RU2666970C1 - Электрическая машина постоянного тока - Google Patents

Электрическая машина постоянного тока Download PDF

Info

Publication number
RU2666970C1
RU2666970C1 RU2017132564A RU2017132564A RU2666970C1 RU 2666970 C1 RU2666970 C1 RU 2666970C1 RU 2017132564 A RU2017132564 A RU 2017132564A RU 2017132564 A RU2017132564 A RU 2017132564A RU 2666970 C1 RU2666970 C1 RU 2666970C1
Authority
RU
Russia
Prior art keywords
magnetic
armature
annular
inductor
grooves
Prior art date
Application number
RU2017132564A
Other languages
English (en)
Inventor
Виталий Арсеньевич Обухов
Александр Антонович Городничев
Original Assignee
Виталий Арсеньевич Обухов
Александр Антонович Городничев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виталий Арсеньевич Обухов, Александр Антонович Городничев filed Critical Виталий Арсеньевич Обухов
Priority to RU2017132564A priority Critical patent/RU2666970C1/ru
Application granted granted Critical
Publication of RU2666970C1 publication Critical patent/RU2666970C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/18Synchronous generators having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar generators
    • H02K19/20Synchronous generators having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar generators with variable-reluctance soft-iron rotors without winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Synchronous Machinery (AREA)

Abstract

Изобретение относится к электротехнике, а именно к электрическим машинам постоянного тока. Технический результат заключается в создании однополярных, однонаправленных импульсов, исключающих обратную составляющую ЭДС на каждом полюсном делении. Электрическая машина содержит обмотку якоря кольцевого типа, а магнитопровод якоря состоит из кольцевых пакетов шихтованной стали, замкнутых по наружному диаметру внешним магнитопроводом. Магнитопровод индуктора выполнен из профилированных кольцевых пакетов шихтованной стали, сдвинутых относительно друг друга на электрический угол одного импульса, равный частному от деления ширины одного импульса на число пакетов индуктора, и разделенных между собой кольцевыми немагнитными промежутками. Обмотка индуктора создает одноименно полюсное магнитное поле. Воздушный зазор выполнен с периодическим значением по длине каждого полюсного деления по закону изменения магнитной индукции, обеспечивающей индуцирование в обмотке якоря однополярных импульсов однопеременной ЭДС на каждом полюсном делении. Выполнение продольных немагнитных вставок в виде насыщающихся магнитных участков позволяет улучшить массогабаритные характеристики машины и повысить ее надежность. 4 ил.

Description

Изобретение относится к машинам постоянного тока и может быть использовано как для генерирования электрической энергии постоянного тока, так и для электропривода механизмов. Известны машины постоянного тока коллекторного типа, опубликованные в монографиях, таких как М.П. Костенко и Л.М Пиотровский. «Электрические машины», т. 1, М., «Энергия» ,1964 г., с. 62-74; А.В. Иванов-Смоленский. «Электрические машины», М., 1980 г., с. 716-717, принятые за аналог.
Прототипом данного технического решения принята конструкция машины постоянного тока по патенту RU 2565384 С2, (51) МПК, НО2К 25/00 (2006/01) НО2К 19/20 (2006/01), НО2К 1/06 (2006/01), опубл. 20.10.2015. Бюл. 29.
В прототипе машина постоянного тока, содержащая статор с сердечником якоря, с пакетами шихтованной стали с пазами по его расточке, разделенными кольцевыми немагнитными промежутками, с продольными немагнитными вставками, с обмоткой якоря кольцевого типа с активной и лобовыми частями, с продольными немагнитными вставками с внешним магнитопроводом и обмоткой индуктора, ротор с магнитопроводом индуктора из кольцевых профилированных пакетов стали, разделенных немагнитными кольцевыми промежутками с одноименно полюсными делениями с взаимным сдвигом соседних пакетов, соотносящихся с пакетами сердечника якоря, создающих одноименно полюсное магнитное поле с воздушным зазором с периодически переменным значением на ширине каждого полюсного деления, обеспечивающим индуцирование в обмотке якоря однополярных импульсов однопериодной ЭДС на каждом полюсном делении.
Недостатки прототипа заключаются в следующем:
- для ограничения значения магнитного потока реакции якоря, замыкающегося по окружности его спинки до приемлемого уровня (Вα=1 Тл), суммарная ширина немагнитных вставок должна быть не менее 10% его окружности, что приводит к некоторому ухудшению его массогабаритных характеристик;
- наличие немагнитных вставок приводит к усложнению конструкции машины, разделению сердечника статора на ряд секторов, снижающее жесткость статора, а следовательно и надежность;
- сдвиг соседних пакетов индуктора относительно друг друга на электрический угол одного импульса равен частному от деления ширины одного импульса на число пакетов индуктора, что приводит к неполной идентичности значений ЭДС обмотки в каждом пазу.
Проведенные нами экспериментальные исследования на макетном образце показали, что различные варианты получения однополярных импульсов ЭДС с использованием известных литературных источников с. 555-557, Лазарев Ю. (Моделирование процессов и систем в MATLAB 2005 г., с. 187) и др. дают формы импульсов однополярной ЭДС с высокой составляющей обратного направления, что практически не пригодно для реализации машин постоянного тока. Эксперименты проводились для четырех типов профилированных пакетов ротора, построенных на основании известных видов «однонаправленных» импульсов.
Требуемая форма однополярных однонаправленных импульсов ЭДС нами была получена на основании аналитического выражения импульса ЭДС синусоидального типа с амплитудой затухания практически до нулевого значения на ширине каждого полюсного деления по закону экспоненты, что позволяет реализовать бесколлекторную машину постоянного тока.
Цель изобретения - устранение указанных недостатков в машине постоянного тока. Указанная цель достигается тем, что значение воздушного зазора изменяется в соответствие с законом изменения индукции магнитного потока на ширине каждого полюсного деления, обеспечивающим индуцирование в обмотке якоря однонаправленных импульсов однонаправленной ЭДС синусоидального типа с затухающей амплитудой практически до нулевого значения на ширине каждого полюсного деления по закону экспоненты, на внешнем диаметре внешнего магнитопровода выполняются другие пазы с дополнительными прорезями на длине сердечника якоря с размещенными в них лобовыми частями обмотки якоря, соотносящиеся с пазами на расточке якоря, снабженными другими прорезями по дну этих пазов, продольные немагнитные вставки выполняются в виде насыщающихся магнитных участков, образованных дополнительными прорезями внешнего магнитопровода и другими прорезями по дну пазов расточки якоря, сдвиг соседних профилированных пакетов выполняется на электрический угол одного импульса, равный частному от деления ширины полюсного деления на число кольцевых промежутков между соседними профильными пакетами по длине индуктора.
Отличительными признаками изобретения являются:
Требуемая форма однонаправленного, однополярного импульса ЭДС рассчитывается на основе аналитического выражения импульса ЭДС синусоидального типа с амплитудой затухания с практически до нулевого значения на ширине каждого полюсного деления по закону экспоненты, на внешнем диаметре внешнего магнитопровода выполняются другие пазы с дополнительными прорезями с размещенными в них лобовыми частями обмотки якоря, соотносящиеся с пазами на расточке якоря, снабженными другими прорезями по дну этих пазов, продольные немагнитные вставки выполняются в виде насыщающихся магнитных участков, образованных дополнительными прорезями внешнего магнитопровода и другими прорезями по дну пазов расточки якоря, сдвиг соседних профилированных пакетов выполняется на электрический угол одного импульса, равный частному от деления ширины полюсного деления на число кольцевых промежутков между соседними профильными по длине индуктора.
В результате поиска аналитического выражения импульса однонаправленной однополярной ЭДС, нами было получено аналитическое выражение импульса однополярной однонаправленной ЭДС синусоидального типа с амплитудой затухания практически до нулевого значения по закону экспоненты на ширине каждого полюсного деления. Для подтверждения возможности реализации предложенной конструкции машины постоянного тока с однонаправленными, однополярными импульсами ЭДС синусоидального типа с амплитудой затухания с практически до нулевого значения по закону экспоненты на ширине каждого полюсного деления, высылаем результаты экспериментов на физической модели машины постоянного тока, проведенные в двух вариантах сборки индуктора (ротора):
1) индуктор с одним профилированным пакетом на роторе, осциллограмма импульса ЭДС, фиг. 1,
2) индуктор с четырьмя профилированным пакетом на роторе, осциллограмма суммирования импульсов ЭДС от четырех профилированным пакетов, фиг. 2.
Результаты экспериментов подтверждают работоспособность бесколлекторной машины постоянного тока.
Предложение соответствует критерию существенные отличия, так как из известного перечня информации, установленного нормативным документом (П127 Э3-1-74), технические решения с признаками подобными заявленным не обнаружены.
На фиг. 3 схематически изображена в продольном разрезе машина постоянного тока с числом полюсных делений равным 4 (р=4); на фиг. 4 - ее поперечное сечение.
Электрическая машина постоянного тока включает статор с сердечником якоря из пакетов шихтованной стали 1, разделенных кольцевыми немагнитными промежутками 2, с пазами 3 по его расточке, с продольными насыщающимися участками 4, с обмоткой якоря кольцевого типа активной 5 и лобовыми частями 6, внешним магнитопроводом 7 с другими пазами 8 и дополнительными прорезями 9, с обмоткой индуктора 10, с другими пазами 11 по дну пазов 3, ротор с магнитопроводом индуктора из кольцевых шихтованных пакетов стали 12, разделенных кольцевыми немагнитными промежутками 13, с немагнитным кожухом 14, воздушный зазор 15.
Устройство в генераторном режиме работает следующим образом.
При подаче тока в обмотку индуктора возбуждается одноименно полюсный магнитный поток в магнитопроводах якоря и индуктора. Распределение индукции магнитного потока по ширине полюсного деления практически определяется конкретным значением воздушного зазора, задаваемого формой цилиндрической поверхности кольцевых пакетов стали индуктора, то есть распределение значения индукции магнитного потока по ширине полюсного деления будет соответствовать обратно пропорциональному значению воздушного зазора.
Требуемая форма однонаправленного, однополярного импульса ЭДС рассчитывается в соответствии полученным нами аналитическим выражениям импульса ЭДС синусоидального типа с амплитудой затухания практически до нулевого значения на ширине каждого полюсного деления по закону экспоненты в следующем виде:
Figure 00000001
где Aα - амплитуда ЭДС, затухающая на ширине полюсной дуги (0≤α≤Pi),
Figure 00000002
Ao=const,
где α - электрический угол поворота ротора.
В относительных единицах значение индукции в зазоре БМПТ равно значению ЭДС
Figure 00000003
Figure 00000004
c=const, c>1.
Figure 00000005
αмах - значение угла поворота ротора, при котором ЭДС импульса достигает максимального значения.
Для получения требуемой формы однополярного импульса ЭДС распределение значения индукции в воздушном зазоре должно соответствовать расчетным значениям индукции по формуле
Figure 00000006
В связи с указанным выше выражением распределения индукции в зазоре полюсного деления получим расчетное выражение значений воздушного зазора на ширине полюсного деления исходя из постоянства магнитодвижущей силы потока возбуждения по окружности расточки статора
Figure 00000007
в виде
Figure 00000008
Figure 00000009
Figure 00000010
где By - униполярная составляющая индукции.
Таким образом может быть получена требуемая форма поверхности полюса ротора, обеспечивающая индуцирование однополярных однонаправленных импульсов ЭДС. Магнитный поток обмотки возбуждения 10 проходит по внешнему магнитопроводу 7 вдоль зубцов каждого пазового деления 8 и распределяется на каждое пазовое деление 3 сердечника якоря, ограничиваясь в радиальном направлении каждой парой дополнительных прорезей 9 и каждой парой других прорезей 11 пазов якоря 3.
При включении нагрузки в обмотке якоря протекает ток якоря одного направления в катушке каждого паза, который создает кольцевой магнитный поток по окружности сердечника якоря (подобно соленоиду), магнитный поток реакции якоря Фа, величина которого при заданной нагрузке зависит от магнитного сопротивления магнитопровода якоря по окружности спинки якоря.
В конструкции магнитопровода с насыщающимися магнитными участками значение магнитного сопротивления для потока реакции якоря определяется суммарным сопротивлением намагничивающихся участков 4 магнитопровода якоря.
Если принять реальное сечение в зонах спинки якоря, ограниченных каждой парой дополнительных прорезей 9 и других прорезей 3 в 2,5-3 раза больше, чем в зонах насыщенных участков 4, образованных выше указанными прорезями, то индукция в зонах насыщения участков будет в 2,5÷3 раза выше по сравнению с зонами ненасыщенных участков.
При принятом расчетном значении индукции в ненасыщенных зонах Ва=1 Тл, в зонах насыщенных участков индукция составит Ва=2,5÷3 Тл. В этом случае магнитная проницаемость зонах насыщенных участков составит μн≈(1,05÷1,1)μо.
Число участков насыщения равно числу пазов сердечника якоря (Z1). При значении Z1=100 и ширине одного дополнительного паза равного Вп=2,5÷3 мм, суммарная длина зоны насыщения составит ∑Lн≈(250÷300)/1,1≈225÷270 мм, В зонах прохождения магнитного потока возбуждения расчетное значение индукции составит
Figure 00000011
что является обычным расчетным значениям индукции в зубце.
Таким образом, для потока возбуждения магнитопровод спинки сердечника статора не насыщен, в то время как для магнитного потока реакции якоря очень сильно насыщен, тем самым магнитопровод ограничивает значение потока реакции якоря до приемлемого уровня. В магнитном отношении все пазы обмотки якоря становятся в идентичном положении, что не создает сколь-нибудь значительной концентрации магнитодвижущей силы реакции якоря на отдельных участках сердечника якоря, как это возникает при сосредоточенных немагнитных вставках, провоцирующих возникновение продольной составляющей реакции якоря, отрицательно влияющей на работу машины постоянного тока.
Преимущество предлагаемого изобретения по сравнению с прототипом:
- значение воздушного зазора изменяется в соответствии с законом изменения индукции магнитного потока на ширине каждого магнитного полюсного деления, обеспечивающего индуцирование в обмотке якоря однополярных импульсов однонаправленной ЭДС синусоидального типа с амплитудой затухания практически до нулевого значения на ширине каждого полюсного деления по закону экспоненты, исключающего появление обратной составляющей ЭДС однополярного импульса;
- сдвиг соседних профилирующих пакетов выполняется со сдвигом на электрический угол одного импульса, равным частному от деления ширины полюсного деления на число кольцевых немагнитных промежутков индуктора, обеспечивающих идентичность значений ЭДС обмотки якоря в каждом пазу;
- выполнение продольных немагнитных вставок в виде насыщающихся магнитных участков позволяет улучшить массогабаритные характеристики МПТ и повысить ее надежность.

Claims (1)

  1. Машина постоянного тока, содержащая статор с сердечником якоря, с пакетами шихтованной стали с пазами по его расточке, разделенными кольцевыми немагнитными промежутками, с продольными немагнитными вставками и обмоткой якоря кольцевого типа с активной и лобовыми частями, с внешним магнитопроводом и обмоткой индуктора, ротор с магнитопроводом индуктора из кольцевых профилированных пакетов с одноименно полюсными делениями, с взаимным сдвигом соседних пакетов, разделенных между собой кольцевыми немагнитными промежутками, соотносящимися с пакетами сердечника якоря, с воздушным зазором с периодически переменным значением на ширине каждого полюсного деления, обеспечивающим индуцирование в обмотке якоря однополярных импульсов однонаправленной ЭДС на каждом полюсном делении, отличающаяся тем, что значение воздушного зазора изменяется в соответствие с законом изменения индукции магнитного потока на ширине каждого полюсного деления, обеспечивающей индуцирование в обмотке якоря однополярных импульсов однонаправленной ЭДС синусоидального типа с амплитудой затухающей практически до нулевого значения на ширине каждого полюсного деления по закону экспоненты, на внешнем диаметре внешнего магнитопровода выполнены другие пазы с дополнительными прорезями на длине сердечника якоря, с размещенными в них лобовыми частями обмотки якоря, соотносящимися с пазами на расточке якоря, снабженными другими прорезями по дну этих пазов, продольные немагнитные вставки выполняются в виде насыщающихся магнитных участков, образованных дополнительными прорезями внешнего магнитопровода и другими прорезями по дну пазов расточки якоря, сдвиг соседних профилированных пакетов выполняется на электрический угол одного импульса, равный частному от деления от ширины полюсного деления на число кольцевых промежутков между соседними профильными пакетами на длине индуктора.
RU2017132564A 2017-09-18 2017-09-18 Электрическая машина постоянного тока RU2666970C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017132564A RU2666970C1 (ru) 2017-09-18 2017-09-18 Электрическая машина постоянного тока

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017132564A RU2666970C1 (ru) 2017-09-18 2017-09-18 Электрическая машина постоянного тока

Publications (1)

Publication Number Publication Date
RU2666970C1 true RU2666970C1 (ru) 2018-09-18

Family

ID=63580401

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017132564A RU2666970C1 (ru) 2017-09-18 2017-09-18 Электрическая машина постоянного тока

Country Status (1)

Country Link
RU (1) RU2666970C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535604A (en) * 1968-06-14 1970-10-20 Superior Electric Co Electric stepping motor
DE4209568A1 (de) * 1990-09-26 1993-09-30 James J Connell Induktor-Alternatoren
RU44431U1 (ru) * 2004-10-25 2005-03-10 Гришко Александр Павлович Генератор
RU2407135C2 (ru) * 2009-01-19 2010-12-20 Владимир Михайлович Чернухин Бесконтактная редукторная магнитоэлектрическая машина
RU2524166C1 (ru) * 2013-04-10 2014-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" Индукторная машина
RU2565384C2 (ru) * 2013-03-12 2015-10-20 Виталий Арсеньевич Обухов Электрическая машина постоянного тока

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535604A (en) * 1968-06-14 1970-10-20 Superior Electric Co Electric stepping motor
DE4209568A1 (de) * 1990-09-26 1993-09-30 James J Connell Induktor-Alternatoren
RU44431U1 (ru) * 2004-10-25 2005-03-10 Гришко Александр Павлович Генератор
RU2407135C2 (ru) * 2009-01-19 2010-12-20 Владимир Михайлович Чернухин Бесконтактная редукторная магнитоэлектрическая машина
RU2565384C2 (ru) * 2013-03-12 2015-10-20 Виталий Арсеньевич Обухов Электрическая машина постоянного тока
RU2524166C1 (ru) * 2013-04-10 2014-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" Индукторная машина

Similar Documents

Publication Publication Date Title
JP5449892B2 (ja) 永久磁石励磁式ラジアル磁気軸受並びにそのラジアル磁気軸受を備えた磁気軸受装置
US9479017B2 (en) Deep V-magnet cavity structure rotor
KR101781382B1 (ko) 개선된 플럭스 스위칭 기계 설계
US8729762B2 (en) Permanent magnet synchronous machine, and pressing or extrusion machine including permanent magnet synchronous machine
US20060028082A1 (en) Interior permanent magnet electric rotating machine
CN111602318B (zh) 用于轴向磁通式马达、径向磁通式马达以及横向磁通式马达的转子
US10693331B2 (en) Synchronous machine with magnetic rotating field reduction and flux concentration
CN115298952A (zh) 电动机
US10122230B2 (en) Permanent-field armature with guided magnetic field
US20150155761A1 (en) Electronically Commutated Electromagnetic Apparatus
RU2666970C1 (ru) Электрическая машина постоянного тока
KR101439072B1 (ko) Dc 브러시리스 모터 및 그 제어 방법
RU2565384C2 (ru) Электрическая машина постоянного тока
Yang et al. Research on the no-load rotor eddy loss of a high-speed pulsed alternator
JP2008067561A (ja) 永久磁石形電動機
US6538349B1 (en) Linear reciprocating flux reversal permanent magnetic machine
US3445691A (en) Axial air gap dynamoelectric machine with cooling
Tekgun Acoustic noise and vibration reduction on switched reluctance machines through hole placement in stator/rotor laminations
JP5175699B2 (ja) 回転電機
RU2730246C1 (ru) Электрическая машина постоянного тока
JP2019083604A (ja) 同期電動機の回転子
RU2019100791A (ru) Электрическая машина постоянного тока
JP2014030293A (ja) 回転電機のロータ
JP5544538B2 (ja) 磁石埋め込み型円筒リニアモータ
Labbe et al. Innovative permanent-magnet starter motors for automotive micro-hybrid applications

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200919

NF4A Reinstatement of patent

Effective date: 20220304