RU2654533C2 - Устройство для коммутации постоянного тока - Google Patents

Устройство для коммутации постоянного тока Download PDF

Info

Publication number
RU2654533C2
RU2654533C2 RU2016129625A RU2016129625A RU2654533C2 RU 2654533 C2 RU2654533 C2 RU 2654533C2 RU 2016129625 A RU2016129625 A RU 2016129625A RU 2016129625 A RU2016129625 A RU 2016129625A RU 2654533 C2 RU2654533 C2 RU 2654533C2
Authority
RU
Russia
Prior art keywords
current
path
switching
transformer
winding
Prior art date
Application number
RU2016129625A
Other languages
English (en)
Other versions
RU2016129625A (ru
RU2016129625A3 (ru
Inventor
Йорг ДОРН
Доминик ЭРГИН
Херберт ГАМБАХ
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2016129625A publication Critical patent/RU2016129625A/ru
Publication of RU2016129625A3 publication Critical patent/RU2016129625A3/ru
Application granted granted Critical
Publication of RU2654533C2 publication Critical patent/RU2654533C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/544Contacts shunted by static switch means the static switching means being an insulated gate bipolar transistor, e.g. IGBT, Darlington configuration of FET and bipolar transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Изобретение относится к устройству (1) для коммутации постоянного тока, содержащему путь (5) рабочего тока, который содержит механический переключатель (7), путь (15) тока отключения, включенный параллельно пути (5) рабочего тока, который содержит силовой электронный переключатель (17), и коммутационное устройство, которое обеспечивает возможность коммутации постоянного тока от пути (5) рабочего тока в путь (15) тока отключения. При этом коммутационное устройство содержит трансформатор (21). 2 н. и 13 з.п. ф-лы, 6 ил.

Description

Изобретение относится к устройству для коммутации постоянного тока, содержащему путь рабочего тока, который содержит механический переключатель, путь тока отключения, включенный параллельно пути рабочего тока, который содержит силовой электронный переключатель, и коммутационное устройство, которое обеспечивает возможность коммутации постоянного тока от пути рабочего тока в путь тока отключения.
Кроме того, изобретение относится к способу отключения постоянного тока с подобным устройством.
Устройство вышеуказанного типа известно из международной патентной заявки 2013/131582 A1. В этом известном устройстве коммутационное устройство содержит последовательную цепь из двухполюсных подмодулей, причем каждый подмодуль имеет накопитель энергии и силовую полупроводниковую схему. Для того чтобы заряжать накопители энергии подмодулей, предусмотрена цепь заряда, которая соединяет путь тока отключения, имеющий высоковольтный потенциал, с потенциалом заземления. Энергоснабжение коммутационного устройства требует в данном случае значительных затрат.
В основе изобретения лежит задача предоставить устройство и способ, с помощью которых постоянные токи могут надежно коммутироваться простым и экономичным образом. Эта задача в соответствии с изобретением решается устройством по пункту 1 формулы изобретения и способом по пункту 12 формулы изобретения. Предпочтительные варианты осуществления устройства и способа приведены в зависимых пунктах формулы изобретения.
Раскрыто устройство для коммутации постоянного тока, содержащее путь рабочего тока, который содержит механический выключатель, путь тока отключения, включенный параллельно пути рабочего тока, который содержит силовой электронный переключатель, и коммутационное устройство, которое обеспечивает возможность коммутации от пути рабочего тока в путь тока отключения, причем коммутационное устройство содержит трансформатор. При этом особенно предпочтительно, что коммутация постоянного тока от пути рабочего тока в путь тока отключения осуществляется посредством трансформатора.
Устройство может быть выполнено таким образом, что трансформатор имеет первую обмотку и вторую обмотку, которые гальванически разделены. Тем самым предпочтительным образом достигается гальваническая развязка, так что путь тока отключения гальванически отделен от других подключенных к трансформатору блоков.
Устройство также может быть выполнено таким образом, что между первой обмоткой и второй обмоткой трансформатора размещена изоляция с высоким пробивным напряжением. Тем самым предпочтительным образом может быть реализована большая разность потенциалов между путем тока отключения и другими подключенными к трансформатору блоками.
Устройство также может быть выполнено таким образом, что путь тока отключения содержит последовательную цепь из второй обмотки трансформатора и силового электронного переключателя. Такое выполнение позволяет предпочтительным образом с помощью второй обмотки трансформатора вводить напряжение коммутации в путь тока отключения.
Устройство также может быть выполнено таким образом, что первая обмотка трансформатора соединена с блоком питания, посредством которого может оказываться влияние на напряжение, возникающее на второй обмотке трансформатора, в частности, оно может таким образом устанавливаться. При этом выполнении с помощью блока питания может оказываться влияние на напряжение (напряжение коммутации), возникающее на второй обмотке трансформатора, или оно может таким образом устанавливаться.
Устройство предпочтительным образом может быть выполнено так, что блок питания содержит инвертор. С помощью инвертора к первой обмотке трансформатора может прикладываться напряжение, изменяемое в широких пределах, так что тем самым напряжение, возникающее на второй обмотке трансформатора, может в широких пределах подвергаться воздействию или устанавливаться.
Устройство также может быть выполнено таким образом, что блок питания содержит накопитель энергии, в частности конденсатор. Блок питания с таким накопителем энергии предпочтительным образом обеспечивает возможность энергонезависимой работы устройства. Это имеет преимущество, например, в случае сбоя электропитания в высоковольтной сети постоянного тока, к которой подключено устройство.
При этом устройство может быть выполнено таким образом, что накопитель энергии выполнен с возможностью накопления электрической энергии, необходимой для коммутации. При этом электрическая емкость накопителя энергии, в частности, выбрана таким образом, что накопитель энергии накапливает достаточно большую электрическую энергию, чтобы выполнить полный процесс коммутации.
Устройство также может быть выполнено таким образом, что силовой электронный переключатель выполнен с возможностью проведения постоянного тока в обоих направлениях и отключения такого постоянного тока (то есть отключения постоянных токов, протекающих в обоих направлениях). Это позволяет с помощью устройства отключать постоянный ток, который протекает в пути рабочего тока в одном направлении. При необходимости, с помощью устройства может также отключаться постоянный ток, который протекает в пути рабочего тока в противоположном направлении.
Устройство может быть выполнено таким образом, что силовой электронный переключатель имеет встречно-последовательную цепь из нескольких переключающих модулей. В этом случае каждый переключающий модуль имеет переключающий элемент и встречно-параллельно включенный диод. Переключающий элемент может быть, в частности, силовым полупроводниковым переключателем.
Устройство также может быть выполнено таким образом, что путь рабочего тока и путь тока отключения имеют высоковольтный потенциал, а первая обмотка трансформатора и блок питания имеют низковольтный потенциал. В частности, первая обмотка трансформатора и блок питания могут быть соединены с потенциалом заземления. Это позволяет предпочтительным образом использовать устройство в высоковольтных сетях постоянного тока, чтобы отключать постоянные токи в ветвях этих высоковольтных сетей постоянного тока.
Кроме того, раскрыт способ для отключения постоянного тока в устройстве, содержащем
- путь рабочего тока, который содержит механический выключатель,
- путь тока отключения, включенный параллельно пути рабочего тока, который содержит силовой электронный переключатель, и
- коммутационное устройство, которое обеспечивает возможность коммутации постоянного тока от пути рабочего тока в путь тока отключения и которое содержит трансформатор, при этом в способе
- постоянный ток сначала протекает через путь рабочего тока, причем механический переключатель замкнут,
- посредством трансформатора в путь тока отключения вводится (прикладывается) напряжение коммутации,
- на основе напряжения коммутации вырабатывается ток коммутации, протекающий через путь тока отключения и путь рабочего тока, причем ток коммутации в пути рабочего тока направлен противоположно постоянному току,
- на основе тока коммутации ток, протекающий через путь рабочего тока, уменьшается и
- затем механический переключатель размыкается.
При этом особенно предпочтительно, что с помощью трансформатора напряжение коммутации вводится в путь тока отключения. Это обеспечивает возможность ввода напряжения коммутации в путь тока отключения при реализованной с помощью трансформатора гальванической развязке, в частности при полной развязке по напряжению. При этом способе устройство может быть выполнено в соответствии со всеми вариантами, приведенными выше.
Способ может быть выполнен таким образом, что механический переключатель размыкается только тогда, когда параметр тока, протекающего через путь рабочего тока, спадает ниже предопределенного порогового значения. В частности, механический переключатель может размыкаться только тогда, когда сила тока, протекающего через путь рабочего тока, спадает ниже предопределенного порогового значения.
Таким параметром может быть, например, измеренное значение i(t) тока, протекающего через путь рабочего тока, среднее значение измеренного тока в течение заданного временного интервала или другое связанное с током значение. В идеальном случае механический переключатель размыкается только тогда, когда ток, протекающий через путь рабочего тока, достиг нулевого значения. Тогда при размыкании механического переключателя не возникает электрическая дуга. На практике, однако, механический переключатель может размыкаться уже тогда, когда ток, протекающий через путь рабочего тока, спадает ниже заданного (малого) порогового значения. Тогда из-за низкого протекающего тока в механическом переключателе возникает (малая) электрическая дуга, которая, однако, безвредна при соответствующей дугостойкости переключателя.
Способ также может выполняться так, что (после того, как механический выключатель разомкнут) ток, протекающий через путь тока отключения, отключается с помощью силового электронного переключателя.
Таким образом, постоянный ток, который коммутируется от пути рабочего тока в путь тока отключения, отключается с помощью силового электронного переключателя, за счет чего возможно быстрое отключение постоянного тока.
Способ также может быть реализован таким образом, что путь рабочего тока и путь тока отключения работают на высоковольтном потенциале, а первая обмотка трансформатора и блок питания работают на низковольтном потенциале, в частности соединены с потенциалом заземления.
Способ также имеет преимущества, указанные выше в связи с устройством.
Далее изобретение поясняется более подробно на основе примеров выполнения. Для этой цели на чертежах представлено следующее:
фиг. 1 - принципиальная схема приведенного в качестве примера устройства,
фиг. 2 - более детальная схема устройства,
фиг. 3 - пример выполнения переключающего модуля с силовым полупроводниковым переключателем и безынерционным диодом,
фиг. 4 - пример выполнения силового электронного переключателя с несколькими переключающими модулями,
фиг. 5 - другой пример выполнения силового электронного переключателя с несколькими переключающими модулями и
фиг. 6 - пример выполнения переключающего модуля, который выполнен как модуль управления торможением.
На фиг. 1 показан вариант осуществления устройства 1 для коммутации постоянного тока I1. Это устройство 1 также может упоминаться как переключатель 1 постоянного тока. Устройство 1 имеет первый вывод 3, который электрически соединен с путем 5 рабочего тока. Путь рабочего тока содержит механический переключатель 7, один контакт которого электрически соединен с первым выводом 3, и другой контакт которого электрически соединен со вторым выводом 9. Первый вывод 3 соединен с первым проводом 11 не показанной высоковольтной сети постоянного тока, второй вывод 9 соединен со вторым проводом 13 этой высоковольтной сети постоянного тока. Во включенном состоянии устройства 1 механический переключатель 7 замкнут. Хотя на фиг. 1 механический переключатель 7 показан в разомкнутом состоянии, в дальнейшем, однако, при описании предполагается, что механический переключатель (в отличие от представления на фиг.1) замкнут. Во включенном состоянии электрический постоянный ток I1 протекает от первого провода 11 через первый вывод 3, замкнутый механический переключатель 7 пути 5 рабочего тока и второй вывод 9 ко второму проводу 13. В замкнутом состоянии механический переключатель 7 имеет очень низкое проходное сопротивление, вследствие этого при протекании тока через механический переключатель 7 возникают лишь незначительные электрические потери. Поэтому устройство 1 во включенном состоянии может проводить электрический ток лишь с незначительными потерями в пропускном направлении.
Устройство 1 дополнительно содержит путь 15 тока отключения, который включен параллельно пути 5 рабочего тока. Этот путь 15 тока отключения реализован в данном примере выполнения в виде электрической последовательной цепи из силового электронного переключателя 17 и второй обмотки 19 трансформатора 21. Первая обмотка 23 трансформатора 21 электрически соединена с блоком 25 питания. Трансформатор 21 и блок 25 питания образуют коммутационное устройство.
Первая обмотка 23 трансформатора 21 является первичной обмоткой, вторая обмотка 19 трансформатора 21 является вторичной обмоткой. Первая обмотка 23 и вторая обмотка 19 гальванически разъединены, между первой обмоткой 23 и второй обмоткой 19 размещена электрическая изоляция 27 с высоким пробивным напряжением. Это обеспечивает гальваническую развязку между второй обмоткой 19 и блоком 25 питания. В результате, блок 25 питания и вторая обмотка 19 могут быть реализованы на совершенно ином электрическом потенциале. В частности, потенциал второй обмотки 19 (как и потенциал механического переключателя 7, силового электронного переключателя 17, первого вывода 3 и второго вывода 9) может быть выполнен как высоковольтный потенциал 29, в то время как первая обмотка 23 и блок 25 питания имеют низковольтный потенциал. При этом особенно предпочтительно, что энергоснабжение блока 25 питания может осуществляться на низковольтном потенциале 31, вследствие чего дорогостоящее и трудоемкое энергоснабжение на высоковольтном потенциале 29 не требуется. Кроме того, предпочтительно, что также управление элементами блока питания может выполняться на низковольтном потенциале 31. Силовая электроника блока 25 питания может быть также реализована на низковольтном потенциале или потенциале заземления. Таким образом, лишь незначительные затраты на изоляцию требуются для блока 25 питания, так как он находится на низковольтном потенциале или потенциале заземления.
Блок 25 питания вырабатывает электрическое напряжение, которое прикладывается к первой обмотке 23 трансформатора 21. Таким образом, блок питания может влиять на напряжение, возникающее на второй обмотке 19 трансформатора вследствие индукции. Блок 25 питания и трансформатор 21, таким образом, служат для того, чтобы вводить в путь 15 тока отключения напряжение, которое служит в качестве напряжения коммутации. Это напряжение коммутации показано на фиг. 1 стрелкой Uk напряжения. Электрическая цепь тока с механическим переключателем 7, силовым электронным переключателем 17 и трансформатором 21 образуют контур коммутации устройства 1. Ввод напряжения Uk коммутации в путь 15 тока отключения обеспечивает возможность активной коммутации, то есть активного ввода процесса коммутации посредством напряжения Uk коммутации.
Во включенном состоянии устройства 1 механический переключатель 7 и силовой электронный переключатель 17 замкнуты (включены). В этом включенном состоянии постоянный ток I1 протекает почти полностью через путь 5 рабочего тока через механический переключатель 7, так как механический переключатель 7 имеет существенно меньшее сопротивление в пропускном направлении, чем силовой электронный переключатель 17. Когда постоянный ток I1 должен быть отключен с помощью устройства 1, это при высоком постоянном токе I1 возможно не только за счет того, что механический переключатель 7 размыкается. При отключении высокого тока I1 исключительно с помощью механического переключателя 7 в механическом переключателе 7 возникала бы электрическая дуга, которая могла бы его повредить или разрушить. Поэтому для отключения постоянный ток I1 направляется/коммутируется от пути 5 рабочего тока в путь 15 тока отключения; происходит коммутация тока I1 от пути 5 рабочего тока в путь 15 тока отключения. Для выполнения этой коммутации электрическое напряжение посредством блока 25 питания прикладывается к первой обмотке 23 трансформатора 21. На основе этого напряжения ток протекает через первую обмотку трансформатора. В связи с изменением тока в первой обмотке 23 трансформатора во второй обмотке 19 индуцируется напряжение Uk коммутации. На основе напряжения Uk коммутации в контуре коммутации (т.е. контуре, образованном посредством пути 5 рабочего тока и пути 15 тока отключения) протекает ток Ik коммутации. Этот ток Ik коммутации в пути рабочего тока направлен противоположно отключаемому току I1. Благодаря этому противоположно направленному току коммутации постоянный ток в пути 5 рабочего тока уменьшается.
Как только параметр постоянного тока I1 спадает ниже предопределенного порогового значения, механический переключатель 7 размыкается. Таким параметром постоянного тока I1 может быть, например, мгновенное значение i(t) тока I1, которое измеряется в пути рабочего тока. В идеальном случае механический переключатель 7 размыкается только тогда, когда постоянный ток I1, протекающий через механический переключатель 7, достигает нулевого значения. В этом случае в механическом переключателе 7 вообще не возникает никакой дуги. Однако механический переключатель 7 может также размыкаться уже тогда, когда постоянный ток I1, протекающий через механический переключатель 7, принял низкое значение (например, когда постоянный ток I1 становится ниже значения 100 A). В этом случае при размыкании механического переключателя 7 возникает, правда, электрическая дуга. Однако при соответствующем дугостойком выполнении механического переключателя 7 последний не повреждается из-за этой (слабой) дуги. Когда постоянный ток в пути 5 рабочего тока достигает нулевого значения и возможная электрическая дуга в механическом переключателе 7 гасится, изолирующий промежуток механического переключателя 7 затем может воспринимать напряжение.
Если постоянный ток I1, протекающий через путь рабочего тока, за счет тока Ik коммутации становится все меньшим, то, в свою очередь, постоянный ток, протекающий через путь 15 тока отключения, становится все большим. Таким образом, постоянный ток I1 коммутируется от пути 5 рабочего тока в путь 15 тока отключения. После того как постоянный ток I1 (полностью или почти полностью) коммутирован в путь 15 тока отключения, силовой электронный переключатель 17 размыкается и, тем самым, постоянный ток I1 отключается. Силовой электронный переключатель 17 может воспринимать энергию коммутации, возникающую при отключении, и преобразовывать в тепловую энергию. Таким образом, отключение постоянного тока I1 завершается.
На фиг. 2 устройство 1 согласно фиг.1 показано более детально. Можно видеть, что силовой электронный переключатель 17 имеет множество последовательно включенных переключающих модулей 210, параллельно каждому из которых подключен разрядник 213. Разрядник может быть выполнен, например, как металлооксидный варистор. Металлооксидные варисторы имеют особенно предпочтительную характеристику. Разрядник служит для поглощения или преобразования энергии коммутации, выделяющейся при отключении. Кроме того, разрядник 213 служит для защиты переключающего модуля 210 от пиков перенапряжения.
Силовой электронный переключатель 17 также может быть реализован таким образом, что он имеет только один переключающий модуль 210 с параллельно включенным разрядником 213. Тогда этот один переключающий модуль выполнен таким электрически прочным, что этот переключающий модуль может воспринимать полное напряжение, приложенное к силовому электронному переключателю 17. Если силовой электронный переключатель 17, как показано на фиг. 2, содержит множество последовательно соединенных переключающих модулей 210, то коммутируемое напряжение распределяется на отдельные переключающие модули, так что эти переключающие модули 210 должны, соответственно, иметь лишь сниженную электрическую прочность. Тем самым, могут использоваться экономичные переключающие модули с пониженным допустимым напряжением коммутации.
Кроме того, на фиг. 2 показано, что блок 25 питания содержит инвертор 228 и накопитель 230 энергии. Накопитель 230 энергии может быть выполнен, например, как конденсатор 230. Накопитель 230 энергии накапливает при включенном состоянии устройства 1 электрическую энергию, необходимую для коммутации постоянного тока I1. Накопитель 230 энергии может, например, снабжаться электрической энергией от обычной низковольтной сети, например сети переменного тока напряжением 380 Вт. Если накопитель 230 энергии заряжен, то он обеспечивает энергонезависимую работу устройства 1, даже в том случае, когда в сети электроснабжения, питающей накопитель 230 энергии, произошел сбой.
Инвертор 228 служит для питания трансформатора 21. В качестве инвертора 228 может быть использован обычный известный специалисту инвертор, например, встроенный в мостовую схему инвертор. Схема инвертора 228 может, таким образом, выполняться по-разному; здесь могут, например, использоваться также стандартные инверторы, которые доступны для промышленных приводов для различных мощностей.
Посредством инвертора 228 может в широких пределах регулироваться первичный ток, протекающий через первую обмотку 23 трансформатора 21. Таким образом, можно целенаправленным образом управлять процессом коммутации.
Например, с помощью инвертора 228 к первой обмотке 23 трансформатора 21 может прикладываться постоянное напряжение. Затем в первой обмотке 23 (которая представляет собой индуктивность) кратковременно протекает линейно возрастающий ток (di/dt=константа). На основе этого линейно возрастающего тока в первой обмотке 23 во второй обмотке 19 индуцируется такое напряжение коммутации, что ток Ik коммутации (по меньшей мере, кратковременно) также формируется как линейно возрастающий ток. С помощью этого тока Ik коммутации может выполняться процесс коммутации.
В другом примерном варианте с помощью инвертора 228 к первой обмотке 23 трансформатора 21 может прикладываться переменное напряжение. Тем самым, во второй обмотке 19 индуцируется переменное напряжение. На основе этого переменного напряжения в контуре коммутации протекает ток Ik коммутации.
Но также с помощью инвертора 228 могут прикладываться и другие сигналы напряжения к первой обмотке 23 трансформатора. Важно только, что на основе индуцированного во второй обмотке 19 напряжения Uk коммутации в контуре коммутации начинает протекать ток Ik коммутации, который направлен противоположно постоянному току I1, протекающему через механический переключатель 7.
Кроме того, на фиг. 2 показан датчик 233 тока, который измеряет ток, протекающий через путь 5 рабочего тока (и, таким образом, ток, протекающий через механический переключатель 7), с формированием измеренных значений тока. Датчик 233 тока передает эти измеренные значения тока в контроллер 235, который оценивает измеренные значения тока. Если контроллер 235 определяет, что параметр тока I1, протекающего через путь 5 рабочего тока, спадает ниже предопределенного порогового значения, он выдает команду размыкания на механический переключатель 7. Позже (когда механический переключатель 7 разомкнут) контроллер 235 дополнительно выдает команду размыкания на силовой электронный переключатель 17. Кроме того, контроллер 235 может также управлять инвертором 228, так что последний для ввода процесса коммутации выдает на первую обмотку 23 трансформатора 21 соответствующее напряжение. Контроллер 235, таким образом, управляет всем процессом отключения постоянного тока I1.
При этом является предпочтительным, что на основе гальванической развязки/разделения потенциалов трансформатора управление силовым электронным преобразователем 228 может осуществляться с низковольтным потенциалом, а не с высоковольтным потенциалом. Таким образом, требуются лишь незначительные затраты для электрической изоляции, охлаждения и связи с инвертором 228. За счет этого получается простая и экономически эффективная реализация устройства 1. Кроме того, посредством трансформатора предпочтительным образом достигается гальваническая развязка между накопителем 230 энергии и контуром 7, 17, 19 коммутации. Тем самым, накопитель 230 энергии может снабжаться электрической энергией/заряжаться очень просто и с низкими затратами.
На фиг. 3 в качестве примера представлено, как может быть выполнен переключающий модуль 210. Фиг. 3 показывает очень простую структуру переключающего модуля 210, который состоит только из переключающего элемента 311 и встречно-параллельно включенного безынерционного диода 312. В качестве переключающего элемента 311 могут, например, использоваться включаемые и отключаемые силовые полупроводниковые переключатели 311. При этом в качестве переключающего элемента 311 могут использоваться различные силовые полупроводниковые компоненты, например силовой транзистор, IGBT (биполярный транзистор с изолированным затвором) или GTO (тиристор с коммутируемым затвором).
На фиг. 4 показан пример выполнения силового электронного переключателя 17. Силовой электронный переключатель 17 содержит множество переключающих модулей 210, которые выполнены аналогично переключающему модулю, показанному на фиг. 2. Число переключающих модулей является переменным и может выбираться в соответствии с уровнем электрического напряжения, прикладываемого к переключателю 17. Переключающие модули 210 включены последовательно (последовательная цепь переключающих модулей 210), при этом все переключающие модули имеют одинаковую полярность. Параллельно каждому переключающему модулю 210 включен разрядник 213. С помощью этого силового электронного переключателя 17 может отключаться постоянный ток, протекающий в одном направлении.
На фиг. 5 представлен другой пример выполнения силового электронного переключателя 17. Этот силовой электронный переключатель 17 содержит множество переключающих модулей 210, которые выполнены идентично переключающим модулям, показанным на фиг. 2. Эти переключающие модули 210 включены встречно-последовательно. При этом встречно-последовательном включении переключающих модулей 210 полярность переключающих модулей изменяется, например смежные переключающие модули имеют разные полярности. Другими словами, переключающие модули 210 силового электронного переключателя 17 имеют противоположные полярности. Тем самым, посредством этого силового электронного переключателя 17 могут отключаться постоянные токи, протекающие в обоих направлениях. Как и в силовом электронным переключателе согласно фиг. 4, параллельно каждому переключающему модулю 210 включен разрядник 213.
При применении силового электронного переключателя 17 в соответствии с фиг.5с помощью устройства 1 могут отключаться постоянные токи, протекающие в обоих направлениях. Таким образом, могут также отключаться постоянные токи, которые протекают как постоянный ток I1, показанный на фиг.1, и могут отключаться постоянные токи, которые протекают в противоположном направлении. При этом инвертор 228 может быть выполнен таким образом, что он может прикладывать к первой обмотке 23 напряжение в любой полярности (например, за счет биполярного выполнения инвертора 228).
На фиг. 6 показан пример выполнения переключающего модуля 210', который в устройстве, показанном на фиг. 2, может заменить переключающий модуль 210 вместе с параллельно включенным разрядником 213. Переключающий модуль 210' по фиг.6 представляет собой известный как таковой так называемый модуль управления торможением, в котором электрическая энергия может быть преобразована в тепловую энергию с помощью омического сопротивления 610. Когда механический переключатель 7 разомкнут и способен воспринимать напряжение, коммутируемый постоянный ток протекает тогда через выводы 616 и 617 в переключающий модуль 210'. Первоначально этот постоянный ток протекает через подключенный напрямую к выводам 616 и 617 переключающий элемент 620. Когда этот переключающий элемент 620 отключается, постоянный ток протекает затем через диод 622 в конденсатор 625 и заряжает этот конденсатор 625. Когда напряжение на конденсаторе превысит заданное значение, включается переключающий элемент 630 в правой ветви переключения, в результате чего конденсатор разряжается через сопротивление 610; электрическая энергия преобразуется в сопротивлении 610 в тепло. За счет разряда конденсатора напряжение на конденсаторе уменьшается. При спадании ниже заданного нижнего значения напряжения на конденсаторе переключающий элемент 630 отключается, и конденсатор 625 снова заряжается. Это продолжается до тех пор, пока коммутируемый постоянный ток не будет отключен.
Описанный переключатель 1 постоянного тока или силовой переключатель 1 постоянного тока может с успехом использоваться в высоковольтных сетях передачи постоянного тока (HGÜ-сетях), чтобы отключать рабочие токи или токи неисправности. Он может также упоминаться как высоковольтный силовой переключатель 1 постоянного тока. Ввиду применения механического переключателя 7 и силового электронного переключателя 17 во включенном состоянии достигаются низкие потери в пропускном направлении; силовой электронный переключатель 17 обеспечивает возможность коротких времен реакции и быстрого отключения постоянных токов. Посредством коммутационного устройства, которое имеет трансформатор, могут быть реализованы большие разности потенциалов между путем тока отключения и блоком питания. За счет этого, в частности, упрощается энергоснабжение блока питания и/или управление блоком питания.
Выше было описано устройство для коммутации постоянного тока, а также способ коммутации постоянного тока, с помощью которых надежным и экономичным образом могут отключаться, в частности, большие постоянные токи на высоковольтном потенциале.

Claims (44)

1. Устройство (1) для коммутации постоянного тока, содержащее
путь (5) рабочего тока, который содержит механический переключатель (7),
путь (15) тока отключения, включенный параллельно пути (5) рабочего тока, который содержит силовой электронный переключатель (17), и
коммутационное устройство, которое обеспечивает возможность коммутации постоянного тока от пути (5) рабочего тока в путь (15) тока отключения,
отличающееся тем, что
коммутационное устройство содержит трансформатор (21).
2. Устройство по п. 1, отличающееся тем, что
трансформатор (21) имеет первую обмотку (23) и вторую обмотку (19), которые гальванически разделены.
3. Устройство по п. 1 или 2, отличающееся тем, что
между первой обмоткой (23) и второй обмоткой (19) трансформатора (21) размещена электрическая изоляция (27) с высоким пробивным напряжением.
4. Устройство по п. 2, отличающееся тем, что
путь (15) тока отключения содержит последовательную цепь из второй обмотки (19) трансформатора (21) и силового электронного переключателя (17).
5. Устройство по п. 2, отличающееся тем, что
первая обмотка (23) трансформатора (21) соединена с блоком (25) питания, посредством которого может оказываться влияние на напряжение, возникающее на второй обмотке (19) трансформатора (21).
6. Устройство по п. 5, отличающееся тем, что
блок (25) питания содержит инвертор (228).
7. Устройство по п. 5, отличающееся тем, что
блок (25) питания содержит накопитель (230) энергии, в частности конденсатор (230).
8. Устройство по п. 7, отличающееся тем, что
накопитель (230) энергии выполнен с возможностью накопления электрической энергии, необходимой для коммутации.
9. Устройство по п.1, отличающееся тем, что
силовой электронный переключатель (17) выполнен с возможностью проведения постоянного тока в обоих направлениях и отключения такого постоянного тока.
10. Устройство по п. 9, отличающееся тем, что
силовой электронный переключатель имеет встречно-последовательную цепь из нескольких переключающих модулей, причем каждый переключающий модуль имеет переключающий элемент и встречно-параллельно включенный диод.
11. Устройство по п. 5, отличающееся тем, что
путь (5) рабочего тока и путь (15) тока отключения имеют высоковольтный потенциал (29) и
первая обмотка (23) трансформатора (21) и блок (25) питания имеют низковольтный потенциал (31), в частности соединены с потенциалом заземления.
12. Способ отключения постоянного тока в устройстве, содержащем
путь (5) рабочего тока, который содержит механический переключатель (7),
путь (15) тока отключения, включенный параллельно пути (5) рабочего тока, который содержит силовой электронный переключатель (17), и
коммутационное устройство, которое обеспечивает возможность коммутации постоянного тока от пути (5) рабочего тока в путь (15) тока отключения и которое содержит трансформатор (21),
при этом в способе
постоянный ток сначала протекает через путь (5) рабочего тока, причем механический переключатель (7) замкнут,
посредством трансформатора (21) в путь (15) тока отключения вводится напряжение (UK) коммутации,
на основе напряжения (UK) коммутации вырабатывается ток (IK) коммутации, протекающий через путь (15) тока отключения и путь (5) рабочего тока, причем ток (IK) коммутации в пути рабочего тока направлен противоположно постоянному току,
на основе тока (IK) коммутации ток, протекающий через путь рабочего тока, уменьшается и
затем механический переключатель (7) размыкается.
13. Способ по п. 12, отличающийся тем, что
механический переключатель (7) размыкается только тогда, когда параметр тока, протекающего через путь рабочего тока, спадает ниже преопределенного порогового значения.
14. Способ по п. 12 или 13, отличающийся тем, что
после того, как механический переключатель (7) разомкнут, ток, протекающий через путь тока отключения, отключается с помощью силового электронного переключателя (17).
15. Способ по п. 12, отличающийся тем, что
путь (5) рабочего тока и путь (15) тока отключения работают на высоковольтном потенциале (29) и
первая обмотка (23) трансформатора (21) и блок (25) питания работают на низковольтном потенциале (31), в частности соединены с потенциалом заземления.
RU2016129625A 2014-01-21 2014-01-21 Устройство для коммутации постоянного тока RU2654533C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2014/051100 WO2015110142A1 (de) 2014-01-21 2014-01-21 Vorrichtung zum schalten eines gleichstroms

Publications (3)

Publication Number Publication Date
RU2016129625A RU2016129625A (ru) 2018-02-28
RU2016129625A3 RU2016129625A3 (ru) 2018-02-28
RU2654533C2 true RU2654533C2 (ru) 2018-05-21

Family

ID=50068971

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016129625A RU2654533C2 (ru) 2014-01-21 2014-01-21 Устройство для коммутации постоянного тока

Country Status (8)

Country Link
US (1) US10354820B2 (ru)
EP (1) EP3072143B1 (ru)
KR (1) KR101832868B1 (ru)
CN (1) CN105917431B (ru)
ES (1) ES2654098T3 (ru)
PL (1) PL3072143T3 (ru)
RU (1) RU2654533C2 (ru)
WO (1) WO2015110142A1 (ru)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015216216A1 (de) * 2015-08-25 2017-03-02 Siemens Aktiengesellschaft Vorrichtung und Verfahren zum Schalten eines Gleichstromes sowie Schienenfahrzeug mit der Vorrichtung
DE102016203256A1 (de) 2016-02-29 2017-08-31 Siemens Aktiengesellschaft Gleichspannungsschalter
US10356759B2 (en) * 2016-03-11 2019-07-16 Intel Corporation Parameter encoding techniques for wireless communication networks
DE102016204400A1 (de) * 2016-03-17 2017-09-21 Siemens Aktiengesellschaft Gleichspannungsschalter
DE102016120071A1 (de) * 2016-10-21 2018-04-26 Eaton Industries (Austria) Gmbh Niederspannungs-Schutzschaltgerät
DE102017101451A1 (de) * 2017-01-25 2018-07-26 Eaton Industries (Austria) Gmbh Niederspannungs-Schutzschaltgerät
CN107833772B (zh) * 2017-11-21 2020-04-21 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种人工过零技术主电路拓扑的电流转移方法
DE102018203636B3 (de) * 2018-03-09 2019-07-04 Ellenberger & Poensgen Gmbh Trennvorrichtung zur Gleichstromunterbrechung eines Strompfads, und Bordnetz eines Kraftfahrzeugs
WO2020101741A1 (en) * 2018-11-13 2020-05-22 Illinois Institute Of Technology Hybrid circuit breaker using a transient commutation current injector circuit
EP3654477A1 (de) * 2018-11-15 2020-05-20 Siemens Aktiengesellschaft Elektronischer schalter mit überspannungsschutz
JP6973954B2 (ja) * 2018-11-28 2021-12-01 東芝三菱電機産業システム株式会社 直流遮断装置
US11356946B2 (en) * 2019-05-02 2022-06-07 Qualcomm Incorporated Multi-user wake-up signal
WO2021005171A1 (en) 2019-07-09 2021-01-14 Abb Power Grids Switzerland Ag Power semiconductor module with integrated surge arrester
EP4036949A1 (en) * 2021-01-29 2022-08-03 Eaton Electrical Ltd. A hybrid dc circuit breaker
KR102660025B1 (ko) * 2021-03-31 2024-04-24 엘에스일렉트릭(주) 반도체 차단기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2299487C1 (ru) * 2005-09-22 2007-05-20 Олег Георгиевич Егоров Способ коммутации в сильноточных цепях постоянного тока
WO2013131580A1 (de) * 2012-03-09 2013-09-12 Siemens Aktiengesellschaft Verfahren zum zuschalten eines gleichspannungsnetzabschnitts mittels eines gleichspannungsschalters
WO2013131582A1 (de) * 2012-03-09 2013-09-12 Siemens Aktiengesellschaft Vorrichtung zum schalten von gleichströmen

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2299487A (en) * 1941-05-03 1942-10-20 Bell Telephone Labor Inc Electric wave transmission system
US5164872A (en) * 1991-06-17 1992-11-17 General Electric Company Load circuit commutation circuit
JPH07141966A (ja) * 1993-11-15 1995-06-02 Hitachi Ltd 転流式直流遮断器の主接点溶着検出方法及び装置
DE19844750C1 (de) * 1998-09-29 2000-03-09 Siemens Ag Anordnung zur Energieversorgung einer mit einem Versorgungsnetz verbundenen Last
CN107059116B (zh) * 2007-01-17 2019-12-31 晶体公司 引晶的氮化铝晶体生长中的缺陷减少
DE102007004527B4 (de) * 2007-01-24 2009-03-12 Siemens Ag Elektrisches Gleichstromnetz für Wasserfahrzeuge sowie für Offshoreanlagen
JP5275147B2 (ja) * 2009-06-12 2013-08-28 株式会社日立製作所 転流式直流遮断器の運転方法
DE102009030740A1 (de) * 2009-06-26 2010-12-30 Siemens Aktiengesellschaft Kommutierungsverfahren einer Stromrichterphase mit rückwärts leitfähigen IGBTs
US8717716B2 (en) * 2009-11-16 2014-05-06 Abb Technology Ag Device and method to break the current of a power transmission or distribution line and current limiting arrangement
JP2012079660A (ja) * 2010-10-06 2012-04-19 Hitachi Ltd 転流式交流遮断器
US9882371B2 (en) * 2012-06-19 2018-01-30 Siemens Aktiengesellschaft Direct current voltage switch for switching a direct current in a branch of a direct current voltage network node
CN104396112B (zh) * 2012-06-19 2017-03-29 西门子公司 使用纵向电压源在直流电网节点的支路中连接或断开电力
CN203385782U (zh) * 2013-08-09 2014-01-08 广州龙之杰科技有限公司 一种非变压器隔离的电压和电流采集装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2299487C1 (ru) * 2005-09-22 2007-05-20 Олег Георгиевич Егоров Способ коммутации в сильноточных цепях постоянного тока
WO2013131580A1 (de) * 2012-03-09 2013-09-12 Siemens Aktiengesellschaft Verfahren zum zuschalten eines gleichspannungsnetzabschnitts mittels eines gleichspannungsschalters
WO2013131582A1 (de) * 2012-03-09 2013-09-12 Siemens Aktiengesellschaft Vorrichtung zum schalten von gleichströmen

Also Published As

Publication number Publication date
WO2015110142A1 (de) 2015-07-30
ES2654098T3 (es) 2018-02-12
RU2016129625A (ru) 2018-02-28
CN105917431A (zh) 2016-08-31
KR20160100398A (ko) 2016-08-23
CN105917431B (zh) 2019-06-28
PL3072143T3 (pl) 2018-03-30
KR101832868B1 (ko) 2018-02-28
RU2016129625A3 (ru) 2018-02-28
US20170011875A1 (en) 2017-01-12
EP3072143B1 (de) 2017-09-27
EP3072143A1 (de) 2016-09-28
US10354820B2 (en) 2019-07-16

Similar Documents

Publication Publication Date Title
RU2654533C2 (ru) Устройство для коммутации постоянного тока
US10389262B2 (en) Device for temporarily taking over electrical current from an energy transfer or distribution device, when needed
CN106253649B (zh) 具有短路装置的电力变换器子模块和具有其的电力变换器
RU2599261C2 (ru) Подмодуль для модульного многоступенчатого преобразователя частоты
US8570779B2 (en) Method for limiting damage to a converter having power semiconductors in the case of a short circuit in the DC voltage intermediate circuit
US9780557B2 (en) Electrical apparatus
KR102269017B1 (ko) 전기 에너지 저장 유닛을 방전시키기 위한 방법
KR102227376B1 (ko) 전류 경로를 분리하기 위한 스위칭 디바이스
US20150372474A1 (en) Circuit interruption device
CN111937110B (zh) 开关设备
US20160380428A1 (en) Voltage limiter
GB2542789A (en) Fault protection for voltage source converters
US11368084B2 (en) Current converter unit, transmission installation having a current converter unit, and method for fault management in a current converter unit
US20210359617A1 (en) Electrical assembly
WO2015036457A1 (en) Voltage source converter
US20200395757A1 (en) Fault handling
WO2015039942A1 (en) Module
JP2005295796A (ja) 組み込まれた電力スイッチを有する発電機
CN110999064B (zh) 具有相模块放电器的转换器装置和用于其短路保护的方法
US20180233896A1 (en) Supply device for an electrical module having a fuse element
US9647529B2 (en) Modular multi-stage inverter comprising surge arrester
US10903022B2 (en) Electrical circuit breaker assembly

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20220114