RU2599261C2 - Подмодуль для модульного многоступенчатого преобразователя частоты - Google Patents

Подмодуль для модульного многоступенчатого преобразователя частоты Download PDF

Info

Publication number
RU2599261C2
RU2599261C2 RU2013143288/07A RU2013143288A RU2599261C2 RU 2599261 C2 RU2599261 C2 RU 2599261C2 RU 2013143288/07 A RU2013143288/07 A RU 2013143288/07A RU 2013143288 A RU2013143288 A RU 2013143288A RU 2599261 C2 RU2599261 C2 RU 2599261C2
Authority
RU
Russia
Prior art keywords
submodule
inductive element
energy
powerful semiconductor
shunt
Prior art date
Application number
RU2013143288/07A
Other languages
English (en)
Other versions
RU2013143288A (ru
Inventor
Инго ОЙЛЕР
Херберт ГАМБАХ
Франк ШРЕММЕР
Маркус ВАЛЕ
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2013143288A publication Critical patent/RU2013143288A/ru
Application granted granted Critical
Publication of RU2599261C2 publication Critical patent/RU2599261C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1227Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to abnormalities in the output circuit, e.g. short circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1225Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to internal faults, e.g. shoot-through
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/16Means for providing current step on switching, e.g. with saturable reactor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

Изобретение относится к электротехнике, а именно к подмодулю модульного многоступенчатого преобразователя частоты с однополюсным аккумулятором энергии и с включенной параллельно аккумулятору энергии мощной полупроводниковой последовательной схемой, содержащей два последовательно включенных мощных полупроводниковых переключателя с одинаковым направлением пропускания, причем встречно-параллельно каждому включаемому и выключаемому мощному полупроводниковому переключателю включен безынерционный диод. При этом по меньшей мере одна из цепей: цепи первого и второго соединительных зажимов и шунтирующей цепи содержит индуктивный элемент. Технический результат состоит в предотвращении быстрого нарастания или отключения тока по цепи аккумулятора энергии. 5 з.п. ф-лы, 3 ил.

Description

Изобретение относится к подмодулю модульного многоступенчатого преобразователя частоты с однополюсным аккумулятором энергии и с включенной параллельно аккумулятору энергии мощной полупроводниковой последовательной схемой, в которой последовательно включены два включаемых и выключаемых мощных полупроводниковых переключателя с одинаковым направлением пропускания, причем встречно-параллельно каждому включаемому и выключаемому мощному полупроводниковому переключателю включен безынерционный диод, с первым соединительным зажимом, соединенным с аккумулятором энергии, со вторым соединительным зажимом, соединенным с точкой нулевого потенциала между включаемыми и выключаемыми мощными полупроводниковыми переключателями и их безынерционными диодами, и с шунтирующим выключателем в шунтирующей ветви, соединяющей соединительные зажимы между собой.
Такой подмодуль уже известен, например, из патента DE 10 2005 040 543 A1. Там раскрыта сущность так называемого модульного многоступенчатого преобразователя частоты, содержащего несколько фазных модулей. Каждый фазный модуль имеет средний зажим переменного напряжения для подсоединения фаз сети переменного тока. Кроме того, фазный модуль имеет два концевых зажима постоянного напряжения. Между зажимом переменного тока и каждым из обоих зажимов постоянного тока располагается ветвь фазного модуля. Каждая ветвь фазного модуля, в свою очередь, содержит последовательную схему из двухполюсных подмодулей, каждый из которых в качестве аккумулятора энергии содержит однополюсный конденсатор. В случае аварии падение напряжения на конденсаторе становится чрезмерным, так что подмодуль во избежание больших повреждений должен шунтироваться. Для этого предусмотрен шунтирующий блок, установленный между обоими соединительными зажимами каждого подмодуля. В случае шунтирующего блока речь идет о мощном управляемом полупроводниковом приборе.
Из практики известно, что перед коротким замыканием подмодуля модулярного многоступенчатого полупроводникового переключателя мощные полупроводниковые переключатели дефектного подмодуля блокируются, т.е., другими словами, переводятся в свое запертое положение. Если же мощные полупроводниковые переключатели в таком подмодуле больше не управляются, то аккумулятор энергии при подходящем направлении тока продолжает заряжаться через безынерционные диоды подмодуля. Поэтому для предотвращения еще больших напряжений на аккумуляторе энергии соединительные зажимы при определенном напряжении быстро замыкаются накоротко. Это короткозамкнутое соединение должно надежно проводить ток, протекающий через многоступенчатый статический преобразователь частоты, включая возможные импульсные токи, вплоть до следующего интервала обслуживания.
При шунтировании подмодуля может случиться, что быстрое замыкание шунтирующего выключателя вызовет мгновенное отключение тока через безынерционный диод, так что это приведет к разрушению безынерционного диода с последующим коротким замыканием конденсатора под действием электрической дуги между безынерционным диодом и замкнутым короткозамыкателем. Кроме того, при обратном колебании энергии могут быть разрушены и другие безынерционные диоды подмодуля, поскольку ток обратного колебания демпфируется лишь незначительно и поэтому может продолжать сохранять амплитуды и энергии, намного превышающие размеры, допустимые для безынерционных диодов.
Поэтому задачей изобретения является создание подмодуля вышеупомянутого типа, в котором разрушение одного или нескольких безынерционных диодов надежно предотвращается.
Изобретение решет эту задачу за счет того, что по меньшей мере один соединительный зажим или одна шунтирующая ветвь содержат индуктивный элемент.
Согласно изобретению на пути тока короткого замыкания от положительного полюса или положительного зажима аккумулятора энергии до противоположного полюса имеется по меньшей мере одна индуктивность, подобранная таким образом, чтобы, с одной стороны, предотвращалось чересчур быстрое отключение в результате чересчур быстрого нарастания тока. С другой стороны, вследствие наличия индуктивного элемента, подобранного согласно изобретению, при обычном для нормального режима нагрузочном токе не происходит никаких больших потерь. Поэтому при наличии индуктивного элемента, или индуктивных элементов, происходит постепенное отключение тока, причем нагруженному безынерционному диоду предоставляется возможность перехода в свое запертое положение и тем самым восприятия напряжения аккумулятора энергии. Таким образом, разряд аккумулятора энергии через упомянутый безынерционный диод и шунтирующий выключатель предотвращается. По этой причине не разрушаются и остальные элементы подмодуля. Поскольку согласно изобретению большие токи короткого замыкания и импульсные токи предотвращаются, шунтирующий выключатель может быть рассчитан на меньшие максимальные силы тока. Это относится также к остальным компонентам подмодуля, которым в противном случае приходится выдерживать большие силы тока, вызываемые большими токами короткого замыкания. Силы тока в этом смысле возникают при параллельных токах, которые могут притягиваться или отталкиваться.
Согласно первому предпочтительному варианту изобретения предусмотрен индуктивный элемент, установленный на одном из соединительных зажимов или в шунтирующей ветви.
Согласно одному из целесообразных вариантов осуществления изобретения каждый соединительный зажим содержит индуктивный элемент. Таким образом обеспечивается более постепенное отключение тока при замыкании шунтирующего выключателя.
Согласно одному из более целесообразных усовершенствованных в этом отношении вариантов осуществления в шунтирующую ветвь последовательно с шунтирующим выключателем включен еще один индуктивный элемент. Согласно этому предпочтительному варианту осуществления изобретения количество индуктивных элементов увеличивается еще больше, так что появляется возможность улучшения контроля за отключением зарядного тока через безынерционный диод, проводящий зарядный ток.
Предпочтительным образом по меньшей мере один индуктивный элемент выполнен в виде дроссельной катушки. Дроссельные катушки имеются в продаже по подходящим ценам, так что и соответствующий подмодуль остается благоприятным в экономическом отношении.
Однако согласно одному из целесообразных вариантов осуществления изобретения по меньшей мере один из индуктивных элементов выполнен в виде ферритового сердечника. Ферритовые сердечники также имеются в продаже по подходящим ценам. Они тоже элементарно могут быть встроены в уже существующие установки.
Предпочтительным образом ферритовый сердечник является шихтованным. Шихтованные ферритовые сердечники уменьшают потери на вихревые токи в ферритовом сердечнике и тем самым препятствуют сильном нагреву индуктивного элемента в нормальном режиме.
Другие примеры выполнения и преимущества изобретения являются предметом нижеследующего описания примеров выполнения, причем одинаковые позиции относятся к одинаково действующим конструктивным элементам и причем
на фиг. 1 и 2 изображен подмодуль согласно уровню техники, а на фиг. 2 пример выполнения подмодуля согласно изобретению.
На фиг. 1 изображен пример выполнения подмодуля 1 согласно уровню техники. Указанный подмодуль 2 содержит однополюсный конденсатор 2 энергии в качестве аккумулятора энергии, а также последовательную схему 3 мощных полупроводниковых приборов, содержащую два последовательно включенных управляемых мощных полупроводниковых прибора 4 и 5 с одинаковым направлением пропускания. В случае мощных управляемых полупроводниковых переключателей здесь речь идет о так называемых переключателях IGBT (биполярные транзисторы с изолированным затвором). Однако в рамках изобретения могут быть использованы другие включаемые и выключаемые мощные полупроводниковые переключатели, как-то: переключатели GTO (запираемые тиристоры) или переключатели IGCT (тиристоры с интегрированным управлением). Мощные полупроводниковые переключатели 4 и 5 являются как включаемыми, так и выключаемыми по сигналу управления и рассчитаны на высокие напряжения в диапазоне 1-10 кВ. В их положении включения протекание тока через мощные полупроводниковые переключатели возможно лишь в их направлении пропускания. В своем выключенном положении они блокируют протекание тока в обоих направлениях. Параллельно каждому из упомянутых мощных полупроводниковых переключателей 4 и 5 встречно-параллельно включен инерционный диод 6 и 7. Кроме того, каждый подмодуль 1 имеет первый соединительный зажим 8, соединенный здесь с одним из полюсов аккумулятора 2 энергии. Второй соединительный зажим 9 соединен с точкой нулевого потенциала между мощными полупроводниковыми переключателями 4 и 5 и тем самым с точкой нулевого потенциала между безынерционными диодами 6 и 7.
Кроме того, на фиг. 1 стрелками показано направление протекания тока. В состоянии, показанном на фиг. 1, зарядный ток I протекает от второго соединительного зажима 9 через безынерционный диод 6, аккумулятор 2 энергии и через первый соединительный зажим 8.
Между соединительными зажимами 8 и 9 установлен шунтирующий выключатель 10. Если шунтирующий выключатель 10, как показано на фиг. 1, замыкается и зарядный ток I протекает через безынерционный диод 6, происходит мгновенное отключение тока, так что безынерционный диод 6 проплавляется и благодаря образованной при этом электрической дуге остается проводящим. Таким образом, после замыкания шунтирующего выключателя 10 накопительный конденсатор 2 замыкается накоротко. Через шунтирующий выключатель 10 протекают большие разрядные токи. При обратном колебании энергии также разрушается безынерционный диод 7. Из-за этих больших токов дело доходит до соответствующих больших механических усилий, поскольку параллельные токи в зависимости от направления тока притягиваются или отталкиваются.
На фиг. 2 изображены токи короткого замыкания после замыкания шунтирующего выключателя 10.
На фиг. 3 изображен пример выполнения подмодуля 1 согласно изобретению, отличающегося от подмодуля 1, изображенного на фиг. 1 и 2, тем, что на первом соединительном зажиме 8 установлен индуктивный элемент 11, а на втором соединительном зажиме 9 - индуктивный элемент 12. Кроме того, видно, что шунтирующий выключатель 10 установлен в шунтирующей ветви 13, причем в шунтирующей ветви 13 третий индуктивный элемент 14 включен последовательно с шунтирующим переключателем. Индуктивные элементы 11, 12 и 14 выполнены в виде соответствующих ферритовых сердечников, дополнительно установленных простым закреплением на соединительных зажимах 8, 9, а также на шунтирующей ветви 13. Ферритовые сердечники 11, 12 и 14 ограничивают нарастание тока и осуществляют сравнительно более постепенное отключение зарядного тока I через безынерционный диод 6, так что он оказывается в состоянии перейти в свое запертое положение, чтобы таким образом воспринять напряжение Uc конденсатора. Таким образом, разряд конденсатора 2 предотвращается.
В отличие от примера выполнения, изображенного на фиг. 3, подмодуль 1 согласно изобретению также может иметь только один индуктивный элемент 11, 12 или 14, установленный в одном из соединительных зажимов 8, 9 или в шунтирующей ветви 13. Указанный индуктивный элемент также является, например, шихтованным ферритовым сердечником.

Claims (6)

1. Подмодуль (1) для модульного многоступенчатого преобразователя частоты с однополюсным аккумулятором (2) энергии и с включенной параллельно аккумулятору энергии мощной полупроводниковой последовательной схемой (3), в которой последовательно включены два включаемых и выключаемых мощных полупроводниковых переключателя (4, 5) с одинаковым направлением пропускания, причем встречно-параллельно каждому включаемому и выключаемому мощному полупроводниковому переключателю (4, 5) включен безынерционный диод (6, 7),
- с первым соединительным зажимом (8), соединенным с аккумулятором энергии,
- со вторым соединительным зажимом (9), соединенным с точкой нулевого потенциала между включаемыми и выключаемыми мощными полупроводниковыми переключателями (4, 5) и их безынерционными диодами (6, 7), и
- с шунтирующим выключателем (10) в шунтирующей ветви (13), соединяющей соединительные зажимы (8, 9) между собой, отличающийся тем, что
- по меньшей мере один соединительный зажим (8, 9) и/или шунтирующая ветвь (13) содержат индуктивный элемент (11, 12, 14) такого рода, что на пути тока короткого замыкания от положительного полюса аккумулятора (2) энергии до его противоположного полюса расположена по меньшей мере одна индуктивность, причем
- индуктивный элемент является дроссельной катушкой или ферритовым сердечником.
2. Подмодуль (1) по п. 1, отличающийся тем, что каждый соединительный зажим (8, 9) содержит индуктивный элемент (11, 12).
3. Подмодуль (1) по п. 2, отличающийся тем, что в шунтирующей ветви (13) последовательно с шунтирующим выключателем (10) включен индуктивный элемент (14).
4. Подмодуль (1) по п. 1, 2 или 3, отличающийся тем, что каждый индуктивный элемент (11, 12, 14) является дроссельной катушкой.
5. Подмодуль (1) по п. 1, 2 или 3, отличающийся тем, что по меньшей мере один индуктивный элемент (11, 12, 14) является ферритовым сердечником.
6. Подмодуль (1) по п. 5, отличающийся тем, что ферритовый сердечник (11, 12, 14) является шихтованным.
RU2013143288/07A 2011-02-25 2012-02-16 Подмодуль для модульного многоступенчатого преобразователя частоты RU2599261C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011004733.6 2011-02-25
DE102011004733A DE102011004733A1 (de) 2011-02-25 2011-02-25 Submodul eines modularen Mehrstufenumrichters
PCT/EP2012/052678 WO2012113704A2 (de) 2011-02-25 2012-02-16 Submodul eines modularen mehrstufenumrichters

Publications (2)

Publication Number Publication Date
RU2013143288A RU2013143288A (ru) 2015-03-27
RU2599261C2 true RU2599261C2 (ru) 2016-10-10

Family

ID=45841448

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013143288/07A RU2599261C2 (ru) 2011-02-25 2012-02-16 Подмодуль для модульного многоступенчатого преобразователя частоты

Country Status (7)

Country Link
US (1) US20130328541A1 (ru)
EP (1) EP2678926B1 (ru)
DE (1) DE102011004733A1 (ru)
DK (1) DK2678926T3 (ru)
ES (1) ES2550197T3 (ru)
RU (1) RU2599261C2 (ru)
WO (1) WO2012113704A2 (ru)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2498791A (en) * 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
US20130322142A1 (en) * 2012-05-31 2013-12-05 General Electric Company Multilevel power converter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
DE102013213044A1 (de) * 2013-07-04 2015-01-08 Voith Patent Gmbh Permanentmagneterregte Elektromaschine
EP3030440B1 (en) * 2013-08-06 2019-04-24 Volvo Truck Corporation Hybrid vehicle
DE102013219466A1 (de) * 2013-09-26 2015-03-26 Siemens Aktiengesellschaft Multilevelumrichter
US10069430B2 (en) 2013-11-07 2018-09-04 Regents Of The University Of Minnesota Modular converter with multilevel submodules
CN104009613B (zh) * 2014-05-28 2017-04-19 许继电气股份有限公司 Mmc柔性直流输电子模块的旁路开关触发装置
US10476402B2 (en) 2014-10-08 2019-11-12 Mitsubishi Electric Corporation Power converter
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
WO2017215746A1 (de) 2016-06-15 2017-12-21 Siemens Aktiengesellschaft Stromrichter
WO2018001477A1 (de) 2016-06-29 2018-01-04 Siemens Aktiengesellschaft Stromrichter
US10404181B2 (en) * 2016-08-16 2019-09-03 General Electric Company System and method for integrating hybrid energy storage into direct current power systems
CN108347180B (zh) * 2017-01-24 2019-11-05 台达电子企业管理(上海)有限公司 级联变换器***及其变换器模块投入运行的方法
CN107147305B (zh) * 2017-04-10 2019-06-28 中国科学院电工研究所 多电平换流器子模块旁路开关自触发电路
CN109039100A (zh) * 2018-07-25 2018-12-18 许继集团有限公司 一种模块化多电平换流器的半桥式子模块
WO2020178877A1 (ja) * 2019-03-01 2020-09-10 三菱電機株式会社 電力変換装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU70448A1 (ru) * 1947-01-28 1947-11-30 Л.И. Рабкин Высокочастотна катушка индуктивности
SU700860A1 (ru) * 1978-06-12 1979-11-30 Предприятие П/Я А-7160 Источник питани посто нного напр жени
DE3444003A1 (de) * 1984-11-29 1986-05-28 Siemens AG, 1000 Berlin und 8000 München Schaltungs- und geraeteanordnung an vakuumschaltgeraeten zum schutz gegen ueberspannungen
EP0243812A1 (de) * 1986-04-30 1987-11-04 BBC Brown Boveri AG Prüfkreis
EP1313206A2 (de) * 2001-11-17 2003-05-21 Semikron Elektronik GmbH Schaltungsanordnung
DE102007018344A1 (de) * 2007-04-16 2008-10-30 Siemens Ag Vorrichtung zum Schutz von Umrichtermodulen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271620B1 (en) * 2001-06-21 2013-05-29 Hyoung June Kim Method and apparatus for heat treatment of semiconductor films
US7099169B2 (en) * 2003-02-21 2006-08-29 Distributed Power, Inc. DC to AC inverter with single-switch bipolar boost circuit
WO2005089309A2 (en) * 2004-03-15 2005-09-29 Color Kinetics Incorporated Power control methods and apparatus
DE102005040543A1 (de) 2005-08-26 2007-03-01 Siemens Ag Stromrichterschaltung mit verteilten Energiespeichern
DE102005040549A1 (de) * 2005-08-26 2007-03-15 Siemens Ag Pulswiderstand
DE102009046258B3 (de) * 2009-10-30 2011-07-07 Infineon Technologies AG, 85579 Leistungshalbleitermodul und Verfahren zum Betrieb eines Leistungshalbleitermoduls
DE102010002627B4 (de) * 2010-03-05 2023-10-05 Infineon Technologies Ag Niederinduktive Leistungshalbleiterbaugruppen
DE102010030078A1 (de) * 2010-06-15 2011-12-15 Siemens Aktiengesellschaft Verfahren zum Sperren eines Stromrichters mit verteilten Energiespeichern

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU70448A1 (ru) * 1947-01-28 1947-11-30 Л.И. Рабкин Высокочастотна катушка индуктивности
SU700860A1 (ru) * 1978-06-12 1979-11-30 Предприятие П/Я А-7160 Источник питани посто нного напр жени
DE3444003A1 (de) * 1984-11-29 1986-05-28 Siemens AG, 1000 Berlin und 8000 München Schaltungs- und geraeteanordnung an vakuumschaltgeraeten zum schutz gegen ueberspannungen
EP0243812A1 (de) * 1986-04-30 1987-11-04 BBC Brown Boveri AG Prüfkreis
EP1313206A2 (de) * 2001-11-17 2003-05-21 Semikron Elektronik GmbH Schaltungsanordnung
DE102007018344A1 (de) * 2007-04-16 2008-10-30 Siemens Ag Vorrichtung zum Schutz von Umrichtermodulen

Also Published As

Publication number Publication date
EP2678926B1 (de) 2015-07-29
WO2012113704A3 (de) 2012-10-26
DK2678926T3 (en) 2015-10-05
US20130328541A1 (en) 2013-12-12
DE102011004733A1 (de) 2012-08-30
RU2013143288A (ru) 2015-03-27
WO2012113704A2 (de) 2012-08-30
ES2550197T3 (es) 2015-11-05
EP2678926A2 (de) 2014-01-01

Similar Documents

Publication Publication Date Title
RU2599261C2 (ru) Подмодуль для модульного многоступенчатого преобразователя частоты
RU2683956C1 (ru) Преобразовательное устройство и способ его защиты от короткого замыкания
EP2786479B1 (en) Power converter
KR101453631B1 (ko) 고전압용 컨버터
RU2654533C2 (ru) Устройство для коммутации постоянного тока
US10637371B2 (en) Interface arrangement between an alternating current power system and a direct current power system with control of converter valve for fault protection
US9831657B2 (en) Device for switching a direct current in a pole of a DC voltage network
US20100118453A1 (en) Apparatus for Protection of Converter Modules
KR102227376B1 (ko) 전류 경로를 분리하기 위한 스위칭 디바이스
JP2017520901A (ja) 電流を遮断する装置、システム及び方法
US20190199237A1 (en) Method for Discharging an Electric Energy Storage Unit
CN211930497U (zh) 变换器模块和电压中间电路变换器
CN108701556B (zh) 直流电压开关
US10256626B2 (en) Methods and systems of impedance source semiconductor device protection
RU2703190C1 (ru) Выключатель постоянного напряжения
US20210297073A1 (en) Switching Device for Separating a Current Path
RU2695800C1 (ru) Устройство для переключения постоянного тока в полюсе сети постоянного напряжения
US11368084B2 (en) Current converter unit, transmission installation having a current converter unit, and method for fault management in a current converter unit
EP2852040A1 (en) Module
WO2018041338A1 (en) Short-circuit protection of a converter cell auxiliary power supply in a modular multi-cell converter
JP2005295796A (ja) 組み込まれた電力スイッチを有する発電機
US11258247B2 (en) Fault clearing circuitry
CN110999064B (zh) 具有相模块放电器的转换器装置和用于其短路保护的方法
Elserougi et al. Half-bridge modular multilevel-based HVDC converters with external pre-charged capacitors for dc fault current suppression capability
US11558050B2 (en) Switching arrangement

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20220114