RU2660084C1 - Способ получения бутадиен-стирольного каучука - Google Patents

Способ получения бутадиен-стирольного каучука Download PDF

Info

Publication number
RU2660084C1
RU2660084C1 RU2017129493A RU2017129493A RU2660084C1 RU 2660084 C1 RU2660084 C1 RU 2660084C1 RU 2017129493 A RU2017129493 A RU 2017129493A RU 2017129493 A RU2017129493 A RU 2017129493A RU 2660084 C1 RU2660084 C1 RU 2660084C1
Authority
RU
Russia
Prior art keywords
rubber
sodium chloride
styrene
butadiene
molasses
Prior art date
Application number
RU2017129493A
Other languages
English (en)
Inventor
Ильдус Шайхитдинович Насыров
Олег Константинович Шурупов
Разиля Агзамовна Капанова
Виктория Юрьевна Фаизова
Владимир Анатольевич Шелудченко
Алексей Георгиевич Данилов
Надежда Сергеевна Никулина
Сергей Саввович Никулин
Вячеслав Михайлович Мисин
Original Assignee
Открытое Акционерное Общество "Стерлитамакский Нефтехимический Завод"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Стерлитамакский Нефтехимический Завод" filed Critical Открытое Акционерное Общество "Стерлитамакский Нефтехимический Завод"
Priority to RU2017129493A priority Critical patent/RU2660084C1/ru
Application granted granted Critical
Publication of RU2660084C1 publication Critical patent/RU2660084C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/14Coagulation
    • C08C1/15Coagulation characterised by the coagulants used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Fertilizers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Изобретение относится к нефтехимической промышленности, в частности к производству бутадиен-стирольных каучуков, получаемых эмульсионной сополимеризацией. Cпособ получения бутадиен-стирольного каучука включает сополимеризацию бутадиена со стиролом в водной эмульсии по свободно-радикальному механизму с применением в качестве инициатора окислительно-восстановительной системы, стопперирование процесса, дегазацию, введение антиоксиданта или масла, заправленного антиоксидантом при выпуске маслонаполненного каучука и выделении каучука из латекса методом коагуляции с подкислением серной кислотой и использованием тройного коагулянта. Тройной коагулянт состоит из хлорида натрия, полидиаллилдиметиламмоний хлорида и побочного продукта пищевой промышленности мелассы свекловичной, или мелассы обессахаренной, или удобрения органического Фертил при следующем расходе компонентов, кг/т каучука: хлорид натрия – 10-50; полидиаллилдиметиламмоний хлорид - 0,1-1,0; побочный продукт пищевой промышленности – 20-50, а также включает дальнейшую фильтрацию, промывку водой и сушку. Изобретение позволяет уменьшить расход коагулирующего агента без снижения кислотности коагулируемой системы, а также исключить потери компонентов эмульсионной сополимеризации, что приводит к увеличению производительности процесса сополимеризации без ухудшения физико-механических показателей получаемых вулканизатов и снижению загрязнения сточных вод компонентами производства сополимеризации. 2 н.п. ф-лы, 6 табл., 15 пр.

Description

Изобретение относится к нефтехимической промышленности, в частности, к производству бутадиен-стирольных каучуков, получаемых эмульсионной сополимеризацией.
Известен способ получения бутадиен-стирольного каучука, характеризующийся тем, что при коагуляции каучукового латекса в кислой среде в качестве коагулирующего агента используют полидиаллилдиметиламмоний хлорид (Патент РФ №2489446 С08С 1/15, опубл. 10.08.2013). Недостатками данного способа получения бутадиен-стирольного каучука являются достаточно большой расход полидиаллилдиметиламмоний хлорида (2÷3 кг/тонну каучука СКС-30 АРК) и высокая чувствительность процесса к передозировке коагулирующего агента, что создает затруднения в управлении процессом в реальных промышленных условиях. При передозировке полидиаллилдиметиламмоний хлорида происходит перезарядка коллоидных частиц, приводящая к потере латексных компонентов, снижению производительности процесса и повышению загрязнения производственных сточных вод компонентами эмульсионной сополимеризации.
Известен способ получения бутадиен-стирольного каучука, характеризующийся тем, что при коагуляции каучукового латекса в кислой среде в качестве коагулирующего агента используют побочный продукт свеклосахарного производства мелассу свекловичную (Провоторова М.А., Никулина Н.С., Стадник Л.Н., Папков В.Н., Никулин С.С. Математическое планирование эксперимента при изучении процесса выделения каучука из латекса с использованием отхода свеклосахарного производства. Промышленное производство и использование эластомеров, Москва, 2016 г., Выпуск 2, С. 43-45). Однако применение мелассы свекловичной в чистом виде при выделении каучука из латекса имеет ряд недостатков. Во-первых, большой расход мелассы свекловичной: при расходе серной кислоты 15 кг/т каучука расход мелассы свекловичной составляет около 200 кг/т каучука. При этом рН коагулируемой системы составляет 5,0÷5,5, что приводит к ухудшению коагулирующих свойств мелассы. Во-вторых, большой расход серной кислоты: для поддержания значения кислотности коагулируемой системы на уровне рН 3,0÷3,5 необходимо повышать расход серной кислоты до 30÷40 кг/т каучука. Расход мелассы при этом снижается до 90÷120 кг/т каучука.
Наиболее близким техническим решением к предлагаемому - прототипом - является способ получения бутадиен-стирольного каучука путем сополимеризации бутадиена со стиролом в водной эмульсии по свободно-радикальному механизму с применением в качестве инициатора окислительно-восстановительной системы, стопперировании процесса, дегазации, введении антиоксиданта или масла, заправленного антиоксидантом, при выпуске маслонаполненного каучука и выделении каучука из латекса методом коагуляции с использованием в качестве коагулирующего агента хлорида натрия и подкислении серной кислотой, фильтрации, промывки водой и сушки (Кирпичников П.А., Береснев В.В., Попова Л.М. Альбом технологических схем основных производств промышленности синтетического каучука: Учеб. пособие для вузов. - 2-е изд., перераб. - Л.: Химия, 1986 - с. 173). Основными недостатками данного способа являются: высокий расход хлорида натрия на 1 тонну выделяемого каучука - до 250 кг, а также загрязнение сточных вод хлоридом натрия и другими компонентами эмульсионной сополимеризации.
Технической задачей, на решение которой направлено данное изобретение, является уменьшение расхода коагулирующего агента, без снижения кислотности коагулируемой системы, а также исключение потерь компонентов эмульсионной сополимеризации, что, в свою очередь, приводит к увеличению производительности процесса сополимеризации без ухудшения физико-механических показателей получаемых вулканизатов и снижению загрязнения сточных вод производства компонентами эмульсионной сополимеризации.
Для решения поставленной задачи предложен способ получения бутадиен-стирольного каучука путем сополимеризации бутадиена со стиролом в водной эмульсии по свободно-радикальному механизму с применением в качестве инициатора окислительно-восстановительной системы, стопперировании процесса, дегазации, введении антиоксиданта или масла, заправленного антиоксидантом, при выпуске маслонаполненного каучука и выделении каучука из латекса методом коагуляции с подкислением серной кислотой и использованием тройного коагулянта, состоящего из хлорида натрия, полидиаллилдиметиламмоний хлорида и побочного продукта пищевой промышленности мелассы свекловичной или мелассы обессахаренной или удобрения органического Фертил при следующем расходе компонентов, кг/т каучука: хлорид натрия - 10÷50; полидиаллилдиметиламмоний хлорид - 0,1÷1,0; побочный продукт пищевой промышленности - 20÷50, дальнейшей фильтрации, промывки водой и сушки.
Использование в качестве коагулирующего агента тройного коагулянта, состоящего из хлорида натрия, полимерной четвертичной соли аммония и побочного продукта пищевой промышленности, позволяет значительно уменьшить расход коагулянта без снижения кислотности коагулируемой системы. При этом значительное количество хлорида натрия заменяется на менее стойкий в биологическом отношении коагулянт на основе побочного продукта пищевой промышленности.
Заявляемый способ осуществляется следующим образом. Бутадиен-стирольный каучук получают непрерывной полимеризацией в водной эмульсии по свободно-радикальному механизму с применением в качестве инициатора окислительно-восстановительной системы при температуре 4÷10°С. Сополимеризацию бутадиена со стиролом осуществляют в батарее, состоящей из последовательно соединенных полимеризаторов, представляющих собой реакторы с перемешивающим устройством рамного типа, змеевиком и рубашкой для охлаждения. Регулирование длины цепи сополимера осуществляют регуляторами молекулярной массы. Для прекращения роста цепи при достижении заданной степени конверсии мономеров (69÷85%) в последний полимеризатор батареи, работающий как "дозреватель", подают раствор стоппера, который прекращает реакцию полимеризации. Полученный латекс подают на дегазацию, где происходит отгонка незаполимеризовавшихся мономеров (бутадиена и стирола). Дегазированный латекс направляют на выделение каучука из латекса коагуляцией. Перед коагуляцией дегазированный латекс смешивают с эмульсией стабилизатора, а при выпуске маслонаполненного каучука дегазированный латекс смешивают с маслом, заправленным антиоксидантом. В качестве коагулирующего агента используют тройной коагулянт, состоящий из хлорида натрия, полимерной четвертичной соли аммония - полидиаллилдиметиламмоний хлорида, выпускаемого в промышленных условиях под разными товарными марками, например, ВПК-402, и побочного продукта пищевой промышленности мелассы свекловичной или мелассы обессахаренной или удобрения органического Фертил. Латекс последовательно смешивают с водными растворами хлорида натрия, полидиаллилдиметиламмоний хлорида и побочного продукта пищевой промышленности в течение 3÷5 минут при следующем расходе компонентов, кг/т каучука: хлорид натрия - 10÷50; полидиаллилдиметиламмоний хлорид - 0,1÷1,0; побочный продукт пищевой промышленности - 20÷50. В процессе смешения происходит агломерирование латекса. Далее для завершения процесса коагуляции в коагулируемую систему при непрерывном перемешивании вводят для подкисления водный раствор серной кислоты в количестве, достаточном для выдерживания рН коагуляции в пределах 2,5÷3,5единиц. При этом происходит образование зернистого коагулюма и превращение мыл в свободные карбоновые кислоты. Образовавшуюся крошку каучука в серуме (пульпу) отфильтровывают от серума, то есть формуют ленту каучука, далее ленту каучука промывают водой и сушат при температуре не более 160°С до содержания влаги не более 0,4% масс.
В качестве побочного продукта пищевой промышленности используют мелассу двух видов: меласса свекловичная (ГОСТ 30561-2013) - побочный продукт при переработке сахарной свеклы, а также обессахаренная меласса (ТУ 9112-002-01503401-2011) - кормовая добавка, получаемая в процессе извлечения сахара из свекловичной мелассы.
Меласса состоит из 20÷25% воды, около 9% азотистых соединений (преимущественно амидов), 58÷60% остаточных углеводов, главным образом представляющих собой сахарозу и рафинозу, до 7÷10% золы.
Аргументом, служащим основанием для использования мелассы в качестве коагулянта, является следующий факт. Хорошо изучено эффективное коагулирующее действие различных азотистых производных, относящихся к катионактивным электролитам. В свежеприготовленных растворах мелассы их содержится около 9% и эта величина значительно увеличивается в процессе ферментативного брожения. Основным азотсодержащим компонентом мелассы являются бетаины гликоколя - 73,9%, содержащие в составе молекулы положительно и отрицательно заряженные группы, т.е. представляющие собой цвиттер-ионы, которые могут работать как катионактивные электролиты.
Другой побочный продукт пищевой промышленности, используемый в качестве коагулянта латекса, это побочный продукт производства хлебопекарных прессованных дрожжей - удобрение органическое Фертил (ТУ 9182-046-48975583-2012). Сырьем для производства побочного продукта дрожжевого производства служит сусло без содержания дрожжей, произведенное на основе свекловичной мелассы. В составе Фертила присутствуют органические соединения, в том числе содержащие азот, которые и выполняют функцию коагулирующего агента. Фертил не содержат патогенной флоры.
Техническим результатом заявляемого изобретения является уменьшение расхода коагулирующего агента, без снижения кислотности коагулируемой системы, а также исключение потерь компонентов эмульсионной сополимеризации, что, в свою очередь, приводит к увеличению производительности процесса сополимеризации без ухудшения физико-механических показателей получаемых вулканизатов и снижению загрязнения сточных вод производства компонентами эмульсионной сополимеризации (хлоридом натрия, биологически неразлагаемым диспергатором лейканолом и др.).
Изобретение иллюстрируется следующими примерами.
Опыты проведены на производстве бутадиен-стирольных каучуков ОАО «Стерлитамакский нефтехимический завод».
Полноту коагуляции оценивали визуально (серум прозрачный, без включений - коагуляция полная), а также по массе образующейся крошки каучука.
Пример 1 (прототип).
Сополимеризацию бутадиена со стиролом осуществляют по непрерывной схеме при температуре 4÷10°С в батарее, состоящей из полимеризаторов. При достижении степени конверсии мономеров 80÷82% в последний полимеризатор батареи подают раствор стоппера. Полученный латекс бутадиен-стирольного каучука СКС-30 АРК подают на дегазацию, где происходит отгонка незаполимеризовавшихся мономеров (бутадиена и стирола). Дегазированный латекс направляют на выделение каучука из латекса коагуляцией. Перед коагуляцией дегазированный латекс смешивают с эмульсией стабилизатора. В качестве коагулирующего агента используют хлорид натрия, который вводят в латекс в виде 24%-ного водного раствора при постоянном перемешивании. Для завершения процесса коагуляции при непрерывном перемешивании вводят 2%-ный водный раствор серной кислоты, при этом достигается рН коагуляции 3,0. После коагуляции образовавшуюся крошку каучука в серуме (пульпу) отфильтровывают от серума, промывают водой и сушат при температуре 120÷160°С до содержания влаги не более 0,4% масс. Результаты опыта представлены в таблице 1.
Figure 00000001
Из результатов опыта, приведенных в таблице 1, видно, что температура процесса коагуляции не оказывает существенного влияния на изменение расхода хлорида натрия, подкисляющего агента и на выход крошки каучука. Содержание лейканола в серуме, стойкого в биологическом отношении диспергатора, находится на высоком уровне, что недопустимо с экологической точки зрения.
Пример 2.
Опыт проводят как в примере 1, при этом в качестве коагулирующего агента используют тройной коагулянт, состоящий из хлорида натрия, полидиаллилдиметиламмоний хлорида, выпускаемого в промышленных условиях под разными товарными марками, например, ВПК-402, и побочного продукта пищевой промышленности мелассы свекловичной. Латекс последовательно смешивают с 24%-ным водным раствором хлорида натрия, 2%-ным водным раствором ВПК-402 и 22%-ным водным раствором мелассы свекловичной в течение 3+5 минут при следующем расходе компонентов: хлорид натрия -10 кг/т каучука; ВПК-402 - 1,0 кг/т каучука и меласса свекловичная - 50 кг/т каучука. Результаты опыта представлены в таблице 2.
Пример 3.
Опыт проводят как в примере 2, при следующем расходе компонентов: хлорид натрия - 35 кг/т каучука; ВПК-402 - 0,5 кг/т каучука и меласса свекловичная - 30 кг/т каучука. Результаты опыта представлены в таблице 2.
Пример 4.
Опыт проводят как в примере 2, при следующем расходе компонентов: хлорид натрия - 50 кг/т каучука; ВПК-402 - 0,1 кг/т каучука и меласса свекловичная - 20 кг/т каучука. Результаты опыта представлены в таблице 2.
Пример 5.
Опыт проводят как в примере 2, при следующем расходе компонентов: хлорид натрия - 35 кг/т каучука; ВПК-402 - 0,7 кг/т каучука и меласса свекловичная - 30 кг/т каучука. Результаты опыта представлены в таблице 2.
Figure 00000002
Аналогичные результаты были получены и при использовании в качестве коагулирующего агента тройного коагулянта, состоящего из хлорида натрия, ВПК-402 и побочного продукта пищевой промышленности мелассы обессахаренной.
Пример 6.
Опыт проводят как в примере 1, при этом в качестве коагулирующего агента используют тройной коагулянт, состоящий из хлорида натрия, полидиаллилдиметиламмоний хлорида, выпускаемого в промышленных условиях под разными товарными марками, например, ВПК-402, и побочного продукта пищевой промышленности мелассы обессахаренной. Латекс последовательно смешивают с 24%-ным водным раствором хлорида натрия, 2%-ным водным раствором ВПК-402 и 20%-ным водным раствором мелассы обессахаренной в течение 3÷5 минут при следующем расходе компонентов: хлорид натрия - 10 кг/т каучука; ВПК-402 - 1,0 кг/т каучука и меласса обессахаренная - 50 кг/т каучука. Результаты опыта представлены в таблице 3.
Пример 7.
Опыт проводят как в примере 6, при следующем расходе компонентов: хлорид натрия - 30 кг/т каучука; ВПК-402 - 0,5 кг/т каучука и меласса обессахаренная - 35 кг/т каучука. Результаты опыта представлены в таблице 3.
Пример 8.
Опыт проводят как в примере 6, при следующем расходе компонентов: хлорид натрия - 50 кг/т каучука; ВПК-402 - 0,1 кг/т каучука и меласса обессахаренная - 20 кг/т каучука. Результаты опыта представлены в таблице 3.
Пример 9.
Опыт проводят как в примере 6, при следующем расходе компонентов: хлорид натрия - 30 кг/т каучука; ВПК-402 - 0,7 кг/т каучука и меласса обессахаренная - 35 кг/т каучука. Результаты опыта представлены в таблице 3.
Figure 00000003
Пример 10.
Опыт проводят как в примере 1, при этом в качестве коагулирующего агента используют тройной коагулянт, состоящий из хлорида натрия, полидиаллилдиметиламмоний хлорида, выпускаемого в промышленных условиях под разными товарными марками, например, ВПК-402, и побочного продукта пищевой промышленности Фертил. Латекс последовательно смешивают с 24%-ным водным раствором хлорида натрия, 2%-ным водным раствором ВПК-402 и 18%-ным водным раствором Фертила в течение 3+5 минут при следующем расходе компонентов: хлорид натрия - 10 кг/т каучука; ВПК-402 - 1,0 кг/т каучука и Фертил - 50 кг/т каучука. Результаты опыта представлены в таблице 4.
Пример 11.
Опыт проводят как в примере 10, при следующем расходе компонентов: хлорид натрия - 30 кг/т каучука; ВПК-402 - 0,5 кг/т каучука и Фертил - 35 кг/т каучука. Результаты опыта представлены в таблице 4.
Пример 12.
Опыт проводят как в примере 10, при следующем расходе компонентов: хлорид натрия - 50 кг/т каучука; ВПК-402 - 0,1 кг/т каучука и Фертил - 20 кг/т каучука. Результаты опыта представлены в таблице 4.
Пример 13.
Опыт проводят как в примере 10, при следующем расходе компонентов: хлорид натрия - 30 кг/т каучука; ВПК-402 - 0,7 кг/т каучука и Фертил - 35 кг/т каучука. Результаты опыта представлены в таблице 4.
Figure 00000004
Пример 14.
Опыт проводят как в примере 1, при этом дегазированный латекс смешивают с маслом, заправленным антиоксидантом, а полученный латекс маслонаполненного бутадиен-стирольного каучука СКС-30 АРКМ-15 направляют на выделение каучука из латекса коагуляцией. В качестве коагулирующего агента используют тройной коагулянт, состоящий из хлорида натрия, полидиаллилдиметиламмоний хлорида, выпускаемого в промышленных условиях под разными товарными марками, например, ВПК-402, и побочного продукта пищевой промышленности мелассы обессахаренной. Латекс последовательно смешивают с 24%-ным водным раствором хлорида натрия, 2%-ным водным раствором ВПК-402 и 20%-ным водным раствором мелассы обессахаренной в течение 3÷5 минут при следующем расходе компонентов: хлорид натрия - 10 кг/т каучука; ВПК-402 - 1,0 кг/т каучука и меласса обессахаренная - 50 кг/т каучука. Результаты опыта представлены в таблице 5.
Пример 15.
Опыт проводят как в примере 1, при этом дегазированный латекс смешивают с маслом, заправленным антиоксидантом, а полученный латекс маслонаполненного бутадиен-стирольного каучука СКС-30 АРКМ-27 направляют на выделение каучука из латекса коагуляцией. В качестве коагулирующего агента используют тройной коагулянт, состоящий из хлорида натрия, полидиаллилдиметиламмоний хлорида, выпускаемого в промышленных условиях под разными товарными марками, например, ВПК-402, и побочного продукта пищевой промышленности мелассы обессахаренной. Латекс последовательно смешивают с 24%-ным водным раствором хлорида натрия, 2%-ным водным раствором ВПК-402 и 20%-ным водным раствором мелассы обессахаренной в течение 3÷5 минут при следующем расходе компонентов: хлорид натрия - 10 кг/т каучука; ВПК-402 - 1,0 кг/т каучука и меласса обессахаренная - 50 кг/т каучука. Результаты опыта представлены в таблице 5.
Figure 00000005
Экспериментальные данные, представленные в таблицах 2÷5, показывают, что применение для выделения каучука из латекса тройного коагулянта, состоящего из хлорида натрия, полидиаллилдиметиламмоний хлорида и побочного продукта пищевой промышленности мелассы свекловичной или мелассы обессахаренной или удобрения органического Фертил, позволяет достигнуть полноты выделения каучука из латекса при расходе хлорида натрия - 10÷50 кг/т каучука, полидиаллилдиметиламмоний хлорида - 0,1÷1,0 кг/т каучука и побочного продукта пищевой промышленности - 20÷50 кг/т каучука. Заявляемое изобретение позволяет уменьшить общий расход коагулянта для выделения каучука из латекса, при этом в несколько раз снизить расход хлорида натрия по сравнению с прототипом и заменить его на менее стойкий в биологическом отношении коагулянт, представляющий собой побочный продукт пищевой промышленности. При этом рН коагуляции не увеличивается. Важно отметить, что содержание биологически неразлагаемого диспергатора лейканола в серуме при этом снижается вплоть до полного отсутствия. Содержание лейканола в серуме в прототипе составляет 240 мг/л.
Для оценки свойств каучука, выделенного из латекса с использованием тройного коагулянта, в сравнении с каучуком, выделенным традиционным коагулянтом - хлоридом натрия (по прототипу), были приготовлены резиновые смеси, а их вулканизаты испытаны на физико-механические показатели. Результаты испытаний представлены в таблице 6.
Figure 00000006
Анализ резиновых смесей и вулканизатов, приготовленных на основе каучука, выделенного из латекса тройным коагулянтом, показывает, что физико-механические показатели практически не отличаются от показателей каучука, выделенного хлоридом натрия.

Claims (2)

1. Способ получения бутадиен-стирольного каучука путем сополимеризации бутадиена со стиролом в водной эмульсии по свободно-радикальному механизму с применением в качестве инициатора окислительно-восстановительной системы, стопперировании процесса, дегазации, введении антиоксиданта или масла, заправленного антиоксидантом при выпуске маслонаполненного каучука, выделении каучука из латекса методом коагуляции с использованием хлорида натрия и подкислением серной кислотой, фильтрации, промывки водой и сушки, отличающийся тем, что в качестве коагулирующего агента используют тройной коагулянт, содержащий хлорид натрия, полидиаллилдиметиламмоний хлорид и побочный продукт пищевой промышленности - мелассу свекловичную, или мелассу обессахаренную, или удобрение органическое Фертил при следующем расходе компонентов, кг/т каучука: хлорид натрия – 10-50; полидиаллилдиметиламмоний хлорид - 0,1-1,0; побочный продукт пищевой промышленности – 20-50.
2. Бутадиен-стирольный каучук, полученный способом по п. 1.
RU2017129493A 2017-08-18 2017-08-18 Способ получения бутадиен-стирольного каучука RU2660084C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017129493A RU2660084C1 (ru) 2017-08-18 2017-08-18 Способ получения бутадиен-стирольного каучука

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017129493A RU2660084C1 (ru) 2017-08-18 2017-08-18 Способ получения бутадиен-стирольного каучука

Publications (1)

Publication Number Publication Date
RU2660084C1 true RU2660084C1 (ru) 2018-07-04

Family

ID=62815912

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017129493A RU2660084C1 (ru) 2017-08-18 2017-08-18 Способ получения бутадиен-стирольного каучука

Country Status (1)

Country Link
RU (1) RU2660084C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792127C2 (ru) * 2021-06-15 2023-03-16 Федеральное государственное унитарное предприятие "Научно-исследовательский институт синтетического каучука им. академика С.В. Лебедева" Способ регулирования очистки сточных вод производства бутадиен-нитрильных каучуков от сульфосодержащих анионных поверхностно-активных веществ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2253556C1 (ru) * 2004-06-10 2005-06-10 Закрытое акционерное общество Научно-производственное объединение "ПОЛИМЕТАЛЛ" Сварочная проволока
RU2010115042A (ru) * 2010-04-14 2011-10-20 Общество с ограниченной ответственностью "Тольяттикаучук" (RU) Способ выделения бутадиен-(альфа-метил) стирольного каучука из латекса
RU2489446C2 (ru) * 2011-11-17 2013-08-10 ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "СИБУР Холдинг" Способ выделения синтетических каучуков эмульсионной полимеризации из латексов
WO2016030908A1 (en) * 2014-08-28 2016-03-03 Srimanta Ray A method for coagulation of rubber latex

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2253556C1 (ru) * 2004-06-10 2005-06-10 Закрытое акционерное общество Научно-производственное объединение "ПОЛИМЕТАЛЛ" Сварочная проволока
RU2010115042A (ru) * 2010-04-14 2011-10-20 Общество с ограниченной ответственностью "Тольяттикаучук" (RU) Способ выделения бутадиен-(альфа-метил) стирольного каучука из латекса
RU2489446C2 (ru) * 2011-11-17 2013-08-10 ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "СИБУР Холдинг" Способ выделения синтетических каучуков эмульсионной полимеризации из латексов
WO2016030908A1 (en) * 2014-08-28 2016-03-03 Srimanta Ray A method for coagulation of rubber latex

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
П.А.КИРПИЧНИКОВ И ДР. Альбом технологических схем основных производств промышленности синтетического каучука, 2-е изд., перераб., Ленинград, Химия, 1986, с. 173. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792127C2 (ru) * 2021-06-15 2023-03-16 Федеральное государственное унитарное предприятие "Научно-исследовательский институт синтетического каучука им. академика С.В. Лебедева" Способ регулирования очистки сточных вод производства бутадиен-нитрильных каучуков от сульфосодержащих анионных поверхностно-активных веществ

Similar Documents

Publication Publication Date Title
RU2638960C2 (ru) Бутадиеновый каучук со скачкообразно повышенной вязкостью по муни, получаемый с использованием неодимового катализатора
RU2538972C2 (ru) Улучшенная конверсия мономера в эмульсионной полимеризации
CN110305252B (zh) 一种制备大粒径二烯类橡胶胶乳的方法
AU630525B2 (en) process for polymerzation and recovery of nitrile rubber containing high bound acrylonitrile
RU2542250C2 (ru) Способ получения твердых полимерных материалов
JP4334279B2 (ja) エマルジョンポリマーの製造法
RU2660084C1 (ru) Способ получения бутадиен-стирольного каучука
EP0822204A2 (en) Method for the production of nitrile rubber
EP0032978B1 (de) Polychloropren-Klebstoff mit verbesserter Topfzeit und seine Herstellung
RU2489446C2 (ru) Способ выделения синтетических каучуков эмульсионной полимеризации из латексов
CN104403039B (zh) 一种胶乳门尼粘度稳定性高的硫调型氯丁橡胶的制备方法
CN113773415A (zh) 一种提高全胶乳质量一致性的方法
DE2223186A1 (de) Verbesserte ABS-Kunststoffe,schlagzaehmachende Vormischungen dafuer und ihre Herstellung
CA1193047A (en) Continuous polymerization of chloroprene
US3346631A (en) Liquid carboxylated polymers and method of preparing the same
RU2677260C1 (ru) Способ получения латекса и применение полученного таким способом латекса
US11326047B2 (en) Method of preparing thermoplastic resin
US2514363A (en) Alkyl phenol-hydroxylamine mixtures as polymerization shortstops
US3980600A (en) Process for removing residual mercaptan from high nitrile polymers
US2574020A (en) Shortstopping an emulsion polymerization reaction with alkyl polysulfide
US2458456A (en) Emulsion polymerization
DE1269360B (de) Verfahren zur Herstellung von thermoplastisch-elastischen Formmassen
KR20130033175A (ko) 열안정성이 우수한 abs그라프트 수지 및 이의 제조방법
US2491519A (en) Coagulation of butadiene-acrylo-nitrile copolymers
RU2758384C1 (ru) Способ получения бутадиен-стирольного каучука