RU2684989C2 - Способ послепроизводственной термической обработки аддитивно изготовленных изделий из упрочненных гамма-прим-фазой суперсплавов - Google Patents

Способ послепроизводственной термической обработки аддитивно изготовленных изделий из упрочненных гамма-прим-фазой суперсплавов Download PDF

Info

Publication number
RU2684989C2
RU2684989C2 RU2015116523A RU2015116523A RU2684989C2 RU 2684989 C2 RU2684989 C2 RU 2684989C2 RU 2015116523 A RU2015116523 A RU 2015116523A RU 2015116523 A RU2015116523 A RU 2015116523A RU 2684989 C2 RU2684989 C2 RU 2684989C2
Authority
RU
Russia
Prior art keywords
temperature
heating
heat treatment
product
article
Prior art date
Application number
RU2015116523A
Other languages
English (en)
Other versions
RU2015116523A (ru
RU2015116523A3 (ru
Inventor
Томас ЭТТЕР
Роман ЭНГЕЛИ
Андреас КЮНЦЛЕР
Original Assignee
АНСАЛДО ЭНЕРДЖИА АйПи ЮКей ЛИМИТЕД
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50693512&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2684989(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by АНСАЛДО ЭНЕРДЖИА АйПи ЮКей ЛИМИТЕД filed Critical АНСАЛДО ЭНЕРДЖИА АйПи ЮКей ЛИМИТЕД
Publication of RU2015116523A publication Critical patent/RU2015116523A/ru
Publication of RU2015116523A3 publication Critical patent/RU2015116523A3/ru
Application granted granted Critical
Publication of RU2684989C2 publication Critical patent/RU2684989C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Laser Beam Processing (AREA)

Abstract

Изобретение относится к области металлургии, в частности к способам аддитивного изготовления изделий. Способ аддитивного изготовления изделия из упрочненного γ′-фазой суперсплава на основе Ni, и/или Со, и/или Fe, или их сочетания включает обеспечение аддитивно изготовленного изделия и его термическую обработку. Термическую обработку проводят сначала путем нагрева изделия от комнатной температуры (RT) до температуры Tсо скоростью нагрева v, причем температура Tна 50-100°С ниже температуры Tначала снижения коэффициента теплового расширения, и выдержки изделия в течение времени tпри Tдля достижения равномерной температуры изделия. Затем путем нагрева изделия со скоростью нагрева vпо меньшей мере 25°С/мин от Тдо температуры Т≥ 850°С, обеспечивающей исключение или по меньшей мере уменьшение выделения γ′-фазы. Получают изделия без трещин по сравнению со значительным растрескиванием термообработанных традиционным образом изделий. 5 з.п. ф-лы, 5 ил.

Description

Предпосылки изобретения
Настоящее изобретение относится к технологии суперсплавов. Оно предлагает способ послепроизводственной термической обработки изделий, выполненных из упрочненных гамма-прим-фазой (γ') суперсплавов и полученных методами аддитивного изготовления, например, селективного лазерного плавления (SLM). Используя описанный способ, можно исключить значительное растрескивание в изделиях, например, растрескивание при деформационном старении, например, в деталях турбин.
Уровень техники
Как известно, высокопрочные суперсплавы на основе никеля, кобальта или железа, например, суперсплавы на основе никеля с такими дополнительными элементами, как алюминий и титан, приобретают свои характеристики высокой прочности вследствие эффекта дисперсионного твердения из-за высокого уровня гамма-прим-фазы в материале. Кроме того, известно, что успешная сварка этих суперсплавов является весьма затруднительной.
Изготовленные методом SLM изделия имеют иные микроструктуры по сравнению с традиционно литым материалом из того же сплава. В этих процессах взаимодействие высокоэнергетического лазерного луча с материалом приводит к высоким скоростям охлаждения и очень быстрому затвердеванию в ходе SLM.
В результате этого уменьшается сегрегация легирующих элементов и образование выделений вторичных фаз. Таким образом, вследствие быстрого охлаждения, характерного для процессов аддитивного изготовления, выделения гамма-прим-фазы присутствуют в незначительном количестве или вообще отсутствуют в выполненном из содержащих гамма-прим-фазу сплавов изделии после его производства.
Послепроизводственные термические обработки требуются для того, чтобы отрегулировать микроструктуру детали и уменьшить/устранить остаточные напряжения. В ходе таких послепроизводственных термообработок гамма-прим-фаза выделяется в ходе первого нагрева. Однако изменение объема, связанное с этим выделением, может приводить к значительному растрескиванию в детали (например, растрескиванию в результате деформационного старения). Используемые в настоящее время процедуры термической обработки изготовленных методом SLM упрочненных гамма-прим-фазой суперсплавов приводят к значительному растрескиванию, а значит, выбраковке деталей.
Известно использование различных видов термической обработки до и после сварки для соединения литых изделий или деталей изделий, выполненных из упрочненных гамма-прим-фазой (γ') суперсплавов методом сварки.
Патент США №7854064 B2 раскрывает способ ремонта деталей турбин, который включает преднаплавочную термообработку на твердый раствор с использованием скоростей нагрева 16-23°C/мин в температурном интервале 593-871°C. В одном варианте осуществления упомянута низкая скорость охлаждения в 0,2-5°C/мин от температуры обработки на твердый раствор до уровня ниже 677°C. Кроме того, помимо вышеупомянутой преднаплавочной термообработки описывается посленаплавочная термообработка с использованием такой же скорости нагрева, как и в случае преднаплавочной термообработки. Способ согласно этому документу применим к широкому разнообразию литейных и деформируемых сплавов на основе никеля, например, Waspaloy, IN738, IN792 или IN939. В качестве примерных способов упоминается электронно-лучевая и электродуговая наплавка вольфрамовым электродом.
Хотя описанный в патенте США №7854064 B2 способ имеет то преимущество, что детали турбин из суперсплавов на основе никеля можно ремонтировать, например, наплавлять при практически полном отсутствии микротрещин, его недостатки представляют собой высокие затраты времени и средств, которые связаны с описанными множественными стадиями пред- и посленаплавочной термической обработки.
Недавно заявитель подал новую патентную заявку (еще не опубликованную), относящуюся к электронно-лучевой сварке упрочненных гамма-прим-фазой суперсплавов (например, IN738LC, MarM247, CM247LC, CMSX-4, MK4HC, MD2) без присадочного металла. В отличие от патента США №7854064, данный способ не зависит от конкретной преднаплавочной термической обработки и поэтому может использоваться как для ремонта, так и для соединения новых деталей. Чтобы сделать процесс более эффективным, используется высокая скорость нагрева во всем температурном интервале (даже 1100°C, а не 871°C) вблизи температуры конечного выдерживания, где может выделяться гамма-прим-фаза. Этот способ используется только в тех случаях, где не существует какой-либо других приемов избежать растрескивания, т.е. в процессах сварки без присадочного металла. Использование пластичного присадочного металла также могло бы способствовать предотвращению образования трещин, однако использование такие присадочных металлов ослабляет сварное соединение.
Однако вышеупомянутые документы описывают только способы соединения (например, сваркой) и, таким образом, не распространяются на изделия, полностью полученные методами аддитивного изготовления, например, посредством селективного лазерного плавления (SLM).
Сущность изобретения
Задача настоящего изобретения заключается в том, чтобы предложить эффективный способ термической обработки изделий, выполненных из содержащих гамма-прим-фазу (γ') суперсплавов и полученных методами аддитивного изготовления, предпочтительно посредством SLM. Данный способ обеспечивает возможность изготовления изделий/деталей без трещин в отличие от значительного растрескивания, присутствующего в аддитивно изготовленных изделиях, подвергшихся традиционной термической обработке.
Согласно независимому пункту 1 формулы изобретения способ послепроизводственной термической обработки аддитивно изготовленного изделия из упрочненного гамма-прим-фазой (γ’) суперсплава на основе Ni или Co или Fe или их сочетаний состоит из следующих стадий:
a) обеспечение аддитивно изготовленного изделия в послепроизводственном состоянии, затем
b) нагревание изделия от комнатной температуры (RT) до температуры T1, причем T1 является на 50-100°C меньшей, чем температура Ts, при которой начинается падение коэффициента теплового расширения, затем
c) выдерживание изделия в течение времени t1 при T1 для достижения равномерной температуры изделия, затем
d) нагревание изделия путем применения быстрого нагрева со скоростью нагрева v2 по меньшей мере 25°C/мин от T1 до температуры T2≥850°C, чтобы исключить или по меньшей мере уменьшить выделение гамма-прим-фазы, затем
e) применение к изделию дополнительных стадий с длительностью/температурой в зависимости от цели термической обработки.
Суть изобретения заключается в применении высокой скорости нагрева в определенном температурном интервале в течение первой послепроизводственной термической обработки после аддитивного изготовления в целях сокращения до минимума/исключения выделения гамма-прим-фазы в изделии в ходе нагрева. Данный способ позволяет получать преимущественно не содержащие трещин изделия/детали по сравнению с термообработанными традиционным образом изделиями, которые проявляют значительное растрескивание.
В одном варианте осуществления на стадии (e) осуществляют изотермическую выдержку t2 в течение 2 часов для снижения остаточных напряжений.
Предпочтительно, скорость нагрева v2 составляет от 25 до 60°C/мин. Более высокие скорости в данном интервале могут быть достигнуты индуктивным нагревом. Скорость нагрева v1 (на стадии (b)) может предпочтительно составлять 1-10°C/мин.
В еще одном варианте осуществления изобретения на стадии (e) применяют иные или дополнительные времена выдержки при температурах T3>T2 для дальнейшего снижения остаточных напряжений и/или перекристаллизации микроструктуры.
Оказывается преимущественным, когда термическую обработку осуществляют под давлением, например, в течение горячего изостатического прессования (ГИП).
В одном варианте осуществления применяют следующие параметры послепроизводственной термической обработки аддитивно изготовленного изделия (например, теплового экрана статора), выполненного из IN 738LC:
T1=400°C
v1=5°C/мин
t1=60 мин
v2=35°C/мин
T2=1050°C
t2=2 ч
T3=1200°C
t3=4 ч.
Дополнительные варианты осуществления описаны ниже.
Краткое описание чертежей
Далее настоящее изобретение разъясняется более подробно посредством различных вариантов осуществления и со ссылками на прилагаемые чертежи.
Фиг. 1 показывает для обработанного методом SLM сплава IN738LC коэффициент теплового расширения в зависимости от температуры, ориентации производства и первого и второго нагрева;
фиг. 2 показывает для обработанного методом SLM сплава IN738LC теплоемкость в зависимости от температуры, ориентации производства и первого и второго нагрева;
фиг. 3 показывает в дополнение к фиг. 1 и фиг. 2 результаты механических испытаний при растяжении в изготовленном состоянии для обработанного методом SLM сплава IN738LC;
фиг. 4 показывает зависимость температуры от времени для стандартной процедуры термической обработки обработанного методом SLM сплава IN738LC согласно уровню техники;
фиг. 5 показывает зависимость температуры от времени согласно варианту осуществления изобретения для обработанного методом SLM сплава IN738LC.
Подробное описание различных вариантов осуществления изобретения
Фиг. 1 показывает для обработанного методом SLM сплава IN738LC коэффициент теплового расширения в зависимости от температуры, ориентации производства и первого или второго нагрева. Можно видеть, что в течение первого нагрева на кривой возникает аномалия (начинающаяся выше 400°C), характеризуемая падением коэффициента теплового расширения. Эта аномалия больше не присутствует в течение второго нагрева, и она может быть обусловлена выделением гамма-прим-фазы в течение первого нагрева. Аномалия коэффициента теплового расширения указывает на объемное сжатие вследствие выделения гамма-прим-фазы.
То же самое можно видеть на фиг. 2, которая показывает теплоемкость в зависимости от температуры, ориентации производства и первого и второго нагрева для обработанного методом SLM сплава IN738LC.
В дополнение к термофизическим свойствам, представлены также результаты механических испытаний при растяжении в состоянии после изготовления (например, без какой-либо термической обработки) (см. фиг. 3).
Можно видеть, что пластичность при комнатной температуре в состоянии после изготовления для сплава IN738LC является достаточно высокой (~20-24%). Однако при нагревании образца до 850°C за 2 ч (скорость нагрева ~7°C/мин) и его испытании после выдержки в течение 15 мин наблюдается значительное падение пластичности (от ~20% до ~0,2%!).
Характерная низкая пластичность при повышенной температуре в течение первого нагрева и присутствие значительной величины остаточных напряжений вследствие процесса SLM ответственны за значительное растрескивание.
Следует отметить, что сопоставимую низкую пластичность проявляет и другой упрочненный гамма-прим-фазой суперсплав CM247LC, испытываемый в состоянии после изготовления при 850°C.
Фиг. 4 показывает стандартную процедуру термической обработки (например, термообработку для снятия напряжений) изделия, выполненного из литейного или деформируемого сплава IN738LC, известного из уровня техники. Такая стандартная термическая обработка применялась к полученному методом SLM изделию из сплава IN738LC. К сожалению, после такой термической обработки в изделии имелись значительные трещины, и поэтому оно было признано дефектным продуктом.
Аналогичные результаты были получены и в случае других стандартных процедур термической обработки, обычно применяемых для упрочненных гамма-прим-фазой суперсплавов.
Напротив, применение термической обработки согласно настоящему изобретению привело к получению соответствующего изделия без трещин.
Фиг. 5 показывает зависимость температуры от времени согласно варианту осуществления изобретения для сплава IN738LC. Изделие нагревают до ~400°C (=T1) с достаточно низкой скоростью нагрева v1=5°C/мин и временем выдержки t1=60 мин, которое достаточно продолжительно, чтобы гарантировать равномерную температуру изделия/детали. Далее, главная идея состоит теперь в быстром нагреве с v2=35°C/мин от 400°C до ~1050°C через критический температурный интервал для исключения/снижения выделения гамма-прим-фазы.
После прохождения критического температурного интервала можно применять различные другие стадии с температурами/длительностями в зависимости от цели термической обработки. В примере по фиг. 5 изотермическую выдержку при T3=1050°C осуществляли в течение 2 часов (t3) для снижения остаточных напряжений. Можно добавить другие или дополнительные времена выдержки при более высоких температурах, например, для дальнейшего снижения остаточных напряжений и/или перекристаллизации микроструктуры. Например, обработка при 1250°C/3 ч или 1200°C/4 ч приводит к перекристаллизации.
Еже более высокая скорость нагрева может оказаться выгодной для сплавов, содержащих большее количество гамма-прим-фазы, чем IN738LC, таких как, например, CM247LC и CMSX-4. Кроме того, температура изотермической выдержки также может быть повышена в зависимости от температуры твердого раствора соответствующих сплавов.
Описанная термическая обработка согласно изобретению должна быть первой термической обработкой, применяемой после производства методом SLM. Она может применяться к произведенным методом SLM изделиям, которые уже сняты с плиты-основания, которые наращены на существующих деталях (гибридная наплавка) или которые все еще находятся на плите-основании. В двух последних случаях термическая обработка дополнительно способствует исключению растрескивания, вызванного разностью коэффициентов теплового расширения, которая может создавать дополнительные напряжения в ходе термической обработки, предотвращая уменьшение пластичности, вызываемое выделением гамма-прим-фазы.
Кроме того, следует упомянуть, что описанная выше термическая обработка может также осуществляться под давлением, например, в течение горячего изостатического прессования (ГИП), что имеет дополнительные преимущества.
Скорость нагрева v2 предпочтительно составляет от 25 до 60°C/мин. Более высокие скорости могут быть достигнуты посредством индуктивного нагрева.
После того как осуществлена первая термическая обработка согласно данному изобретению, могут осуществляться другие виды стандартной термической обработки.
Разумеется, изобретение не ограничивается описанными вариантами осуществления. Его можно использовать для всех изделий, где суперсплавы с гамма-прим-фазой будут обрабатываться методом SLM, например, комбинированные (гибридные) детали в газовых турбинах/модульные детали для обслуживания.

Claims (10)

1. Способ аддитивного изготовления изделия из упрочненного γ′-фазой суперсплава на основе Ni, и/или Со, и/или Fe, или их сочетания, включающий обеспечение аддитивно изготовленного изделия и его термическую обработку, отличающийся тем, что термическую обработку проводят сначала путем нагрева изделия от комнатной температуры (RT) до температуры T1 со скоростью нагрева v1, причем температура T1 на 50-100°С ниже температуры Ts начала снижения коэффициента теплового расширения, и выдержки изделия в течение времени t1 при T1 для достижения равномерной температуры изделия, а затем путем нагрева изделия со скоростью нагрева v2 по меньшей мере 25°С/мин от Т1 до температуры Т2 ≥ 850°С, обеспечивающей исключение или по меньшей мере уменьшение выделения γ′-фазы.
2. Способ по п. 1, отличающийся тем, что скорость нагрева v2 составляет 25-60°C/мин.
3. Способ по п. 1, отличающийся тем, что дополнительно осуществляют нагрев до температуры Т3 и изотермическую выдержку t2 в течение 2 ч для уменьшения остаточных напряжений.
4. Способ по п. 3, отличающийся тем, что осуществляют нагрев до температуры Т3, которая выше температуры Т2, для обеспечения дальнейшего уменьшения остаточных напряжений и/или перекристаллизации микроструктуры.
5. Способ по п. 1, отличающийся тем, что термическую обработку осуществляют под давлением в течение горячего изостатического прессования (ГИП).
6. Способ по любому из пп. 1-5, отличающийся тем, что осуществляют термическую обработку аддитивно изготовленного изделия из сплава IN 738LC по следующим параметрам:
T1=400°C
v1=5°C/мин
v2=35°C/мин
T2=1050°C.
RU2015116523A 2014-05-12 2015-04-29 Способ послепроизводственной термической обработки аддитивно изготовленных изделий из упрочненных гамма-прим-фазой суперсплавов RU2684989C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14167904.3A EP2944402B1 (en) 2014-05-12 2014-05-12 Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys
EP14167904.3 2014-05-12

Publications (3)

Publication Number Publication Date
RU2015116523A RU2015116523A (ru) 2016-11-20
RU2015116523A3 RU2015116523A3 (ru) 2018-11-12
RU2684989C2 true RU2684989C2 (ru) 2019-04-16

Family

ID=50693512

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015116523A RU2684989C2 (ru) 2014-05-12 2015-04-29 Способ послепроизводственной термической обработки аддитивно изготовленных изделий из упрочненных гамма-прим-фазой суперсплавов

Country Status (7)

Country Link
US (1) US9670572B2 (ru)
EP (1) EP2944402B1 (ru)
JP (1) JP2015227505A (ru)
KR (1) KR20150129616A (ru)
CN (1) CN105088119B (ru)
CA (1) CA2890977A1 (ru)
RU (1) RU2684989C2 (ru)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2944402B1 (en) 2014-05-12 2019-04-03 Ansaldo Energia IP UK Limited Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys
US10378087B2 (en) 2015-12-09 2019-08-13 General Electric Company Nickel base super alloys and methods of making the same
DE102016203901A1 (de) 2016-03-10 2017-09-14 MTU Aero Engines AG Verfahren und Vorrichtung zum Herstellen zumindest eines Bauteilbereichs eines Bauteils
JP6826821B2 (ja) * 2016-05-12 2021-02-10 三菱重工業株式会社 金属部材の製造方法
US20200231794A1 (en) * 2017-02-02 2020-07-23 Imerys Talc America, Inc. Improving inter-road adhesion and coalescence in plastic parts fabricated in 3d printing
EP3406371A1 (en) * 2017-05-22 2018-11-28 Siemens Aktiengesellschaft Method of relieving mechanical stress in additive manufacturing
WO2018216067A1 (ja) * 2017-05-22 2018-11-29 川崎重工業株式会社 高温部品及びその製造方法
CN108914029A (zh) * 2017-06-13 2018-11-30 刘红宾 一种防止异种金属材料锯齿状界面开裂的方法
GB201709540D0 (en) * 2017-06-15 2017-08-02 Rolls Royce Plc Processing method
GB2565063B (en) 2017-07-28 2020-05-27 Oxmet Tech Limited A nickel-based alloy
US10889872B2 (en) 2017-08-02 2021-01-12 Kennametal Inc. Tool steel articles from additive manufacturing
WO2019099000A1 (en) * 2017-11-15 2019-05-23 Siemens Energy, Inc. Method of repairing gamma prime strengthened superalloys
US11097348B2 (en) 2017-12-08 2021-08-24 General Electric Company Structures and components having composite unit cell matrix construction
EP3521804A1 (en) * 2018-02-02 2019-08-07 CL Schutzrechtsverwaltungs GmbH Device for determining at least one component parameter of a plurality of, particularly additively manufactured, components
GB201808824D0 (en) * 2018-05-30 2018-07-11 Rolls Royce Plc Crack reduction for additive layer manufacturing
DE102018210397A1 (de) * 2018-06-26 2020-01-02 Siemens Aktiengesellschaft Verfahren zur additiven Herstellung einer Struktur mit Kühlmittelführung, Bauteil und Vorrichtung
CN108994304B (zh) * 2018-07-27 2019-07-26 中南大学 一种消除金属材料增材制造裂纹提高力学性能的方法
US10577679B1 (en) 2018-12-04 2020-03-03 General Electric Company Gamma prime strengthened nickel superalloy for additive manufacturing
US11077512B2 (en) * 2019-02-07 2021-08-03 General Electric Company Manufactured article and method
US11807929B2 (en) 2019-03-14 2023-11-07 Unison Industries, Llc Thermally stabilized nickel-cobalt materials and methods of thermally stabilizing the same
US11235405B2 (en) 2019-05-02 2022-02-01 General Electric Company Method of repairing superalloy components using phase agglomeration
GB2584654B (en) 2019-06-07 2022-10-12 Alloyed Ltd A nickel-based alloy
GB2587635B (en) 2019-10-02 2022-11-02 Alloyed Ltd A Nickel-based alloy
CN110964992B (zh) * 2019-11-28 2021-06-01 西安航天发动机有限公司 一种低温环境工作的增材制造高温合金的热处理方法
CN111390180A (zh) * 2020-04-27 2020-07-10 南京国重新金属材料研究院有限公司 一种提高由激光选区熔化技术制造的gh3536合金的持久性能的方法
CN112828310B (zh) * 2020-12-31 2023-01-24 湖北三江航天红阳机电有限公司 一种提高3d打印镍基高温合金件韧性的方法
CN113584294B (zh) * 2021-06-25 2023-03-14 西安热工研究院有限公司 一种沉淀强化高温合金焊后去应力处理方法
CN114109044B (zh) * 2021-11-25 2022-08-23 浙江大学 一种3d编织打印一体化结构建造设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2321678C2 (ru) * 2002-08-28 2008-04-10 Зе Пи.Оу.эМ. Груп Способ формирования металлической части на металлической подложке посредством осаждения накладываемых друг на друга слоев (варианты)
US7854064B2 (en) * 2006-06-05 2010-12-21 United Technologies Corporation Enhanced weldability for high strength cast and wrought nickel superalloys
EP2586887A1 (en) * 2011-10-31 2013-05-01 Alstom Technology Ltd Method for manufacturing components or coupons made of a high temperature superalloy
US20130228302A1 (en) * 2011-11-04 2013-09-05 Alstom Technology Ltd Process for the production of articles made of a gamma-prime precipitation-strengthened nickel-base superalloy by selective laser melting (slm)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313593B2 (en) * 2009-09-15 2012-11-20 General Electric Company Method of heat treating a Ni-based superalloy article and article made thereby
US9175373B2 (en) * 2011-02-15 2015-11-03 Siemens Energy, Inc. Inertia friction weld of superalloy with enhanced post weld heat treatment
EP2944402B1 (en) 2014-05-12 2019-04-03 Ansaldo Energia IP UK Limited Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2321678C2 (ru) * 2002-08-28 2008-04-10 Зе Пи.Оу.эМ. Груп Способ формирования металлической части на металлической подложке посредством осаждения накладываемых друг на друга слоев (варианты)
US7854064B2 (en) * 2006-06-05 2010-12-21 United Technologies Corporation Enhanced weldability for high strength cast and wrought nickel superalloys
EP2586887A1 (en) * 2011-10-31 2013-05-01 Alstom Technology Ltd Method for manufacturing components or coupons made of a high temperature superalloy
US20130228302A1 (en) * 2011-11-04 2013-09-05 Alstom Technology Ltd Process for the production of articles made of a gamma-prime precipitation-strengthened nickel-base superalloy by selective laser melting (slm)

Also Published As

Publication number Publication date
RU2015116523A (ru) 2016-11-20
US20150322557A1 (en) 2015-11-12
EP2944402B1 (en) 2019-04-03
CA2890977A1 (en) 2015-11-12
US9670572B2 (en) 2017-06-06
JP2015227505A (ja) 2015-12-17
KR20150129616A (ko) 2015-11-20
EP2944402A1 (en) 2015-11-18
RU2015116523A3 (ru) 2018-11-12
CN105088119A (zh) 2015-11-25
CN105088119B (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
RU2684989C2 (ru) Способ послепроизводственной термической обработки аддитивно изготовленных изделий из упрочненных гамма-прим-фазой суперсплавов
US10384316B2 (en) Method of repairing and manufacturing of turbine engine components and turbine engine component repaired or manufactured using the same
RU2566117C2 (ru) Способ изготовления трехмерного изделия
EP2586887B1 (en) Method for manufacturing components or coupons made of a high temperature superalloy
JP6312157B2 (ja) ニッケル基超合金のための溶接前熱処理
CN102764891B (zh) 控制锻造析出强化合金晶粒尺寸的方法及由此形成的构件
US7115175B2 (en) Modified advanced high strength single crystal superalloy composition
US11426797B2 (en) Method for generating a component by a power-bed-based additive manufacturing method and powder for use in such a method
CA2852336C (en) Method for post-weld heat treatment of welded components made of gamma prime strengthened superalloys
US20170021415A1 (en) High temperature nickel-base superalloy for use in powder based manufacturing process
Damodaram et al. Effect of post-weld heat treatments on microstructure and mechanical properties of friction welded alloy 718 joints
JP2015224394A (ja) 粉体ベースのアディティブ・マニュファクチャリングプロセスにおいて使用するためのガンマプライム析出強化型ニッケル基超合金
KR20160101972A (ko) 파우더 기반 첨가 제조 공정에서 사용하기 위한 감마 프라임 석출 강화 니켈계 초합금
JP2015004130A5 (ru)
US7959748B2 (en) Method of manufacturing Ni-based superalloy component for gas turbine using one-step process of hot isostatic pressing and heat treatment and component manufactured thereby
CN108067618A (zh) 制造机械部件的方法
RU2640117C1 (ru) Способ повышения плотности сложнопрофильных изделий из интерметаллидных сплавов на основе никеля, полученных аддитивными технологиями
van Esch et al. Full Rejuvenation Heat Treatment of GTD 111DS

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant