RU2700038C2 - Акустический волновод - Google Patents

Акустический волновод Download PDF

Info

Publication number
RU2700038C2
RU2700038C2 RU2018105641A RU2018105641A RU2700038C2 RU 2700038 C2 RU2700038 C2 RU 2700038C2 RU 2018105641 A RU2018105641 A RU 2018105641A RU 2018105641 A RU2018105641 A RU 2018105641A RU 2700038 C2 RU2700038 C2 RU 2700038C2
Authority
RU
Russia
Prior art keywords
waveguide
acoustic
metal rod
flexible metal
cylindrical
Prior art date
Application number
RU2018105641A
Other languages
English (en)
Other versions
RU2018105641A (ru
RU2018105641A3 (ru
Inventor
Александр Петрович Демченко
Николай Иванович Балин
Original Assignee
Александр Петрович Демченко
Николай Иванович Балин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Петрович Демченко, Николай Иванович Балин filed Critical Александр Петрович Демченко
Priority to RU2018105641A priority Critical patent/RU2700038C2/ru
Priority to EP19754574.2A priority patent/EP3754649A4/en
Priority to PCT/RU2019/000052 priority patent/WO2019160443A1/ru
Publication of RU2018105641A publication Critical patent/RU2018105641A/ru
Publication of RU2018105641A3 publication Critical patent/RU2018105641A3/ru
Application granted granted Critical
Publication of RU2700038C2 publication Critical patent/RU2700038C2/ru
Priority to US16/993,755 priority patent/US11360054B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2462Probes with waveguides, e.g. SAW devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2961Acoustic waves for discrete levels
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/22Methods or devices for transmitting, conducting or directing sound for conducting sound through hollow pipes, e.g. speaking tubes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/24Methods or devices for transmitting, conducting or directing sound for conducting sound through solid bodies, e.g. wires

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

Изобретение относится к акустике. Акустический волновод содержит гибкий металлический стержень, к каждому концу которого через конический акустический концентратор жестко присоединен цилиндрический волновод, при этом один цилиндрический волновод выполнен для подсоединения его к электроакустическому преобразователю, а другой цилиндрический волновод выполнен для подсоединения его к приемному устройству акустических колебаний. При этом волновод снабжен гибкой защитной трубкой, выполненной герметичной, трубка охватывает как гибкий металлический стержень, так и конические акустические концентраторы. Технический результат - повышение функциональных возможностей акустического волновода, путем использования его в устройствах, работающих в условиях высокой температуры, излучения, мощных электромагнитных помех и прочих негативных факторов. 8 з.п. ф-лы, 5 ил.

Description

Изобретение относится к устройствам передачи ультразвуковой колебательной энергии от источника к приемнику и/или в обратном направлении.
Ультразвуковые акустические волноводы конструктивно чаще всего представляют собой трубки, стержни, пластины или их комбинации, форма, конструкция и размеры которых определяются поставленной задачей и условиями эксплуатации.
Акустические волноводы могут быть использованы для измерения характеристик материалов, параметров среды, в сигнализаторах.
Примеры конструкций волноводов отражены в патентных документах.
В патенте US 8746399, публикация 10.06.2014, МПК G10K 11/00, приведена конструкция волновода в виде стержня, с устройством его закрепления при прохождении через трубу, обеспечивая при этом эффективное уплотнение даже в условиях высокого давления.
В заявке WO 2017062006, публикация 13.04.2017, МПК Е21В 47/12, раскрыто устройство акустического волновода для связи между передатчиком в скважине и приемником на поверхности. Волновод в стволе скважины представляет собой статический волновод, содержащий обсадную колонну или эксплуатационную трубу, и в которой трубчатая труба скважины представляет собой динамическую трубку, содержащую гибкую трубу или соединенную трубу.
Ультразвуковые волноводы используют при генерировании, передаче и/или приеме сигналов в виде звуковых или ультразвуковых колебаний при работе в экстремальных условиях, характеризуемых, например, экстремальными - низкими или высокими - температурами, значительной плотностью окружающей среды, высокой активностью проникающего излучения, мощными электромагнитными помехами, сильными вибрациями, наличием агрессивных веществ, опасных для элементов устройств, в которых применяются акустические волноводы или для обслуживающего персонала.
Техническим результатом, достигаемым в данном изобретении, является повышение функциональных возможностей акустического волновода, с возможностью использования его в устройствах, работающих в условиях высокой температуры, излучения, мощных электромагнитных помех и прочих негативных факторов.
Акустический волновод включает гибкий металлический стержень, к каждому концу которого через конический акустический концентратор жестко присоединен цилиндрический волновод, при этом один цилиндрический волновод выполнен для подсоединения его к электроакустическому преобразователю, а другой цилиндрический волновод выполнен для подсоединения его к приемному устройству акустических колебаний.
Термин «приемное устройство» в данном случае означает устройство, которое может принимать или возбуждать акустические сигналы в антеннах различных устройств; преобразовывать энергию механических колебаний в акустические колебания; принимать или передавать информацию в виде последовательности импульсов, или информацию, закодированную в частоте или амплитуде акустических колебаний.
Главными и неочевидными свойствами данной конструкции акустического резонатора является возможность размещения электроакустического преобразователя и приемного устройства в любом положении, при этом разнесенных на значительное расстояние. Это обеспечивается тем, что гибкий металлический стержень может быть изогнут в широких пределах, принимать различную форму и размещаться в агрессивных средах. При этом цилиндрические волноводы акустического волновода могут быть жестко и герметично закреплены в любых преградах: стенках, перегородках, переборках и тому подобное. Например, цилиндрический волновод по наружной поверхности может просто ввариваться в металлическую стенку.
Все это позволяет изолировать конструкцию электроакустического преобразователя и, если это необходимо, приемного устройства, от любых негативных факторов. Чрезвычайно важна роль и третьего элемента конструкции, конических акустических концентраторов. Они позволяют акустически согласовать между собой акустические свойства гибкого металлического стержня и цилиндрического волновода.
В частном случае гибкий металлический стержень выполнен с возможностью придания ему формы, необходимой для размещения в выделенном для него пространстве.
Гибкий металлический стержень может быть выполнен в виде проволоки, имеющей диаметр не более 6 мм. В этом случае размещение гибкого металлического волновода в пространстве может быть выполнено наиболее просто.
В частности, конический акустический концентратор вершиной жестко прикреплен к гибкому металлическому стержню, а широкой частью жестко прикреплен к цилиндрическому волноводу.
Кроме того, вершина упомянутого конического акустического концентратора имеет диаметр равный диаметру гибкого металлического стержня, а широкая часть упомянутого конического акустического концентратора имеет диаметр равный диаметру цилиндрического волновода.
Цилиндрический волновод может быть выполнен с возможностью жесткого подсоединения его к приемному устройству.
Наружная поверхность, по меньшей мере, одного цилиндрического волновода, если это необходимо, может быть выполнена с возможностью жесткого и герметичного крепления в пересекаемой волноводом перегородке.
Для увеличения срока службы, для стабилизации характеристик волновода во времени, для защиты от возможной коррозии и для герметизации при нахождении этой части волновода в жидких вязких средах - участок волновода, включающий гибкий металлический стержень и коническое акустические концентраторы, может быть помещен в гибкую защитную трубку.
При этом, гибкая защитная трубка может быть выполнена герметичной, внутри снабжена адаптерами для фиксации гибкого волновода внутри защитной трубки и концы защитной трубки снабжены узлами крепления указанной трубки к наружным поверхностям цилиндрических волноводов.
Изобретения поясняется чертежами.
На Фиг. 1 приведен общий вид акустического волновода.
На Фиг. 2 приведена конструкция акустического волновода с гибкой защитной трубкой.
На Фиг. 3 показана конструкция цилиндрического волновода с коническим акустическим концентратором.
На Фиг. 4 приведена часть оболочки акустического волновода с адаптерами.
На Фиг. 5 приведен пример использования акустического волновода в конструкции ультразвукового датчика.
Акустический волновод (Фиг. 1) включает гибкий металлический стержень 1, к каждому концу которого вершиной жестко прикреплен конический акустический концентратор 2.
Цилиндрические части волновода, отличающиеся диаметрами, имеют разные акустические сопротивления - чем меньше диаметр, тем меньше акустическое сопротивление. И наоборот.
К широкой части каждого конического акустического концентратора 2 жестко присоединен цилиндрический волновод 3. Гибкий металлический стержень 1 может быть выполнен в виде гибкого прутка или проволоки диаметром не более 6 мм. Наружная поверхность цилиндрического волновода 3 содержит область 4 (Фиг. 1, Фиг. 3), по которой цилиндрический волновод 3 может быть жестко и герметично крепиться в пересекаемой волноводом перегородке.
При сварном способе крепления цилиндрического волновода к перегородке толщина шва была гораздо меньше длины волны колебаний в материале волновода и меньше диаметра волновода. На частотах в районе, например, 100 кГц и диаметре волновода 16 мм. шов может быть порядка нескольких миллиметров. Чем толще шов, тем больше потери акустической энергии.
Участок акустического волновода, включающий гибкий металлический стержень 1 и конические акустические концентраторы 2 может быть помещен в гибкую защитную трубку 5, например, герметичную гофрированную металлическую трубку, с целью защиты их от загрязнений, жидкостей и повреждений (Фиг. 2).
Гибкая защитная трубка 5 может быть снабжена адаптерами 6 (Фиг. 4) для прикрепления указанной трубки 5 к наружным поверхностям гибкого металлического стержня 1 Адаптеры 6 могут представлять собой конусные втулки с внутренним отверстием для проволоки примерно чуть больше, чем диаметр гибкого стержня (проволоки) 1. Концы защитной трубки 5 могут быть снабжены узлами крепления указанной трубки к наружным поверхностям цилиндрических волноводов.
Для согласования участков с различными акустическими сопротивлениями в данной конструкции используются конические концентраторы. Они выполняют роль преобразователей - трансформаторов- акустической энергии. При переходе в концентраторе от большого диаметра к малому происходит преобразование акустической энергии- увеличивается колебательная скорость и одновременно уменьшается звуковое давление и акустическое сопротивление. И наоборот, при переходе от малого диаметра к большому происходит уменьшение колебательной скорости и увеличение акустического давления и акустического сопротивления. На частотах, например, в районе 100 кГц полуволновой металлический конический концентратор имеет длину примерно 2-3 см.
Необходимость совместного использования в конструкции волновода участков с относительно малым не более 6 мм. и относительно большими 12-20 мм диаметрами продиктовано противоречивыми требованиями, предъявляемыми к обсуждаемой конструкции. С одной стороны, необходим протяженный гибкий участок волновода, который легко монтировать, встраивать, прокладывать по "месту" в реальной конструкции. Для этого в данном случае предлагается использовать гибкую относительно тонкую металлическую проволоку. С другой стороны необходим участок с относительно большими диаметрами для эффективного согласования волновода с реальными электроакустическими преобразователями (пьезоэлементами, магнитострикторами) и для прохождения металлических перегородок путем вваривания участка волновода с большим диаметром в реальную перегородку. Чем больше диаметр этого участка волновода, тем большую толщину может иметь перегородка и, соответственно, соединяющий их сварной шов.
Все части акустического волновода могут быть выполнены из марок стали, устойчивых к воздействию агрессивной среды. Поэтому акустический волновод может применяться в условиях, характерных высокими температурами, высокой активностью проникающего излучения, мощными электромагнитными помехами, сильными вибрациями, наличием в атмосфере агрессивных веществ. Благодаря тому, что гибкий металлический стержень может быть выполнен необходимой длины и принимать форму необходимую для размещения в выделенном для него пространстве, акустический волновод может обеспечить акустическую связь между различными устройствами, разнесенными между собой и разделенными стенами, переборками, корпусами.
В качестве примера, на Фиг. 5 приведена конструкция акустического датчика уровня жидкости, в которой используется данный акустический волновод.
Ультразвуковой датчик уровня жидкости содержит акустический резонатор 7 помещенный в емкость 12 с жидкостью, и соединенный акустическим волноводом с электроакустическим преобразователем 8 (Фиг. 1). Акустический волновод включает гибкий металлический стержень 1, к каждому концу которого жестко присоединен цилиндрический волновод 3 через конический акустический концентратор 2. Один цилиндрический волновод 3 подсоединяется к акустическому резонатору 7, другой к электроакустическому преобразователю 8. Гибкий металлический стержень 1 выполнен в виде проволоки. Электроакустический преобразователь 2 установлен в корпус 9, который позволяет установить его на любом основании. На Фиг. 5 показано крепление цилиндрического волновода 3 к переборке 10 с помощью сварки 11.
Такое расположение элементов акустического датчика уровня жидкости позволяет изолировать электроакустический преобразователь 2 от среды в объеме 13. В свою очередь ввод акустического волновода в емкость с жидкостью обеспечен путем приваривания цилиндрического волновода 3 к переборке 10. В этом случае, упрощается монтаж датчика. Его элементы размещены в пространствах, удобных для обслуживания и обеспечивающих защиту персонала, при обслуживании электроакустического преобразователя и его электрических цепей, от возможных агрессивных сред и излучений.
С помощью импульсного генератора электронного блока, электроакустического преобразователя 8 (Фиг. 5) вырабатываются импульсные акустические колебания. Далее через, цилиндрический волновод 3 и акустический концентратор 2 они передаются в гибкий металлический стержень 1 (проволоку). С противоположного конца тонкого гибкого металлического стержня 1 с помощью акустического концентратора 2 колебания поступают в цилиндрический волновод 3, к противоположному концу которого прикреплен акустический резонатор 7. Достигнув резонатора, акустический импульс вызывает собственные колебания резонатора 7, длительность которых зависит от среды (жидкой или газообразной) в которой он находится.
Собственные колебания резонатора 7 распространяясь в направлении, обратном по отношению к движению возбуждающего импульса через акустический волновод, попадают к электроакустическому преобразователю 8. Электрическая схема датчика обрабатывает принятые колебания, оценивает декремент затухания собственных колебаний резонатора 7 и принимает решение о среде - жидкость или не жидкость, в которой находится резонатор 7.
В качестве других примеров использования акустического волновода данной конструкции, который осуществляет передачу ультразвуковых колебаний через агрессивную среду на расстояние, которое может составлять несколько метров.
При передаче на излучение и прием импульсных акустических сигналов в антеннах различных устройств, использующих принцип локации, например, локаторы- измерители дистанции в жидкости или в газовой среде.
В измерителях параметров среды, например, температуры, давления, плотности, вязкости, построенных по принципу зависимости частоты, амплитуды, затухания колебаний чувствительного элемента датчика от свойств среды, в которой он расположен.
В зарядных устройствах электрических аккумуляторах через агрессивную среду, через которую невозможно протянуть электрические провода. С помощью преобразователя механических колебаний в электрические колебания, прикрепленного к приемному концу акустического волновода и обратному преобразователю, прикрепленному к другому концу того же волновода.
В устройствах передачи информации, например, цифровой в виде последовательности импульсов, или аналоговой, кодированной в частоте или амплитуде колебаний через агрессивную среду с помощью электроакустических преобразователей, прикрепленных к обоим концам данного акустического волновода.

Claims (9)

1. Акустический волновод, включающий гибкий металлический стержень, к каждому концу которого через конический акустический концентратор жестко присоединен цилиндрический волновод, один цилиндрический волновод выполнен для подсоединения его к электроакустическому преобразователю, а другой цилиндрический волновод для подсоединения его к приемному устройству акустических колебаний, при этом участок волновода, включающий гибкий металлический стержень и коническое акустические концентраторы, помещен в гибкую защитную трубку.
2. Устройство по п. 1, характеризующееся тем, что гибкий металлический стержень выполнен с возможностью придания ему формы, необходимой для размещения в выделенном для него пространстве.
3. Устройство по п. 1, характеризующееся тем, что гибкий металлический стержень выполнен в виде проволоки.
4. Устройство по п. 3, характеризующееся тем, что упомянутая проволока имеет диаметр не более 6 мм.
5. Устройство по п. 1, характеризующееся тем, что конический акустический концентратор вершиной жестко прикреплен к гибкому металлическому стержню, а широкой частью жестко прикреплен к цилиндрическому волноводу.
6. Устройство по п. 5, характеризующееся тем, что вершина упомянутого конического акустического концентратора имеет диаметр, равный диаметру гибкого металлического стержня, а широкая часть упомянутого конического акустического концентратора имеет диаметр, равный диаметру цилиндрического волновода.
7. Устройство по п. 1, характеризующееся тем, что цилиндрический волновод выполнен с возможностью жесткого подсоединения его к приемному устройству.
8. Устройство по п. 1, характеризующееся тем, что наружная поверхность, по меньшей мере, одного цилиндрического волновода выполнена с возможностью жесткого и герметичного крепления в пересекаемой волноводом перегородке.
9. Устройство по п. 1, характеризующееся тем, что указанная гибкая защитная трубка выполнена герметичной, внутри снабжена адаптерами для фиксации гибкого волновода внутри защитной трубки и концы защитной трубки снабжены узлами крепления указанной трубки к наружным поверхностям цилиндрических волноводов.
RU2018105641A 2018-02-14 2018-02-14 Акустический волновод RU2700038C2 (ru)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2018105641A RU2700038C2 (ru) 2018-02-14 2018-02-14 Акустический волновод
EP19754574.2A EP3754649A4 (en) 2018-02-14 2019-01-29 ACOUSTIC WAVE CONDUCTOR
PCT/RU2019/000052 WO2019160443A1 (ru) 2018-02-14 2019-01-29 Акустический волновод
US16/993,755 US11360054B2 (en) 2018-02-14 2020-08-14 Acoustic waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018105641A RU2700038C2 (ru) 2018-02-14 2018-02-14 Акустический волновод

Publications (3)

Publication Number Publication Date
RU2018105641A RU2018105641A (ru) 2019-08-15
RU2018105641A3 RU2018105641A3 (ru) 2019-08-15
RU2700038C2 true RU2700038C2 (ru) 2019-09-12

Family

ID=67620019

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018105641A RU2700038C2 (ru) 2018-02-14 2018-02-14 Акустический волновод

Country Status (4)

Country Link
US (1) US11360054B2 (ru)
EP (1) EP3754649A4 (ru)
RU (1) RU2700038C2 (ru)
WO (1) WO2019160443A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2700286C2 (ru) * 2018-02-14 2019-09-16 Александр Петрович Демченко Ультразвуковой датчик уровня жидкости
CN114354761B (zh) * 2022-01-11 2024-01-12 重庆医科大学 一种测量声波导管损耗的装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2503831A (en) * 1949-01-07 1950-04-11 Bell Telephone Labor Inc Fine wire delay line
US2684725A (en) * 1949-05-05 1954-07-27 Bell Telephone Labor Inc Compressional wave guide system
US3546498A (en) * 1969-06-13 1970-12-08 Univ Ohio Curved sonic transmission line
US3708745A (en) * 1970-11-12 1973-01-02 Trustees Of The Ohio State Uni System for measuring output power of a resonant piezoelectric electromechanical transducer
US3757257A (en) * 1971-12-03 1973-09-04 Zenith Radio Corp Electromechanical elastic wave delay line
US5966983A (en) * 1997-09-22 1999-10-19 Endress + Hauser Gmbh + Co. Assembly for sensing and/or monitoring a predetermined level in a vessel
US20090192388A1 (en) * 2008-01-25 2009-07-30 Norihiro Yamada Ultrasonic transmission member

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3229523A (en) * 1963-09-10 1966-01-18 Charles A Boyd Apparatus employing vibratory energy
JPS5248817B2 (ru) * 1973-05-07 1977-12-13
JPS54162280A (en) * 1978-06-13 1979-12-22 Nippon Denshi Kogyo Kk Transmission cable of ultrasoniccwave device
DE3339325A1 (de) * 1983-10-29 1985-05-09 Vdo Adolf Schindling Ag, 6000 Frankfurt Einrichtung zum elektrischen messen eines fluessigkeitsniveaus
NO174309C (no) * 1987-04-24 1994-04-13 Norske Stats Oljeselskap Elektroakustisk transducer for anordning i et gassformig fluid, særlig for måling av strömningsghastigheten i et rör under eksplosjonsfarlige forhol
DE68903250T2 (de) * 1988-06-15 1993-03-18 Schlumberger Ind Ltd Ultraschall-temperaturfuehler und dazugehoerige benutzte ultraschall-wellenleiterverbinder.
US5103672A (en) * 1990-09-26 1992-04-14 Ragen Data Systems, Inc. Flexible transmitter and fluid level gauging probe
EP1001294A1 (de) * 1998-11-13 2000-05-17 Alcatel Lichtwellenleiter mit Schutzrohr
RU2201169C2 (ru) * 2000-02-08 2003-03-27 Санкт-Петербургская медицинская академия последипломного образования Нейрохирургическое ультразвуковое устройство
EP1923145A1 (en) * 2006-11-15 2008-05-21 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Remote ultrasonic transducer system
US8511424B2 (en) 2011-12-08 2013-08-20 General Electric Company Acoustic waveguide assemblies
CA2997618A1 (en) 2015-10-08 2017-04-13 Halliburton Energy Services, Inc. Communication to a downhole tool by acoustic waveguide transfer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2503831A (en) * 1949-01-07 1950-04-11 Bell Telephone Labor Inc Fine wire delay line
US2684725A (en) * 1949-05-05 1954-07-27 Bell Telephone Labor Inc Compressional wave guide system
US3546498A (en) * 1969-06-13 1970-12-08 Univ Ohio Curved sonic transmission line
US3708745A (en) * 1970-11-12 1973-01-02 Trustees Of The Ohio State Uni System for measuring output power of a resonant piezoelectric electromechanical transducer
US3757257A (en) * 1971-12-03 1973-09-04 Zenith Radio Corp Electromechanical elastic wave delay line
US5966983A (en) * 1997-09-22 1999-10-19 Endress + Hauser Gmbh + Co. Assembly for sensing and/or monitoring a predetermined level in a vessel
US20090192388A1 (en) * 2008-01-25 2009-07-30 Norihiro Yamada Ultrasonic transmission member

Also Published As

Publication number Publication date
EP3754649A1 (en) 2020-12-23
EP3754649A4 (en) 2021-10-27
WO2019160443A1 (ru) 2019-08-22
US11360054B2 (en) 2022-06-14
RU2018105641A (ru) 2019-08-15
US20200371067A1 (en) 2020-11-26
RU2018105641A3 (ru) 2019-08-15

Similar Documents

Publication Publication Date Title
US4914959A (en) Ultrasonic flow meter using obliquely directed transducers
JP4034730B2 (ja) 液面測定装置
JP4233445B2 (ja) 超音波流量計
US9387514B2 (en) Low frequency electro acoustic transducer and method of generating acoustic waves
US5966983A (en) Assembly for sensing and/or monitoring a predetermined level in a vessel
RU2700038C2 (ru) Акустический волновод
US20120269037A1 (en) Broadband sound source for long distance underwater sound propagation
EP0311663B1 (en) Transducer for arranging in a fluid, particularly for the measurement of the flow-velocity of a fluid in a pipe, by transmitting/receiving sonic pulses
JP5504276B2 (ja) 改善された指向性を有する音波変換器及びソナーアンテナ
JP2008275607A (ja) 超音波流量計
KR101951533B1 (ko) 초음파 유량계
RU2700286C2 (ru) Ультразвуковой датчик уровня жидкости
JP6366313B2 (ja) 流体識別装置及び流体識別方法
US4188609A (en) Low frequency hydrophone
CN201467422U (zh) 双面纵向振动深水发射换能器
RU2712924C1 (ru) Электроакустический ненаправленный преобразователь
RU2267866C1 (ru) Гидроакустический стержневой преобразователь
GB2542919A (en) An electroacoustic transducer device
SU405094A1 (ru) Излучатель упругих колебаний
RU2700031C1 (ru) Многочастотное приемоизлучающее антенное устройство
JP3639570B2 (ja) 超音波送受波器
JPS5845830Y2 (ja) 超音波パイプ洗浄装置
KR200421421Y1 (ko) 초음파 트랜스듀서
JPH0851404A (ja) 管内水中音響通信用の円筒殻型送受波装置
JP2002195859A (ja) 管状構造物内部検査方法及び装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210215