RU2652228C1 - Способ получения композиционной мембраны и композиционная мембрана, полученная этим способом - Google Patents

Способ получения композиционной мембраны и композиционная мембрана, полученная этим способом Download PDF

Info

Publication number
RU2652228C1
RU2652228C1 RU2017111684A RU2017111684A RU2652228C1 RU 2652228 C1 RU2652228 C1 RU 2652228C1 RU 2017111684 A RU2017111684 A RU 2017111684A RU 2017111684 A RU2017111684 A RU 2017111684A RU 2652228 C1 RU2652228 C1 RU 2652228C1
Authority
RU
Russia
Prior art keywords
solution
membrane
catalyst
polymer
substrate
Prior art date
Application number
RU2017111684A
Other languages
English (en)
Inventor
Илья Леонидович Борисов
Евгения Александровна Грушевенко
Алексей Владимирович Волков
Владимир Васильевич Волков
Original Assignee
Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) filed Critical Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН)
Priority to RU2017111684A priority Critical patent/RU2652228C1/ru
Application granted granted Critical
Publication of RU2652228C1 publication Critical patent/RU2652228C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Изобретение относится к области композиционных мембран разделения газовых смесей и/или смеси газов и паров органических растворителей, и/или первапорации водно-органических или органических-органических смесей. Способ получения композиционной мембраны для газоразделения и первапорации включает растворение полиметилгидросилоксана в углеводородном растворителе с получением полимерного раствора. В него одновременно добавляют модифицирующий агент - мономер, выбранный из олефина, винилциклоалкана, аллилтриметилсилана или их смеси с диеном, катализатор гидросилирования и сшивающий агент - мономер, содержащий не менее 2 винильных групп. В одной реакционной среде на одном катализаторе реакции гидросилирования ведут модификацию и частичную сшивку полимера при 20-100°C с образованием формовочного раствора и наносят его на пористую подложку. После этого ведут сушку и кондиционирование мембраны при 20-100°C. Композиционная мембрана для газоразделения и первапорации на основе полиорганосилоксана, имеющего повторяющиеся звенья
Figure 00000010
при степени замещения Si-H связи 20-99 мол.%, получена указанным способом. Технический результат - упрощение способа получения мембраны при использовании доступных компонентов, повышении газопроницаемости и сохранении селективности разделения газов. 2 н. и 4 з.п. ф-лы, 6 табл.

Description

Изобретение относится к области полимерных мембран, в том числе композиционных мембран, для процессов разделения газовых смесей и/или смеси газов и паров органических растворителей, и/или первапорации водно-органических или органических-органических смесей и может найти применение в процессах паро- и газоразделения и концентрирования, используемых в химической, нефтехимической, нефтеперерабатывающей, газохимической и газоперерабатывающей промышленности.
За последние десятилетия для этих процессов активно разрабатываются и вводятся в эксплуатацию мембранные газоразделительные модули, способные заменить низкотемпературные процессы разделения, которые преимущественно применяются в настоящее время [Schoels С, Stevens G., Kentish S. // Fuel. 2012. V. 96, P. 15]. Основным рабочим элементом таких модулей является мембрана, назначение которой состоит в том, чтобы разделить газовые потоки на поток, обогащенный по целевому компоненту, и поток, обедненный по целевому компоненту. Главным требованием к таким мембранам является высокая проницаемость по целевому компоненту и селективность разделения, а также химическая и механическая стабильность в разделяемой среде.
Важным этапом получения мембраны является синтез мембранного материала, образующего селективный слой. Из литературы известны некоторые способы получения полиорганосиланов, перспективного класса мембранных материалов для газоразделения, и мембран на их основе: модификация полиметилгидросилоксана терминальными олефинами в присутствии Pt содержащего катализатора с последующей сшивкой [Ashworth A.J., Bridson B.J., England R., Reddy B.S.R., Zafar I. // Journal of Membrane Science. 1991. V. 56. P. 217; Bennett M., Bridson B.J., England R., Field R.W. // Journal of Membrane Science. 1997. V. 137, P. 63; Де Векки Д.А., Скворцов Н.К. // Известия Санкт-Петербургского государственного технологического института (технического университета). 2009. Т. 32. №6. С. 13] или полимеризация циклических силоксанов, основанная на раскрытии цикла олигоциклосилоксанов с различными заместителями, и последующая сшивка полученного полимера [Шетц М. Силиконовый каучук. Ленинград: Химия, 1975. С. 192; Nyczyk A., Paluszkiewicz С, Hasik М., Cypryk М., Pospiech Р. // Vibrational Spectroscopy. 2012. V. 59. P. 1-8.]. Предлагаемый авторами [Ashworth A.J., Bridson B.J., England R., Reddy B.S.R., Zafar I. // Journal of Membrane Science. 1991. V. 56. P. 217; Bennett M., Bridson B.J., England R., Field R.W. // Journal of Membrane Science. 1997. V. 137, P. 63]; подход к формированию мембраны на основе сшитого полиорганосилоксана заключается в следующем: проведение реакции между оставшимися после стадии модификации связями Si-H линейного функционализированного силоксана и сшивающим агентом (дисиланолом) в присутствии тетраэтокси- или тетраметоксисилана в среде толуола. Катализатором процесса сшивки служит дибутилдилаурат олова.
Недостатком описанных выше способов получения полиорганосиланов и мембран на их основе является многостадийность процесса получения мембран.
Наиболее близким аналогом к предложенному способу (прототипом) является способ получения мембраны [US Patent №005595658А, 21.01.1997]. Мембрана на основе графт-сополимера включает микропористую полимерную подложку и селективный слой на основе графт-сополимера, основная цепь которого представляет собой полиорганосилоксан со следующей повторяющейся формулой:
Figure 00000001
Где m=0,1-0,9, n=0,9-0,1, p=0,03-0,04, R1 может быть линейным, разветвленным или циклическим углеводородным радикалом C1-C12, R2 может быть линейным, разветвленным или циклическим углеводородным радикалом C1-C12, при этом один из названных радикалов R1 или R2 линейный или разветвленный углеводородный радикал с терминальной С=С двойной связью. Способ получения мембраны включает: обеспечение первого полимера - полиорганосилоксана; его растворение в растворителе с получением полимерного раствора; добавление в полимерный раствор модифицирующего агента - сополимера силоксана, имеющего реакционные участки для проведения гидросилирования и добавление катализатора реакции гидросилирования; добавление сшивающего катализатора, частичное сшивание первого полимера с сополимером до требуемой степени с образованием раствора частично сшитого сополимера; нанесение этого раствора на подложку; и продолжение сшивания до тех пор, пока сополимер не станет нерастворимым. Основная цепь, содержащая боковые ответвления, не полностью сшивается в растворе с силоксановым сополимером. Полученный раствор наносится на подложку и сшивается до нерастворимого состояния по двойным связям, присутствующим в графт-сополимере.
Недостатком такого способа получения мембраны является использование исходных полимеров (олигомеров) сложного состава, данные вещества сложно синтезировать, что соответственно увеличивает их стоимость, а способ является многостадийным.
Настоящее изобретение отличается тем, что при получении материала селективного слоя реакции модификации и сшивки проводятся in situ, т.е. без стадии разделения продуктов реакции между модификацией и сшивкой.
Задача изобретения - упрощение способа при использовании доступных исходных реагентов, повышении газопроницаемости и сохранении показателей селективности разделения газов.
Для решения поставленной задачи в способе получения композиционной мембраны для газоразделения и первапорации, включающем растворение исходного полиорганосилоксана в органическом растворителе с получением полимерного раствора, добавление в полимерный раствор модифицирующего агента, катализатора гидросилирования, сшивающего агента, модификацию и частичную сшивку полимера с образованием формовочного раствора и нанесение его на пористую подложку, в качестве исходного полиорганосилоксана используют полиметилгидросилоксан, в качестве растворителя - углеводородный растворитель, в качестве модифицирующего агента - мономер, выбранный из олефина, винилциклоалкана, аллилтриметилсилана или их смеси с диеном, в качестве сшивающего агента - мономер, содержащий не менее 2 винильных групп, модифицирующий агент, катализатор гидросилирования и сшивающий агент добавляют в полимерный раствор одновременно, модификацию и частичную сшивку полимера ведут при температуре 20-100°С в одной реакционной среде на одном катализаторе реакции гидросилирования, а после нанесения формовочного раствора на подложку ведут сушку и кондиционирование мембраны при температуре 20-100°C.
В качестве катализатора гидросилирования используют катализатор Карстеда (раствор комплекса 1,3-дивинил-1,1,3,3-тетраметилдисилоксана платины (0) в органическом растворителе - ксилоле, этиловом спирте) или катализатор Спайера (раствор H2PtCl6 в изопропанол).
Подложка выполнена из нержавеющей сетки или из пористого материала с диаметром пор 0,15÷0,50 мкм.
Поставленная задача также решается тем, что композиционная мембрана для газоразделения и первапорации на основе полиорганосилоксана, имеющего повторяющиеся звенья
Figure 00000002
5
получена указанным способом, а степень замещения Si-H связи составляет 20-99% мол.
В качестве углеводородного растворителя могут использовать алифатические или ароматические углеводороды (например, гексан, толуол, изооктан).
Предлагаемый способ получения мембраны позволяет сократить количество технологических операций при получении мембранного материала.
Для иллюстрации изобретения ниже приведены примеры, которые не ограничивают его содержания.
Пример 1. Получение мембраны ПДецМС.
К 34 г 3% масс. раствора полиметилгидросилоксана в н-гексане добавляют 2 г 1-децена и 30 мкл 3% раствора платинового комплекса дивинилтетраметилдисилоксана в ксилоле, а также 0,08 г 1,7-октадиена. Затем раствор оставляют на 3 часа перемешиваться при температуре 60°.
Полученный раствор наносят на пористую подложку и сушат в течение 20 часов при температуре 60°C. Степень замещения в полученном материале определяют на основании данных ИК-спектроскопии и массового баланса.
Степень замещения составила 89%, плотность - 1,04 г/см3.
Пример 2. Получение мембраны ПГекМС.
К 34 г 3% масс. раствора полиметилгидросилоксана в толуоле добавляют 1,2 г 1-гексена и 30 мкл 3% раствора платинового комплекса дивинилтетраметилдисилоксана в ксилоле, а также 0,08 г 1,7-октадиена. Затем раствор оставляют на 3 часа перемешиваться при температуре 60°C.
Полученный раствор наносят на пористую подложку и сушат в течение 20 часов при температуре 60°C. Степень замещения в полученном материале определяют на основании данных ИК-спектроскопии массового баланса.
Степень замещения составила 85%, плотность - 1,01 г/см3.
Пример 3. Получение мембраны ПВЦГМС.
К 83,6 г 3% масс. раствора полиметилгидросилоксана в н-гексане добавляют 4,4 г винилциклогексан и 30 мкл 3% раствора платинового комплекса дивинилтетраметилдисилоксана в ксилоле, а также 0,15 г 1,3-дивинилтетраметилдисилоксана. Затем раствор оставляют на 3 часа перемешиваться при температуре 60°.
Полученный раствор наносят на пористую подложку и сушат в течение 20 часов при температуре 60°C. Степень замещения в полученном материале определяют на основании данных ИК-спектроскопии массового баланса.
Степень замещения составила 80%, плотность - 1,01 г/см3.
Пример 4. Получение мембраны ПДМБМС.
К 31,6 г 3% масс. раствора полиметилгидросилоксана в н-гексане добавляют 1,2 г 3,3-диметилбутен-1 и 30 мкл 3% раствора платинового комплекса дивинилтетраметилдисилоксана в ксилоле, а также 0,15 г диметилсилоксана винилтерминированного (Mw=500 г/моль). Затем раствор оставляют на 3 часа перемешиваться при температуре 60°C.
Полученный раствор наносят на пористую подложку и сушат в течение 20 часов при температуре 60°C. Степень замещения в полученном материале определяют на основании данных ИК-спектроскопии массового баланса.
Степень замещения составила 90%, плотность - 0,94 г/см3.
Пример 5. Получение мембраны ПАТМСМС.
К 33,6 г 3% масс. раствора полиметилгидросилоксана в н-гексане добавляют 1,6 г аллилтриметилсилан и 30 мкл 3% раствора платинового комплекса дивинилтетраметилдисилоксана в ксилоле, а также 0,08 г 1,7-октадиена. Затем раствор оставляют на 3 часа перемешиваться при температуре 60°.
Полученный раствор наносят на пористую подложку и сушат в течение 20 часов при температуре 60°C. Степень замещения в полученном материале определяют на основании данных ИК-спектроскопии массового баланса.
Степень замещения составила 85%, плотность - 0,95 г/см3.
Пример 6. Получение мембраны ПДецМС I.
К 283 г 3% масс. раствора полиметилгидросилоксана в н-гексане добавляют 2 г 1-децена и 30 мкл 3% раствора платинового комплекса дивинилтетраметилдисилоксана в ксилоле, а также 0,07 г диметилсилоксана винилтерминированного (Mw=500 г/моль). Затем раствор оставляют на 3 часа перемешиваться при температуре 60°.
Полученный раствор наносят на пористую подложку и сушат в течение 20 часов при температуре 60°C. Степень замещения в полученном материале определяют на основании данных ИК-спектроскопии и массового баланса.
Степень замещения составила 99%, плотность -1,01 г/см3.
Пример 7. Получение мембраны ПДецМС II.
К 35,4 г 3% масс. раствора полиметилгидросилоксана в н-гексане добавляют 0,5 г 1-децена и 30 мкл 3% раствора платинового комплекса дивинилтетраметилдисилоксана в ксилоле, а также 0,02 г 1,7-октадиена. Затем раствор оставляют на 3 часа перемешиваться при температуре 60°.
Полученный раствор наносят на пористую подложку и сушат в течение 20 часов при температуре 60°C. Степень замещения в полученном материале определяют на основании данных ИК-спектроскопии и массового баланса.
Степень замещения составила 20%, плотность - 1,05 г/см3.
Пример 8.
Получение композиционных мембран с пористой подложкой в виде нержавеющей сетки, диаметр ячейки 40 мкм. Нанесение производилось путем вымачивания подложки и последующей сушки при температуре от 50 до 80°C в течение 20-40 часов.
Была исследована газопроницаемость полученных образцов, были взяты мембраны, полученные способом, указанным в примерах 1-7 (см., табл. 1).
Figure 00000003
Пример 9.
Получение композиционных мембран из растворов, соответствующих примерам 1-5.
Подложка - микрофильтрационная мембрана из сополимера тетрафторэтилена с винилиденфторидом на нетканом полипропилене. Средний диаметр пор мембраны составляет 0,32 мкм. Производительность по азоту 900 м32⋅ч⋅атм. Нанесение производилось путем вымачивания подложки и последующей сушки при температуре от 50 до 80°C в течение 20-40 часов.
Была исследована газопроницаемость полученных образцов, были взяты мембраны, полученные способом, указанным в примерах 1-5 (см., табл. 2).
Figure 00000004
Пример 10.
Получение композиционных мембран из растворов, соответствующих примерам 1-5.
Подложка - микрофильтрационная металлокерамическая композиционная мембрана с подложкой из пористой нержавеющей стали (размеры пор 2 мкм) с разделительным слоем из двуокиси титана, средний размер пор 0,18 мкм. Производительность по азоту - 638 м32⋅ч⋅атм. Нанесение производилось путем вымачивания подложки и последующей сушки при температуре от 50 до 80°C в течение 20-40 часов.
Была исследована газопроницаемость полученных образцов, были взяты мембраны полученные способом, указанным в примерах 1-5 (табл. 3).
Figure 00000005
Пример 11.
Получение композиционных мембран из растворов, соответствующих примерам 1-5.
В качестве подложки применена микрофильтрационная мембрана из полипропилена со средним размером пор 0,39 мкм. Производительность подложки по азоту 1100 м32⋅ч⋅атм. Нанесение производилось путем вымачивания подложки и последующей сушки при температуре от 50 до 80°C в течение 20-40 часов.
Была исследована газопроницаемость полученных образцов, были взяты мембраны полученные способом, указанным в примерах 1-5 (табл. 4).
Figure 00000006
Пример 12.
Для проведения первапорации 1 мас.%, водного раствора н-бутанола были взяты мембраны, полученные способом, указанным в примерах 1-5 (табл. 5).
Figure 00000007
Пример 13. Мембрана ПОМС
К 34 г 3% масс. раствора полиметилгидросилоксана в н-гексане добавляют 1,6 г 1-октена и 30 мкл 3% раствора платинового комплекса дивинилтетраметилдисилоксана в ксилоле, а также 0,08 г 1,7-октадиена. Затем раствор оставляют на 3 часа перемешиваться при температуре 60°С.
Полученный раствор наносят на пористую подложку и сушат в течение 20 часов при температуре 60°C. Степень замещения в полученном материале определяют на основании данных ИК-спектроскопии и массового баланса.
Степень замещения составила 86%, плотность - 0,94 г/см3.
Пример 14.
Получение композиционных мембран из раствора, соответствующего примеру 13.
Подложка - микрофильтрационная мембрана из сополимера тетрафторэтилена с винилиденфторидом на нетканом полипропилене. Средний диаметр пор мембраны составляет 0,32 мкм. Производительность по азоту 900 м32⋅ч⋅атм. Нанесение производилось путем вымачивания подложки и последующей сушки при температуре от 50 до 80°C в течение 20-40 часов.
Была исследована газопроницаемость полученных образцов, были взяты мембраны, полученные способом, указанным в примере 13 (см., табл. 6).
Figure 00000008
Таким образом, мембрана, изготовленная способом по изобретению, позволяет повысить газопроницаемость и сохранить селективность на уровне мембраны по прототипу, при исключении дорогостоящих компонентов и упрощении способа получения.

Claims (8)

1. Способ получения композиционной мембраны для газоразделения и первапорации, включающий растворение исходного полиорганосилоксана в органическом растворителе с получением полимерного раствора, добавление в полимерный раствор модифицирующего агента, катализатора гидросилирования, сшивающего агента, модификацию и частичную сшивку полимера с образованием формовочного раствора и нанесение его на пористую подложку, отличающийся тем, что в качестве исходного полиорганосилоксана используют полиметилгидросилоксан, в качестве растворителя - углеводородный растворитель, в качестве модифицирующего агента - мономер, выбранный из олефина, винилциклоалкана, аллилтриметилсилана или их смеси с диеном, в качестве сшивающего агента - мономер, содержащий не менее 2 винильных групп, модифицирующий агент, катализатор гидросилирования и сшивающий агент добавляют в полимерный раствор одновременно, модификацию и частичную сшивку полимера ведут при температуре 20-100°C в одной реакционной среде на одном катализаторе реакции гидросилирования, а после нанесения формовочного раствора на подложку ведут сушку и кондиционирование мембраны при температуре 20-100°C.
2. Способ по п. 1, отличающийся тем, что в качестве катализатора гидросилирования используют катализатор Карстеда.
3. Способ по п. 1, отличающийся тем, что в качестве катализатора гидросилирования используют катализатор Спайера.
4. Способ по п. 1, отличающийся тем, что подложка выполнена из нержавеющей сетки.
5. Способ по п. 1, отличающийся тем, что подложка выполнена из пористого материала с диаметром пор 0,15÷0,50 мкм.
6. Композиционная мембрана для газоразделения и первапорации на основе полиорганосилоксана, имеющего повторяющиеся звенья
Figure 00000009
отличающаяся тем, что она получена способом по п. 1, а степень замещения Si-H связи составляет 20-99% мол.
RU2017111684A 2017-04-07 2017-04-07 Способ получения композиционной мембраны и композиционная мембрана, полученная этим способом RU2652228C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017111684A RU2652228C1 (ru) 2017-04-07 2017-04-07 Способ получения композиционной мембраны и композиционная мембрана, полученная этим способом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017111684A RU2652228C1 (ru) 2017-04-07 2017-04-07 Способ получения композиционной мембраны и композиционная мембрана, полученная этим способом

Publications (1)

Publication Number Publication Date
RU2652228C1 true RU2652228C1 (ru) 2018-04-25

Family

ID=62045716

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017111684A RU2652228C1 (ru) 2017-04-07 2017-04-07 Способ получения композиционной мембраны и композиционная мембрана, полученная этим способом

Country Status (1)

Country Link
RU (1) RU2652228C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877528A (en) * 1988-10-27 1989-10-31 Bend Research, Inc. Siloxane-grafted membranes
US5595658A (en) * 1992-04-22 1997-01-21 Gkss-Forschungszentrum Geesthacht Gmbh Membrane based on graft copolymers
US6331578B1 (en) * 1998-11-18 2001-12-18 Josephine Turner Process for preparing interpenetrating polymer networks of controlled morphology
US8071706B2 (en) * 2008-02-13 2011-12-06 Ndsu Research Foundation Siloxane polymer containing tethered levofloxacin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877528A (en) * 1988-10-27 1989-10-31 Bend Research, Inc. Siloxane-grafted membranes
US5595658A (en) * 1992-04-22 1997-01-21 Gkss-Forschungszentrum Geesthacht Gmbh Membrane based on graft copolymers
US6331578B1 (en) * 1998-11-18 2001-12-18 Josephine Turner Process for preparing interpenetrating polymer networks of controlled morphology
US8071706B2 (en) * 2008-02-13 2011-12-06 Ndsu Research Foundation Siloxane polymer containing tethered levofloxacin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
КАТАЛИТИЧЕСКОЕ ГИДРОСИЛИРОВАНИЕ В СИЛОКСАНОВЫХ СИСТЕМАХ, Де Векки Д.А., Скворцов Н.К. // Известия Санкт-Петербургского государственного технологического института (технического университета). 2009. *

Similar Documents

Publication Publication Date Title
Grushevenko et al. Polyalkylmethylsiloxanes composite membranes for hydrocarbon/methane separation: Eight component mixed-gas permeation properties
Pinheiro et al. Development of a PDMS-grafted alumina membrane and its evaluation as solvent resistant nanofiltration membrane
Sadrzadeh et al. Gas permeation through a synthesized composite PDMS/PES membrane
US20140360367A1 (en) Organopolysiloxanes including silicon-bonded trialkylsilyl-substituted organic groups
Tanardi et al. PDMS grafting of mesoporous γ-alumina membranes for nanofiltration of organic solvents
Ren et al. CO2 permeation through hybrid organosilica membranes in the presence of water vapor
Grushevenko et al. Silicone rubbers with alkyl side groups for C3+ hydrocarbon separation
Puspasari et al. Unique cellulose/polydimethylsiloxane blends as an advanced hybrid material for organic solvent nanofiltration and pervaporation membranes
EP2776511A1 (en) Organopolysiloxane compositions and surface modification of cured silicone elastomers
Naik et al. Influence of support layer and PDMS coating conditions on composite membrane performance for ethanol/water separation by pervaporation
CN110099734A (zh) 多膜分离方法
Yave et al. Synthesis, characterization, and membrane properties of poly (1-trimethylgermyl-1-propyne) and its nanocomposite with TiO2
Grushevenko et al. Membrane material based on octyl-substituted polymethylsiloxane for separation of C 3/C 1 hydrocarbons
CN106807258B (zh) 一种硅橡胶复合膜及其制备方法和应用
Borisov et al. Influence of side chains assembly on the structure and transport properties of comb-like polysiloxanes in hydrocarbon separation
WO2019171250A1 (en) Hybrid materials for organic solvent nanofiltration and pervaporation membranes
Brunetti et al. CO2 separation from humidified ternary gas mixtures using a polydecylmethylsiloxane composite membrane
Sazanova et al. Revealing the surface effect on gas transport and mechanical properties in nonporous polymeric membranes in terms of surface free energy
RU2652228C1 (ru) Способ получения композиционной мембраны и композиционная мембрана, полученная этим способом
Lin et al. Mixed matrix silicone and fluorosilicone/zeolite 4A membranes for ethanol dehydration by pervaporation
JP4474519B2 (ja) 気体分離膜
Borisov et al. Effect of Crosslinking Agent Length on the Transport Properties of Polydecylmethylsiloxane-Based Membranes
Grushevenko et al. The Effect of the Type and Concentration of the Crosslinking Diene on the Gas Transport Properties of Membranes Based on Polyoctylmethylsiloxane
Borisov et al. Synthesis and Formation of Gas Separation Membranes Based on Polyalkylenesiloxanes
JP4883683B2 (ja) 気体分離膜用オルガノポリシロキサン