоянии 20-30 см с перемещением пятна контакта газопламенной струи со скоростью 5-10 мм/сек. Обработку металлического порошкового материала в каждом слое лазером осуществляют в два этапа, на первом из которых выжигают контур слоя детали, а на втором - обрабатывают горизонтальную внутреннюю поверхность контура слоя детали с шагом, равным 1-2 толщины слоя. Обеспечивается повышение когезионной прочности детали вдоль направления формирования слоев, а также чистоты поверхности и точности размеров и формы получаемой детали. 1 ил., 2 табл., 1 пр.

Description

Изобретение относится к способу изготовления деталей из металлического порошкового материала с применением технологий 3D-печати.
Известен способ изготовления детали послойным лазерным сплавлением металлического порошкового материала, включающий лазерное сплавление указанного порошка в инертной среде с получением слоя детали и ротационную сварку фением каждого слоя, которая обеспечивает формирование нанокристаллической решетки металла с высокой прочностью и пластичностью и отсутствием трещин (CN 104404509 А, 11.03.2015).
Недостатком данного способа является низкая плотность порошка формируемого слоя перед лазерным сплавлением, так как усилия ролика недостаточны для получения высокой плотности слоя порошкового материала, что является причиной низких физико-механических свойств получаемых после лазерного сплавления, как слоя детали, так и детали в целом. Также в результате сплавления получаемая деталь имеет низкую чистоту поверхности и точность размеров и формы детали, что обусловлено тем, что частицы порошкового материала необходимые для формирования слоя детали нагреваясь до температуры плавления, сплавляются со всеми соседними частицами вне зависимости необходимы ли они для формирования слоя детали или нет; Недостатком данного способа также является низкие прочностные свойства детали в направлении, перпендикулярном плоскости сформированных слоев. Детали, полученные данным способом, имеют анизотропию, выражающуюся в том, что когезионная прочность вдоль направления формирования детали ниже, чем в ее поперечном направлении.
Известен способ изготовления изделия или детали в соответствии с трехмерной моделью готового изделия путем осаждения слоев металлического материала в виде порошка без связующих или флюсов, включающий полное расплавление металлического порошка в защитной атмосфере газа по толщине слоя при воздействии лазерного луча, при этом лазерный луч проходит по заданной области порошка несколько раз так, что каждый проход перекрывает предыдущий (US 6215093 В1, 10.04.2001).
Недостатком данного способа является низкая плотность порошка формируемого слоя перед лазерным сплавлением, так как усилия ролика недостаточны для получения высокой плотности слоя порошкового материала, что является причиной низких физико-механических свойств получаемых после лазерного сплавления, как слоя детали, так и детали в целом. Также в результате сплавления получаемая деталь имеет низкую чистоту поверхности и точность размеров и формы детали, что обусловлено тем что частицы порошкового материала необходимые для формирования слоя детали нагреваясь до температуры плавления, сплавляются со всеми соседними частицами вне зависимости необходимы ли они для формирования слоя детали или нет. Недостатком данного способа также является низкие прочностные свойства детали в направлении, перпендикулярном плоскости сформированных слоев. Детали, полученные данным способом, имеют анизотропию, выражающуюся в том, что когезионная прочность вдоль направления формирования детали ниже, чем в ее поперечном направлении.
Прототипом изобретения является способ изготовления детали из металлического порошкового материала, включающий послойное аддитивное наращивание детали, в котором первый слой получают путем нанесения металлического порошкового материала на платформу, его выравнивания, уплотнение и обработку лазером с шагом равным 1-2 толщинам слоя, а второй и последующие слои путем нанесения металлического порошкового материала на первый и предыдущие слои соответственно, их выравнивание, уплотнение и обработку лазером с шагом равным 1-2 толщинам слоя, при этом после нанесения всех слоев проводят горячее изостатическое прессование в среде аргона и термическую обработку полученной детали (US 2014034626 А1, 06.02.2014).
Недостатком данного способа является низкая плотность порошка формируемого слоя перед лазерным сплавлением, так как усилия ролика недостаточны для получения высокой плотности слоя порошкового материала, что является причиной низких физико-механических свойств получаемых после лазерного сплавления, как слоя детали, так и детали в целом. Также в результате сплавления получаемая деталь имеет низкую чистоту поверхности и точность размеров и формы детали, что обусловлено тем, что частицы порошкового материала, необходимые для формирования слоя детали, нагреваясь до температуры плавления, сплавляются со всеми соседними частицами вне зависимости необходимы ли они для формирования слоя детали или нет. Недостатком данного способа также является низкие прочностные свойства детали в направлении, перпендикулярном плоскости сформированных слоев. Детали, полученные данным способом, имеют анизотропию, выражающуюся в том, что когезионная прочность вдоль направления формирования детали ниже, чем в ее поперечном направлении. При этом проводимые после изготовления детали горячее изостатическое прессование в среде аргона и термическая обработка позволяют сделать получаемую деталь изотропной, но при этом значительно снижаются физико-механические характеристики во всех направлениях.
Задачей изобретения является усовершенствование способа изготовления детали из металлического порошкового материала путем послойного аддитивного наращивания, обеспечивающее повышение физико-механических свойств детали и повышение точности ее геометрических характеристик.
Техническим результатом является повышение когезионной прочности детали вдоль направления формирования слоев, а также чистоты поверхности и точности размеров и формы получаемой детали.
Технический результат достигается тем, что способ послойного аддитивного изготовления детали из металлического порошкового материала, включает получение первого слоя путем нанесения металлического порошкового материала на платформу и обработки его лазером, получение второго и последующих слоев путем нанесения металлического порошкового материала на первый и предыдущие слои соответственно и обработки лазером, при этом нанесение металлического порошкового материала осуществляют путем высокоскоростного газопламенного напыления с утлом напыления 45-60° на расстоянии 20-30 см с перемещением пятна контакта газопламенной струи со скоростью 5-10 мм/сек, а обработку металлического порошкового материала в каждом слое лазером осуществляют в два этапа, на первом из которых выжигают контур слоя детали, а на втором - обрабатывают внутреннюю горизонтальную поверхность контура слоя детали с шагом равным 1-2 толщины слоя.
При формировании детали путем послойного аддитивного наращивания на когезионную прочность вдоль направления формирования слоев, а также на чистоту поверхности, точность размеров и форм получаемой детали, влияет плотность слоя, нанесенного на платформу, а также последующих слоев порошкового материала. порошковый металлический материал которых перед сплавлением лазером, переносят роликом, выравнивают и уплотняют.
Однако усилий прикладываемых роликом недостаточно для значительного увеличения плотности, и как следствие уменьшения
пористости. Таким образом при низких значениях плотности формируемых первого и последующих слоев снижается эффективность обработки лазером, в виду неравномерности нагрева частиц металлического порошкового материала по высоте из-за наличия большого количества пор, т.е. нагрев частиц, находящихся ниже поверхности формируемого слоя снижается, по сравнению с поверхностными частицами. В результате происходит неполное оплавление глубинных частиц, что приводит к снижению физико-механических характеристик получаемой детали, в частности к снижению когезионной прочности вдоль направления формирования детали. В свою очередь повышение мощности лазерного луча воздействующего на поверхность формируемого слоя приводит к выгоранию поверхностных частиц, что значительно ухудшает геометрические и физико-механические характеристики получаемой детали или вообще не позволяет получить деталь данным: способом.
Обработка лазером первого и последующего слоев перенесенных, выровненных и уплотненных роликом, за счет сплавления частиц металлического порошкового материала и заполнения им пространства пор, проводит к усадке формируемых слоев.
При этом сплавление частиц, расположенных на внутренней поверхности формируемого слоя, способствует снижению точности геометрических размеров вдоль направления формирования детали и снижению чистоты поверхности. А при оплавлении частиц металлического порошкового материала по периметру контура формируемого слоя происходит сплавление частиц формируемого слоя с частицами, выходящими за контур формируемого слоя детали, что снижает точность геометрических размеров в направлении перпендикулярном направлению формирования детали и чистоту поверхности.
В связи, с чем нанесение металлического порошкового материала при формировании первого и последующих слоев детали путем высокоскоростного газопламенного напыления с углом напыления 45-60 на расстоянии 20-30 см с перемещением пятна контакта газопламенной струи со скорость 5-10 мм/с обеспечивает их пористость равную 1-2% и плотность сопоставимую с плотностью аналогичного материала полученного металлургическим путем, а также сплавление частиц металлического порошкового материала между собой внутри слоя и между слоями с когезионной прочностью 200 МПа. Изменение технологических параметров не позволит получить желаемый технический результат. Так как увеличение расстояния больше 30 см при любом угле приведет к снижению когезионной прочности, меньше 20 см приведет к перегреву поверхности предыдущих слоев, на которые осуществляют нанесение последующих слоев, что также снижает величину значения когезионной прочности и приводит к возникновению остаточных напряжений, которые ведут к короблению и возникновению трещин. Также диапазон угла напыления 45-60° является оптимальным, так увеличение угла более 60° приведет к увеличению количества частиц отраженных от поверхности, на которую происходит напыления, и как следствие, приводит к увеличению расхода порошкового материала, а также отраженные частицы, сталкиваясь с напыляемыми, снижают кинетическую энергию последних и как следствие, снижают величину значения когезионной прочности. Уменьшение значения угла ниже 45° приведет к увеличению числа отраженных частиц и значительному увеличению продолжительности процесса напыления, а также из-за того что частицы будут врезаться в поверхность, на которую напыляются, по касательной, значительно уменьшится и величина значения когезионной прочности.
В виду того, что нанесение металлического порошкового материала осуществляют путем высокоскоростного газопламенного напыления, снижается пористость нанесенных слоев в результате чего при обработке лазером снижается усадка слоев. Однако при этом возникает необходимость дальнейшей обработки каждого нанесенного слоя формируемой детали лазером в два этапа. После нанесения каждого слоя на первом этапе обработки лазером осуществляют вырезание контура детали, что способствует повышению точности формы (геометрических размеров) и чистоты поверхности слоев детали полученных в результате лазерной обработки, а на втором этапе обработки лазером осуществляют обработку горизонтальной внутренней поверхности полученного слоя детали, в результате происходит досплавление частиц металлического порошкового материала нанесенного слоя, которые в процессе высокоскоростного газопламенного напыления были частично подвергнуты сплавлению, досплавление нанесенного слоя с предыдущим слоем, который в процессе высокоскоростного газопламенного напыления был также частично подвергнуты сплавлению с предыдущим слоем
Обработка лазером горизонтальной внутренней поверхности полученного слоя детали характеризуется высокой степенью эффективности. Это обусловлено тем, что формирование каждого слоя из металлического порошкового материала осуществляют высокоскоростным газопламенным напылением, способствующим снижению пористости, что при дальнейшей обработке лазером внутренней горизонтальной поверхности слоя обеспечивает равномерность нагрева по всей толщине слоя, что повышает когезионную прочность частиц металлического порошкового материала между собой внутри слоя и между слоями. А снижение усадки во время обработки лазером горизонтальной внутренней поверхности полученного слоя детали обеспечивает точность формы (геометрических размеров) и чистоты обрабатываемой поверхности.
Таким образом, совокупность предлагаемых признаков позволяет изготовить деталь из металлического порошкового материала путем послойного аддитивного наращивания, характеризующуюся высокими физико-механическими свойствами и высокой точностью ее геометрических характеристик, за счет повышения когезионной прочности детали вдоль направления формирования слоев, а также чистоты поверхности и точности размеров и формы получаемой детали.
Сущность предлагаемого способа заключается в том, что в рабочей зоне 3D-принтера (Фиг. 1) строительную платформу 1 отпускают на величину формируемого первого слоя 2 после чего осуществляют напыление на строительную платформу 1 металлического порошкового материала методом высокоскоростного газопламенного напыления. После чего в лазере 4 генерируют луч 5, который поступает на сканирующее устройство 6, которое направляет луч 5 по заданной программе в зону формирования детали, вырезая на первом этапе контур слоя детали в первом слое 2 и сплавляя на втором этапе металлический порошковый материал на горизонтальной внутренней поверхности слоя детали первого слоя 2. Обработка лазерным лучом 5 происходит с шагом равным 1-2 толщины слоя. После чего формируют второй слой 3, для этого строительную платформу 1 отпускают на величину формируемого слоя второго слоя 3. После чего осуществляют напыление металлического порошкового материала методом высокоскоростного газопламенного напыления поверх сформированного первого слоя 2. После чего в лазере 4 генерируют луч 5, который поступает в сканирующее устройства 6, направляющее луч 5 по заданной программе в зону формирования детали. При этом луч 5 лазера 4 вырезает на первом этапе контур слоя детали во втором слое 3 и оплавляет на втором этапе металлический порошковый материал внутри контура слоя детали второго слоя 3. Нанесение третьего и последующего слоев осуществляют аналогично технологии нанесения второго слоя детали.
Получаемые после высокоскоростного газопламенного напыления слои перед обработкой лазерным лучом имеют низкую пористость, высокую плотность, начальные значения когезии вдоль сформированного слоя и вдоль направления формирования детали. Это позволяет значительно повысить геометрические и физико-механические характеристики получаемой детали, а формирования контура детали в слое при помощи лазерного вырезания, а не при помощи сплавления лазерным лучом, позволяет повысить чистоту поверхности и геометрические характеристики получаемой детали.
Пример.
Были изготовлены при помощи послойного аддитивного наращивания призматические образцы по ГОСТу 1497-84 для испытаний на растяжения с различным направлением формирования слоев образцов, перед испытаниями были измерены шероховатость поверхности и отклонения геометрических размеров от заданных. В качестве материала выбран порошок AlSi10Mg. 18 образцов были получены без применения технологии высокоскоростного газопламенного напыления по 3 образца на каждое направление формирования слоя при этом 9 образцов были получены путем нанесения первого слоя металлического порошкового материала на платформу, его выравнивания, уплотнение и обработку лазером с шагом равным 1-2 толщинам слоя, а второй и последующие слои путем нанесения металлического порошкового материала на первый и предыдущие слои соответственно, их выравнивание, уплотнение и обработку лазером с шагом равным 1-2 толщинам слоя, после чего были испытаны. Другие 9 были получены путем нанесения первого слоя металлического порошкового материала на платформу, его выравнивания, уплотнение и обработку лазером с шагом равным 1-2 толщинам слоя, а второй и последующие слои путем нанесения металлического порошкового материала на первый и предыдущие слои соответственно, их выравнивание, уплотнение и обработку лазером с шагом равным 1-2 толщинам слоя, после нанесения всех слоев было проведено горячее изостатическое прессование в среде аргона и термическая обработка полученной детали.
27 призматических образцов, изготовленных по ГОСТу 1497-84, из порошового материала AlSi10Mg были получены путем нанесения первого слоя металлического порошкового материала на платформу при помощи высокоскоростного газопламенного напыления с последующей обработкой лазером, осуществляемую в два этапа. На первом этапе обработки лазером проводили выжигание контура слоя детали, а на втором этапе обработки лазером досплавление частиц металлического порошкового материала внутренней горизонтальной поверхности контура слоя с шагом равным 1-2 толщинам слоя. Нанесение второго слоя металлического порошкового материала осуществляют путем высокоскоростного газопламенного напыления на первый слой с последующей обработкой лазером, осуществляемой в два этапа. На первом этапе обработки лазером проводили выжигание контура слоя детали, а на втором этапе обработки лазером досплавление частиц металлического порошкового материала внутренней горизонтальной поверхности контура слоя и досплавление частиц металлического порошкового материала второго слоя с первым с шагом равным 1-2 толщинам слоя. Нанесение и обработку третьего и последующих слоев осуществляют аналогично нанесению и обработке второго слоя.
Режимы высокоскоростного газопламенного напыления представлены в табл. 1.
Figure 00000001
По 9 образцов на каждый режим высокоскоростного газопламенного напыления из которых каждые 3 образца на каждое направление формирования слоя. После этого все образцы были подвергнуты испытаниям на разрыв на испытательной машине Instron 8801, шероховатость поверхности определялась при помощи профилографа, профилометра Абрис-ПМ7, геометрические размеры и отклонения определялись при помощи микрометра.
Результаты испытаний представлены в табл. 2.
Figure 00000002
Предложенный способ повышения геометрических, физико-механических характеристик, а также и чистоты поверхности детали, полученной при помощи технологии послойного аддитивного наращивания, обеспечивает за счет повышения плотности слоев на стадии их формирования до обработки их лазером.

Claims (1)

  1. Способ послойного аддитивного изготовления детали из металлического порошкового материала, включающий получение первого слоя путем нанесения металлического порошкового материала на платформу и обработки лазером, получение второго и последующих слоев путем нанесения металлического порошкового материала на первый и предыдущие слои соответственно и обработки его лазером, отличающийся тем, что нанесение металлического порошкового материала осуществляют путем высокоскоростного газопламенного напыления с углом напыления 45-60° на расстоянии 20-30 см с перемещением пятна контакта газопламенной струи со скоростью 5-10 мм/сек, а обработку металлического порошкового материала в каждом слое лазером осуществляют в два этапа, на первом из которых выжигают контур слоя детали, а на втором - обрабатывают горизонтальную внутреннюю поверхность контура слоя детали с шагом, равным 1-2 толщины слоя.
RU2018134456A 2018-09-28 2018-09-28 Способ изготовления детали из металлического порошкового материала RU2701436C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018134456A RU2701436C1 (ru) 2018-09-28 2018-09-28 Способ изготовления детали из металлического порошкового материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018134456A RU2701436C1 (ru) 2018-09-28 2018-09-28 Способ изготовления детали из металлического порошкового материала

Publications (1)

Publication Number Publication Date
RU2701436C1 true RU2701436C1 (ru) 2019-09-26

Family

ID=68063258

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018134456A RU2701436C1 (ru) 2018-09-28 2018-09-28 Способ изготовления детали из металлического порошкового материала

Country Status (1)

Country Link
RU (1) RU2701436C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2312165C2 (ru) * 2003-04-21 2007-12-10 Военный автомобильный институт Способ газопламенного напыления металлических порошковых материалов
RU2393056C1 (ru) * 2008-12-18 2010-06-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ спекания деталей из порошков
RU2450891C1 (ru) * 2010-12-16 2012-05-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ спекания деталей лазерным послойным синтезом
US20140034626A1 (en) * 2012-08-06 2014-02-06 Materials Solutions Additive manufacturing
RU2550670C2 (ru) * 2013-09-10 2015-05-10 Рустем Халимович Ганцев Способ изготовления металлического изделия лазерным цикличным нанесением порошкового материала и установка для его осуществления
RU2015116240A (ru) * 2012-10-08 2016-11-27 Сименс Акциенгезелльшафт Аддитивное изготовление детали турбины с использованием нескольких материалов
RU2664844C1 (ru) * 2017-12-20 2018-08-23 Федеральное государственное автономное учреждение "Научно-учебный центр "Сварка и контроль" при МГТУ им. Н.Э. Баумана" Способ аддитивного изготовления трехмерной детали

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2312165C2 (ru) * 2003-04-21 2007-12-10 Военный автомобильный институт Способ газопламенного напыления металлических порошковых материалов
RU2393056C1 (ru) * 2008-12-18 2010-06-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ спекания деталей из порошков
RU2450891C1 (ru) * 2010-12-16 2012-05-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ спекания деталей лазерным послойным синтезом
US20140034626A1 (en) * 2012-08-06 2014-02-06 Materials Solutions Additive manufacturing
RU2015116240A (ru) * 2012-10-08 2016-11-27 Сименс Акциенгезелльшафт Аддитивное изготовление детали турбины с использованием нескольких материалов
RU2550670C2 (ru) * 2013-09-10 2015-05-10 Рустем Халимович Ганцев Способ изготовления металлического изделия лазерным цикличным нанесением порошкового материала и установка для его осуществления
RU2664844C1 (ru) * 2017-12-20 2018-08-23 Федеральное государственное автономное учреждение "Научно-учебный центр "Сварка и контроль" при МГТУ им. Н.Э. Баумана" Способ аддитивного изготовления трехмерной детали

Similar Documents

Publication Publication Date Title
Juste et al. Shaping of ceramic parts by selective laser melting of powder bed
DK2699369T3 (en) A process for the preparation of an article having pulverstørkning by means of a laser beam
Wang et al. Research on the fabricating quality optimization of the overhanging surface in SLM process
KR102151445B1 (ko) 적층 조형 장치 및 적층 조형물의 제조 방법
Yasa et al. Microstructural investigation of Selective Laser Melting 316L stainless steel parts exposed to laser re-melting
EP2794151B1 (fr) Procede et appareil pour realiser des objets tridimensionnels
JP2021165044A (ja) 付加製造プロセスモニタリング方法
WO2019091086A1 (zh) 基于激光选区熔化的金属精细多孔结构成型方法
CN112264618B (zh) 原位激光冲击强化复合增材制造***及方法、打印件
US11253916B2 (en) Method of production using melting and hot isostatic pressing
JP2018530501A (ja) 積層造形プロセスおよび製品
RU2550670C2 (ru) Способ изготовления металлического изделия лазерным цикличным нанесением порошкового материала и установка для его осуществления
US10682812B2 (en) Powder spreader and additive manufacturing apparatus thereof
Dilip et al. A short study on the fabrication of single track deposits in SLM and characterization
KR20190092496A (ko) 강판의 표면 지형을 압연하기 위한 롤 및 이를 제조하기 위한 방법
Fayed et al. Characterization of direct selective laser sintering of alumina
KR20170035802A (ko) 부가적 제조를 사용하여 다공 구조를 갖는 열적 배리어 코팅을 형성시키는 방법
GB2515287A (en) An Additive Layer Manufacturing Method
RU2701436C1 (ru) Способ изготовления детали из металлического порошкового материала
CN108480631A (zh) 一种用于提高激光增材制造构件残余压应力的方法
Su et al. Investigation of fully dense laser sintering of tool steel powder using a pulsed Nd: YAG (neodymium-doped yttrium aluminium garnet) laser
JP2003321704A (ja) 積層造形法およびそれに用いる積層造形装置
JP6680452B1 (ja) 三次元形状造形物の積層造形方法
WO2020080425A1 (ja) 硬化層の積層方法、及び積層造形物の製造方法
Zhirnov et al. Optical monitoring and diagnostics of SLM processing for single track formation from Co-Cr alloy