RU2676228C1 - Мощный импульсный свч фотодетектор - Google Patents

Мощный импульсный свч фотодетектор Download PDF

Info

Publication number
RU2676228C1
RU2676228C1 RU2018106016A RU2018106016A RU2676228C1 RU 2676228 C1 RU2676228 C1 RU 2676228C1 RU 2018106016 A RU2018106016 A RU 2018106016A RU 2018106016 A RU2018106016 A RU 2018106016A RU 2676228 C1 RU2676228 C1 RU 2676228C1
Authority
RU
Russia
Prior art keywords
layer
gaas
photodetector
growth
substrate
Prior art date
Application number
RU2018106016A
Other languages
English (en)
Inventor
Вячеслав Михайлович Андреев
Александр Николаевич Паньчак
Павел Васильевич Покровский
Владимир Петрович Хвостиков
Ольга Анатольевна Хвостикова
Original Assignee
Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ filed Critical Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ
Priority to RU2018106016A priority Critical patent/RU2676228C1/ru
Application granted granted Critical
Publication of RU2676228C1 publication Critical patent/RU2676228C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

Изобретение относится к области разработки и изготовления мощных фоточувствительных полупроводниковых приборов на основе GaAs, в частности к импульсным полупроводниковым сверхвысокочастотным (СВЧ) фотодетекторам. Мощный импульсный СВЧ фотодетектор лазерного излучения на основе гетероструктуры содержит подложку 2 из n-GaAs, слой 3 из n-AlGaAs с х=0,35-0,60 в начале роста слоя на границе с подложкой до х=0,10-0,15 в конце роста слоя и с градиентом параметра «х» в интервале 25-60 см, слой 4 из n-GaAs толщиной 0,5-2 мкм с концентрацией носителей тока (0,5-2,0)⋅10см, слой 5 из р-AlGaAs с х=0,15-0,30 в начале роста слоя до х=0,05-0,10 в конце роста слоя, контактный слой 6 из р-GaAs и сплошные омические контакты 1, 7. Изобретение обеспечивает улучшение быстродействия, уменьшение омических и тепловых потерь, а также уменьшение оптических потерь. 7 з.п. ф-лы, 2 ил., 2 пр.

Description

Настоящее изобретение относится к области разработки и изготовления мощных фоточувствительных полупроводниковых приборов на основе GaAs, в частности, к импульсным полупроводниковым сверхвысокочастотным (СВЧ) фотодетекторам (ФД).
В настоящее время одним из перспективных стратегических направлений фотоэнергетики является создание информационного канала связи, работающего в оптическом диапазоне (например, фотонный тракт лазер-фотодетектор). Для преобразования мощного информационно-энергетического сигнала мощностью (~10 Вт) необходимо иметь мощные быстродействующие фотодетекторы.
Известен фотодетектор (см. патент US 7259439, МПК H01L 31/00, опубликован 21.08.2007) на основе ступенчатой по высоте структуре (микрорельеф, сформирован последовательностью операций травления и роста) на полуизолирующей подложке из GaAs, включающий слой из n-GaAs толщиной 0,5-2,0 мкм, слой из i-GaAs толщиной 0,5-5,0 мкм, слой из p-GaAs толщиной 0,005-0,002 мкм, антиотражающее покрытие, диэлектрическое покрытие, закрывающее p-i-n интерфейсы структуры и омических контакты, сформированные на небольших по площади частях, к p-GaAs и n-GaAs слоям ФД.
Недостатком известной структуры ФД является отсутствие тыльного потенциального барьера и широкозонного окна, что приводит к значительным потерям в спектральной чувствительности и КПД приборов на основе такой структуры. Другим недостатком является малая площадь омических контактов к ФД, поскольку в случае преобразования мощного лазерного излучения требуется свести к минимуму омические потери в полупроводнике.
Известен фотодетектор лазерного излучения (см. патент US 20120153417, МПК H01L 31/0232, опубликован 21.06.2012) на основе гетероструктуры, содержащий Брэгговское зеркало, стоп-слой на основе нелегированного i-AlAs толщиной 300 нм, буферный слой из нелегированного i-Al0.2Ga0.8As толщиной 1 мкм, слой из n-Al0,15Ga0,75As к n-части ФД толщиной 400 нм, слой из n- или i-Al0,15Ga0,75As толщиной 750 нм, в котором происходит транспорт носителей, слой потенциального барьера из i-AlxGa1-xAs с градиентом по ширине запрещенной зоны толщиной 20 нм, слой из i-GaAs толщиной 50 нм, поглощающий свет слой из p-GaAs с градиентом легирования примеси толщиной 400 нм, слой из p-Al0.2Ga0.8As потенциального барьера для электронов толщиной 20 нм, контактный слой из p-GaAs к p-части ФД, омические контакты и защитное покрытие на боковых поверхностях ФД для защиты p-i-n интерфейса. Внешний квантовый выход таких ФД составляет около 60% (0,41 А/Вт), а эффективность варьируется от 34% до 21% для длины волны падающего излучения 850 нм и рабочем напряжении 1 В и фототоке 0,2 мА (при диаметре светового пятна 20 мкм).
Недостатком данной структуры фотодетектора является использование большого количества нелегированных слоев, что в случае использования мощного лазерного излучения может приводить к значительным омическим потерям в полупроводнике, другим недостатком известного ФД является недостаточно высокое значение квантовой эффективности и, как следствие, невысокое значение КПД прибора.
Известен фотодетектор импульсов лазерного излучения, модулированного в диапазоне частот 100 кГц с интенсивностью излучения до 50 Вт/см2 (см. Tiqiang Shan, Xinglin Qi, Response of GaAs photovoltaic converters under pulsed laser illumination, WSEAS transactions on Circuits and Systems, vol. 14, 2015, pp. 19-23). Известный фотодетектор включает подложку из n-GaAs толщиной 350 мкм (Nn=5⋅1018 см-3), буферный слой из n-GaAs толщиной 1 мкм (Nn=5⋅1018 см-3), слой тыльного потенциального барьера из n-AlGaAs толщиной 0,05 мкм (Nn=5⋅1018 см-3), базовый слой из n-GaAs толщиной 3,5 мкм (Nn=5⋅1017 см-3), эмиттерный слой из p-GaAs толщиной 0,5 мкм (Nn=2⋅1018 см-3), слой широкозонного окна из р-GaInP толщиной 0,05 мкм (Nn=5⋅1018 см-3), контактный слой из р+-GaAs толщиной 0,5 мкм (Nn=5⋅1019 см-3), двухслойное антиотражающее покрытие TaOx/SiO2 для спектрального диапазона 810-840 нм, тыльный и лицевой омические контакты. Быстродействие фотодетектора составило 25 нс.
Недостатком известного ФД является недостаточно высокое быстродействие и ввод излучения перпендикулярно слоям фотодетектора, что может приводить к дополнительным оптическим и омическим потерям прибора и снижению эффективности и параметров быстродействия.
Известен фотодетектор с «торцевым» вводом излучения в интегрированный волновод, основанный на отражении света от одной из его граней (см. US 5391869 А), совпадающий с настоящим техническим решением по наибольшему числу существенных признаков и принятый за прототип. Известный фотодетектор включает в себя длинную волноводную структуру, которая принимает свет из входного конца ФД и ограничивает его в определенном пространственном оптическом режиме. Свет распространяется вдоль волновода (в слое Al0.21Ga0.79As) и претерпевает внутреннее отражение на противоположной границе, расположенной под углом. Таким образом, свет попадает в светопоглощающий (детекторный) слой фото детектора, создавая там электронно-дырочные пары. Поглощенный свет детектируется с помощью структуры металл-полупроводник-металл, выполненной в виде повторяющейся электродной структуры, расположенной на внешней поверхности слоя детектора. Для света с длиной волны 0,84 мкм детекторный слой выполнен из GaAs. В качестве альтернативы, для света с длиной волны 1,3-1,55 мкм детекторный слой выполнен из InGaAs.
Конструкция известного фото детектора включает в себя 500 мкм подложку GaAs, 7 мкм нижнее покрытие волновода Al0.25Ga0.75As, 0,7 мкм волновод Al0.21Ga0.79As, 1,5 мкм верхнее покрытие волновода Al0.25Ga0.75As, и 1,5 мкм фотодетектор GaAs или In0.53Ga0.47As.
Недостатками известного ФД является сложность изготовления наклонной грани для внутреннего отражения излучения и дополнительные оптические потери при отражении света от наклонной грани.
Задачей настоящего изобретения является создание мощного импульсного фотодетектора с вводом по оптоволокну мощных лазерных импульсов через боковую «торцевую» поверхность структуры, который обеспечивает улучшение быстродействия, уменьшение омических и тепловых потерь, а также уменьшение оптических потерь.
Для улучшения параметров СВЧ ФД разработана конструкция с торцевым вводом излучения. В ФД с такой конструкцией верхний и нижний контакты сплошные, а свет вводится в структуру с торца. При плавном (градиентном) изменении состава полупроводниковой структуры изменяется ее показатель преломления. Градиентный показатель преломления позволяет изменять ход лучей света таким образом, что излучение, введенное в торец, ФД постепенно преломляется в сторону активной области.
Технический результат поставленной задачи достигается группой изобретений, объединенных единым изобретательским замыслом.
Поставленная задача решается тем, что мощный импульсный фотодетектор лазерного излучения на основе гетероструктуры включает подложку из n-GaAs, слой из n-AlxGa1-xAs с х=0,35-0,60 в начале роста слоя на границе с подложкой и до х=0,10-0,15 в конце роста слоя и градиентом параметра «х» в интервале 25-60 см-1, активный слой из n0-GaAs толщиной 0,5-2,0 мкм с концентрацией носителей тока (0,5-2,0)⋅1016 см-3, слой из р-AlxGa1-xAs с х=0,15-0,30 в начале роста слоя до х=0,05-0,10 в конце роста слоя, контактный слой из р+-GaAs и первый и второй сплошные омические контакты, нанесенные соответственно на подложку и контактный слой, при этом длина фотодетектора вдоль p-n перехода равна 350-500 мкм.
Подложка может иметь концентрацию носителей тока не менее 3⋅1018 см-3.
Слой из n-AlxGa1-xAs может иметь концентрацию носителей тока (1-5)⋅1018 см-3.
Слой из n0-GaAs может иметь толщину 0,5-2,0 мкм и концентрацию носителей тока (0,5-2)⋅1016 см-3.
Слой из р-AlxGa1-xAs может иметь толщину 1-2 мкм и концентрацию носителей тока (1-5)⋅1018 см-3.
Контактный слой из р+-GaAs может иметь толщину 1-3 мкм и концентрацию носителей тока (1-3)⋅1019 см-3.
На поверхность освещаемого торца фотодетектора может быть нанесено антиотражающее покрытие с минимумом отражения в спектральном интервале 810-860 нм.
Новым в настоящем фотодетекторе является наличие в структуре слоя из n-AlxGa1-xAs с х=0,35-0,60 в начале роста слоя на границе с подложкой и до х=0,10-0,15 в конце роста слоя и градиентом параметра «х» в интервале 25-60 см-1, и слоя из n0-GaAs толщиной 0,5-2,0 мкм с концентрацией носителей тока (0,5-2,0)⋅1016 см-3, слоя из р-AlxGa1-xAs с х=0,15-0,30 в начале роста слоя до х=0,05-0,10 в конце роста слоя, а также длина фото детектора вдоль p-n перехода, равная 350-500 мкм.
Настоящий способ поясняется чертежом, где на фиг. 1 показан общий вид фотодетектора в аксонометрии (L - длина фотодетектора, D - линейный размер вертикальной оси светового пятна эллипса, d - линейный размер по горизонтальной оси светового пятна эллипса; α1 - угол наклона излучения лазера по отношении к нормали торцевой поверхности фотодетектора.
На фиг. 2 приведено поперечное сечение настоящего фотодетектора.
Импульсный фотодетектор (см. фиг. 1 - фиг. 2) выполняют в виде прямоугольного параллелепипеда, длина которого вдоль p-n перехода равна 350-500 мкм. Фото детектор содержит первый сплошной омический контакт 1, нанесенный на внешнюю сторону полупроводниковой подложки 2 из n-GaAs, на внутренней стороне которой выращены: слой 3 из n-AlxGa1-xAs с х=0,35-0,60 в начале роста слоя на границе с подложкой 2 и до х=0,10-0,15 в конце роста слоя и градиентом параметра «х» в интервале 25-60 см-1, активный слой 4 из n0-GaAs толщиной 0,5-2,0 мкм с концентрацией носителей тока (0,5-2,0)⋅1016 см-3, слой 5 p-AlxGa1-xAs толщиной, например, 1-2 мкм с х=0,15-0,30 в начале роста слоя до х=0,05-0,10 в конце роста слоя, контактный слой 6 из р+-GaAs и второй сплошной омический контакт 7. Лазерное излучение подают на торец 8 фотодетектора, на который может быть нанесено антиотражающее покрытие 9. Противоположный (тыльный) торец 10 фото детектора выполняет функцию отражателя лазерного излучения.
При вводе лазерного излучения из оптоволокна в фотодетектор через торец 8 перпендикулярно поверхности торца 8 излучение будет отклоняться в сторону более оптически плотного слоя с меньшим содержанием AlAs, а часть излучения, прошедшего через слой 3 из n-AlxGa1-xAs, будет отражаться от противоположного торца 10 в сторону активного слоя 4 из n0-GaAs и поглощаться в нем, генерируя фототок. Расположение оптической оси оптоволокна под углом более 13° (учитывая расходимость ±13° лазерного пучка на торце оптоволокна) от нормали к поверхности торца 8 фотодетектора позволяет: во-первых, уменьшить длину фотодетектора, при которой все падающее излучение будет попадать в область активного слоя 4 из n0-GaAs, а, во-вторых, исключить попадание зеркально-отраженных лучей внутри угла захвата этих лучей оптоволокном, по которому подводят лазерное излучение. Таким образом, оптимальная длина фотодетектора напрямую зависит от диаметра используемого оптического волокна. Учитывая тот факт, что излучение заводят под углом к нормали поверхности торца 8, световое пятно будет иметь форму эллипса с линейным размером вертикальной оси D. Максимальную длину, равную 500 мкм, фотодетектор (при максимальной толщине слоя 3 из n-AlxGa1-xAs) будет иметь, когда вертикальный размер светового пятна будет равен толщине слоя 3 из n-AlxGa1-xAs. При использовании оптического волокна диаметром более 100 мкм используют оптические микросистемы для фокусировки светового пятна до размеров близким толщине слоя 3 из n-AlxGa1-xAs.
Зная градиент концентрации AlAs и показателя преломления в слое из n-AlxGa1-xAs и предварительно смоделировав траекторию прохождения крайнего луча на границе подложки и градиентного слоя из n-AlxGa1-xAs через ФД, можно установить минимальную длину фотодетектора, при которой исключается сквозное прохождение лучей и выход лучей из ФД. Лазерное излучение, распространяющееся в кристалле, при попадании на торец претерпевает полное внутреннее отражение при углах падения больших 16°. Была установлена связь углов ввода излучения со значениями минимальной длины ФД, при которой обеспечивается полное поглощение излучения. При длине ФД более 500 мкм (и значении «х» более 0,6) увеличивается емкость прибора, что снижает его быстродействие. При длине меньше 350 мкм (и значении «х» менее 0,35) часть лучей пройдут сквозь фотодетектор, что приводит к оптическим потерям ФД и снижает его КПД. Выбор оптимальных параметров ФД поясняется в Примере 1 и Примере 2.
В структуре настоящего ФД все слои, включая подложку, кроме активного n0-слоя, должны иметь концентрацию носителей тока не менее 1018 см-3, что обеспечивает низкие омические потери в полупроводнике, верхний предел концентрации носителей тока для каждого слоя определяется качеством морфологии растущего слоя и для каждого слоя в зависимости от легирующей примеси установлен индивидуально. Низкая концентрация носителей тока (0,5-2,0)⋅1016 см-3 в слое из n0-GaAs обеспечивает снижение емкости фото детектора и увеличение его быстродействия.
Наличие в структуре слоя 3 n-AlxGa1-xAs градиентного состава обеспечивает отклонение лучей лазера из области с большим содержанием AlAs (с меньшим показателем преломления) к активному слою из n0- GaAs (с большим показателем преломления).
Выращивание на подложке из n-GaAs слоя 3 из n-AlxGa1-xAs с х=0,35-0,60 в начале слоя и с х=0,10-0,15 в конце слоя обеспечивает потенциальный барьер для генерированных в активном слое 4 неосновных носителей заряда. Такую же роль тыльного потенциального барьера для генерированных носителей тока в активном слое 4 играет верхний слой из р-AlxGa1-xAs с х=0,15-0,30 до х=0,05-0,10. Таким образом, наличие в структуре широкозонных слоев из AlxGa1-xAs способствует эффективному собиранию носителей из n-GaAs области (активный слой 4) к p-n-переходу.
Создание сплошных омических контактов к верхней и нижней поверхности структуры позволяет свести к минимуму постростовую обработку для получения фотодетектора (опускаются ряд операций: фотолитография по созданию рисунка лицевого контакта; фотолитография для разделительного травления структуры на приборы). При этом улучшается теплоотвод - при равной температуре p-n перехода возможна работа при мощностях излучения, по крайней мере, вдвое больших рабочих мощностей излучения аналогичных ФД с нормальным вводом излучения (перпендикулярно к плоскости p-n перехода). Наряду с этим на порядок снижаются омические потери в ФД: сплошные контакты уменьшают омические потери, поскольку на порядок увеличивается площадь токосъема по сравнению с площадью токосъемной сетки ФД с нормальным вводом излучения. Ввод излучения в поглощающую область под углом меньшим 90° к плоскости p-n перехода позволяет уменьшить толщину поглощающей области из-за увеличения оптического пути лучей света через нее. Для уменьшения оптических потерь размеры ФД установлены такими, чтобы все излучение, попавшее на входной торец ФД, достигало узкозонной поглощающей области ФД и поглощалось в ней. Для пояснения этих аспектов ниже приведены 2 примера.
Пример 1. Для засветки ФД использовали лазерное излучение, подводимое через волокно диаметром 90 мкм, ось которого установлена под углом 13° к нормали торцевой поверхности. Максимальное расстояние по вертикальной оси светового пятна эллипса составляло ~100 мкм. Был изготовлен импульсный СВЧ ФД на основе структуры, содержащей подложку из n-GaAs, слой из n-AlxGa1-xAs толщиной 100 мкм при х=0,6 в начале роста слоя и х=0,10 в конце роста слоя, градиент параметра «х» в начале слоя установлен равным 40 см-1, а в конце слоя градиент параметра «х» установлен равным 25 см-1; активный слой из n0-GaAs толщиной 2 мкм и уровнем легирования 0,5⋅1016 см-3; слой из р-AlxGa1-xAs при х=0,30 в начале роста слоя и х=0,10 в конце роста слоя; контактный слой из p+-GaAs, а также сплошные лицевой и тыльный омические контакты. Минимальная длина ФД определялась траекторией крайнего луча на границе подложки и градиентного слоя из n-AlxGa1-xAs. В данном примере минимальная длина фото детектора составляет ~500 мкм, а ширина фотодетектора была установлена равной 250 мкм, так как размер светового пятна лазерного излучения составлял 240 мкм в плоскости торца ФД.
Пример 2. Для засветки фотодетектора использовали параллельные лучи через световую апертуру 55 мкм, ось которой была установлена под углом 13° к нормали торцевой поверхности ФД, максимальное расстояние по вертикальной оси светового пятна эллипса составляло ~60 мкм. Был изготовлен импульсный СВЧ ФД на основе структуры, содержащей подложку из n-GaAs, слой из n-AlxGa1-xAs толщиной 60 мкм при х=0,35 в начале роста слоя и х=0,05 в конце роста слоя, градиент параметра «х» в начале слоя был установлен равным 60 см-1, а в конце слоя равным 30 см-1; активный слой из n0-GaAs; слой из р-AlxGa1-xAs, при х=0,15 в начале роста слоя и х=0,05 в конце роста слоя; контактный слой из р+- GaAs, а также сплошные первый и второй омические контакты. Минимальная длина фотодетектора определялась траекторией крайнего луча на границе подложки и градиентного слоя из n-AlxGa1-xAs. В данном примере минимальная длина фотодетектора составляла ~350 мкм, а ширина 150 мкм, так как размер светового пятна в данном примере составил 140 мкм в торцевой плоскости ФД.

Claims (8)

1. Мощный импульсный СВЧ фотодетектор лазерного излучения на основе гетероструктуры, содержащий подложку из n-GaAs, слой из n-AlxGa1-xAs с х=0,35-0,60 в начале роста слоя на границе с подложкой и до х=0,10-0,15 в конце роста слоя и градиентом параметра «х» в интервале 25-60 см-1, активный слой из n0-GaAs толщиной 0,5-2,0 мкм с концентрацией носителей тока (0,5-2,0)⋅1016 см-3, слой из p-AlxGa1-xAs с х=0,15-0,30 в начале роста слоя до х=0,05-0,10 в конце роста слоя, контактный слой из р+-GaAs и первый и второй сплошные омические контакты, нанесенные соответственно на подложку и контактный слой, при этом длина фотодетектора вдоль p-n перехода равна 350-500 мкм.
2. Фотодетектор по п. 1, отличающийся тем, что концентрация носителей тока в подложке составляет не менее 3⋅1018 см-3.
3. Фотодетектор по п. 1, отличающийся тем, что концентрация носителей тока в слое из n-AlxGa1-xAs слое составляет (1-5)⋅1018 см-3.
4. Фотодетектор по п. 1, отличающийся тем, что концентрация носителей тока в слое из р-AlxGa1-xAs составляет (1-5)⋅1018.
5. Фотодетектор по п. 1, отличающийся тем, что толщина слоя из р-AlxGa1-xAs составляет 1-2 мкм.
6. Фотодетектор по п. 1, отличающийся тем, что концентрация носителей тока в контактном слое составляет (1-3)⋅1019 см-3.
7. Фотодетектор по п. 1, отличающийся тем, что контактный слой из р+-GaAs имеет толщину 1-3 мкм.
8. Фотодетектор по п. 1, отличающийся тем, что на поверхность освещаемого торца фотодетектора нанесено антиотражающее покрытие с минимумом отражения в спектральном интервале 810-860 нм.
RU2018106016A 2018-02-19 2018-02-19 Мощный импульсный свч фотодетектор RU2676228C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018106016A RU2676228C1 (ru) 2018-02-19 2018-02-19 Мощный импульсный свч фотодетектор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018106016A RU2676228C1 (ru) 2018-02-19 2018-02-19 Мощный импульсный свч фотодетектор

Publications (1)

Publication Number Publication Date
RU2676228C1 true RU2676228C1 (ru) 2018-12-26

Family

ID=64753835

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018106016A RU2676228C1 (ru) 2018-02-19 2018-02-19 Мощный импульсный свч фотодетектор

Country Status (1)

Country Link
RU (1) RU2676228C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2806342C1 (ru) * 2023-03-13 2023-10-31 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Фотодетектор лазерного излучения

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391869A (en) * 1993-03-29 1995-02-21 United Technologies Corporation Single-side growth reflection-based waveguide-integrated photodetector
EP1792150A1 (en) * 2004-09-23 2007-06-06 Vrije Universiteit Brussel Photovoltage detector
US7259439B2 (en) * 2001-12-27 2007-08-21 Hamamatsu Photonics K.K. Semiconductor photodetector and its production method
JP4291521B2 (ja) * 2001-03-23 2009-07-08 日本オプネクスト株式会社 半導体受光素子、半導体受光装置、半導体装置、光モジュール及び光伝送装置
US20110108081A1 (en) * 2006-12-20 2011-05-12 Jds Uniphase Corporation Photovoltaic Power Converter
US20120153417A1 (en) * 2010-12-16 2012-06-21 National Central University Laser Power Converter for Data Detection and Optical-to-Electrical Power Generation
RU170349U1 (ru) * 2016-11-07 2017-04-21 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук ФОТОПРЕОБРАЗОВАТЕЛЬ НА ОСНОВЕ GaAs

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391869A (en) * 1993-03-29 1995-02-21 United Technologies Corporation Single-side growth reflection-based waveguide-integrated photodetector
JP4291521B2 (ja) * 2001-03-23 2009-07-08 日本オプネクスト株式会社 半導体受光素子、半導体受光装置、半導体装置、光モジュール及び光伝送装置
US7259439B2 (en) * 2001-12-27 2007-08-21 Hamamatsu Photonics K.K. Semiconductor photodetector and its production method
EP1792150A1 (en) * 2004-09-23 2007-06-06 Vrije Universiteit Brussel Photovoltage detector
US20110108081A1 (en) * 2006-12-20 2011-05-12 Jds Uniphase Corporation Photovoltaic Power Converter
US20120153417A1 (en) * 2010-12-16 2012-06-21 National Central University Laser Power Converter for Data Detection and Optical-to-Electrical Power Generation
RU170349U1 (ru) * 2016-11-07 2017-04-21 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук ФОТОПРЕОБРАЗОВАТЕЛЬ НА ОСНОВЕ GaAs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2806342C1 (ru) * 2023-03-13 2023-10-31 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Фотодетектор лазерного излучения

Similar Documents

Publication Publication Date Title
US9525084B2 (en) Microstructure enhanced absorption photosensitive devices
US7728366B2 (en) Photodiode and method for fabricating same
US5838708A (en) Integration of surface emitting laser and photodiode for monitoring power output of surface emitting laser
Kuchibhotla et al. Low-voltage high-gain resonant-cavity avalanche photodiode
CN108091720A (zh) 单行载流子光电探测器及其制备方法
US5045908A (en) Vertically and laterally illuminated p-i-n photodiode
EP1204148A2 (en) Planar resonant cavity enhanced photodetector
RU2676228C1 (ru) Мощный импульсный свч фотодетектор
CN217740536U (zh) 一种半导体器件及其封装结构
KR102307789B1 (ko) 후면 입사형 애벌런치 포토다이오드 및 그 제조 방법
JPS61229371A (ja) フオトダイオ−ド
JPH04342174A (ja) 半導体受光素子
JP5705859B2 (ja) アバランシェタイプのフォトダイオード
JPS6269687A (ja) 半導体受光素子
Tzeng et al. A GaAs Schottky-barrier photodiode with high quantum efficiency-bandwidth product using a multilayer reflector
KR102015408B1 (ko) 수직 입사형 포토다이오드
JP2850985B2 (ja) 半導体導波路型受光素子
JPH09135049A (ja) 表面発光レーザとそのパワー出力を監視するフォトダイオードとの集積化
JP2001308368A (ja) 光共振器構造素子
JP7060009B2 (ja) レーザーレーダー装置
JPH02246380A (ja) ホトダイオード
JPH0555619A (ja) 半導体受光装置
JPH0373576A (ja) 半導体受光素子
US20070041690A1 (en) Waveguide structure having ladder configuration
KR100512846B1 (ko) 포토디텍터의 제조방법

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20210520

Effective date: 20210520