RU2642971C1 - Расположение горелок камеры сгорания - Google Patents

Расположение горелок камеры сгорания Download PDF

Info

Publication number
RU2642971C1
RU2642971C1 RU2016142822A RU2016142822A RU2642971C1 RU 2642971 C1 RU2642971 C1 RU 2642971C1 RU 2016142822 A RU2016142822 A RU 2016142822A RU 2016142822 A RU2016142822 A RU 2016142822A RU 2642971 C1 RU2642971 C1 RU 2642971C1
Authority
RU
Russia
Prior art keywords
burner
fuel
axis
combustion chamber
gas turbine
Prior art date
Application number
RU2016142822A
Other languages
English (en)
Inventor
Суреш САДАСИВУНИ
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Application granted granted Critical
Publication of RU2642971C1 publication Critical patent/RU2642971C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/264Ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/12Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour characterised by the shape or arrangement of the outlets from the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/38Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising rotary fuel injection means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00004Preventing formation of deposits on surfaces of gas turbine components, e.g. coke deposits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spray-Type Burners (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

Изобретение относится к области энергетики. Горелка (30) для камеры (16) сгорания газовой турбины, при этом горелка (30) содержит тело (53), имеющее поверхность (64) и ось (50) горелки, топливную трубку (56), воспламенитель (58) и проход (62) или проходы (62) для основного воздушного потока, при этом проход (62) или проходы (62) основного воздушного потока наклонены относительно оси (50) горелки и создают основной вихрь вокруг оси (50) горелки в первом направлении вращения, при этом основной вихрь перемещается в направлении вдоль оси (50) горелки и от поверхности (64), при этом воспламенитель (58) расположен по потоку после топливной трубки (56) относительно первого направления вращения основного вихря, так что часть основного воздушного потока (34А) проходит над топливной трубкой (56) и затем над воспламенителем (58), при этом топливная трубка (56) содержит ось топливной трубки, наконечник для жидкого топлива, имеющий выход для топлива, и решетку проходов вспомогательного воздуха, имеющих выходы, расположенные вокруг топливного выхода, причем проходы вспомогательного воздуха наклонены относительно оси топливной трубки для создания вихря вспомогательного воздуха вокруг оси топливной трубки в том же направлении вращения относительно первого направления вращения. Проходы вспомогательного воздуха радиально наклонены под углом относительно оси топливной трубки. Изобретение позволяет предотвратить образование отложений на деталях горелки, повысить надежность воспламенения топлива в камере сгорания и качество распыления жидкого топлива. 14 з.п. ф-лы, 10 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к оборудованию камеры сгорания газотурбинного двигателя и, в частности, к расположению горелок оборудования камеры сгорания.
Уровень техники
Газовые турбины, включающие сухие системы низкого выброса камеры сгорания, могут иметь трудности в воспламенении и работе в полном диапазоне нагрузки при использовании жидкого топлива. Часто это может обуславливаться расположением топлива и последующим распылением топлива в смесительных потоках воздуха, в частности, при низких нагрузках, требуемых от двигателя. В идеальном случае капельки топлива должны быть очень малыми и впрыскиваться в подходящую часть воздушного потока, входящего в предварительную камеру камеры сгорания через кольцевую решетку завихрителей основного воздушного потока вблизи системы горелок для сгорания в правильном месте пламени. Также капельки топлива не должны входить в контакт с любыми поверхностями стенок, однако одновременно капельки топлива должны проходить достаточно близко от воспламенителя, так что воспламенитель может воспламенять испаренное топливо при пуске. Если капельки топлива приходят в контакт с поверхностью, то это может приводить к образованию угольных отложений или лакообразного нагара, которые могут изменять характеристики воздушного потока или даже блокировать отверстия, подающие воздух и/или топливо.
Трубка растопочного впрыска жидкого топлива может иметь дополнительную воздушную поддержку для облегчения распыления жидкого топлива в диапазоне потоков топлива. Этот вспомогательный воздух может подаваться через несколько воздушных выходов, полностью окружающих топливное отверстие или образователь пленки топлива. Эти отверстия вспомогательного воздуха наклонены для создания растопочного вихря топлива и воздуха, который вращается в направлении, противоположном направлению вращения основного вихря топлива и воздуха. Эта трубка растопочного впрыска жидкого топлива находится в зоне, в которой возможен контакт с жидким топливом и которая склонна к образованию угольных отложений. Время пребывания капелек жидкого топлива является критичным параметром для капелек топлива для нахождения капелек топлива близко к поверхности стенки горелки. Чем длительнее время нахождения капелек топлива вблизи поверхности стенки, тем богаче смесь топлива и воздуха, и поэтому имеется повышение в образовании угольных отложений, выброса оксидов азота (NOx) и более высокое локальное нагревание поверхности вблизи растопочной трубки, которое, в свою очередь, повышает термические градиенты, которые приводят к трещинам в поверхности.
Эти угольные отложения блокируют вспомогательные отверстия и соответственно предотвращают успешное распыление топлива. Плохое распыление впрыскиваемого растопочного топлива вызывает также проблемы с воспламенением топлива при пуске. Это является общим недостатком систем впрыска топлива газовых турбин, а также общей проблемой является образование угольных отложений. Как следствие, трубки растопочного впрыска жидкого топлива необходимо регулярно заменять, и они являются расходуемой частью. Это нежелательно, поскольку такая замена является дорогостоящей, приводит к простою газовой турбины, к задержке подачи электроэнергии и может быть не предсказуемой.
Сущность изобретения
Одной целью данного изобретения является предотвращение образования угольных отложений на компонентах. Другой целью является предотвращение образования угольных отложений на топливной трубке камеры сгорания. Другой целью является улучшение надежности воспламенения топлива в камере сгорания. Другой целью является улучшение увлечения капелек топлива воздушным потоком. Другой целью является улучшение распыления жидкого топлива в камере сгорания. Другой целью является предотвращение вхождения в контакт жидкого топлива с поверхностью внутри камеры сгорания. Другой целью является уменьшение или исключение плановой или внеплановой остановки двигателя для технического обслуживания, обусловленного заменой или чисткой компонентов камеры сгорания вследствие угольных отложений, и, в частности, трубки жидкого топлива. Еще одной целью является уменьшение времени пребывания капелек жидкого топлива вблизи поверхности горелки. Другой целью является уменьшение сильного локального нагревания поверхности горелки. Дополнительно к этому, целью является уменьшение выбросов камеры сгорания.
Эти преимущества и цели реализованы с помощью предлагаемой горелки для камеры сгорания газовой турбины, при этом горелка содержит тело, имеющее поверхность и ось горелки, топливную трубку, воспламенитель и проход или проходы для основного воздушного потока, при этом проход или проходы основного воздушного потока наклонены относительно оси горелки и создают основной вихрь вокруг оси горелки в первом направлении вращения, при этом основной вихрь перемещается в направлении вдоль оси горелки и от поверхности, при этом воспламенитель расположен по потоку после топливной трубки относительно первого направления вращения основного вихря, так что часть основного воздушного потока проходит над топливной трубкой и затем над воспламенителем, при этом топливная трубка содержит ось топливной трубки, наконечник для жидкого топлива, имеющий выход для топлива и решетку проходов для вспомогательного воздуха, расположенных вокруг топливного выхода, при этом проходы вспомогательного воздуха наклонены относительно оси топливной трубки для создания вихря вспомогательного воздуха вокруг оси топливной трубки в том же направлении вращения относительно первого направления вращения.
Проход или проходы основного воздушного потока могут быть тангенциально наклонены относительно оси горелки.
Проходы вспомогательного воздуха могут быть радиально наклонены относительно оси топливной трубки.
Проходы вспомогательного воздуха могут быть радиально наклонены на угол между 15° и 60° включительно относительно оси топливной трубки.
Проходы вспомогательного воздуха могут быть радиально наклонены под углом приблизительно 30° относительно касательной к оси топливной трубки.
Проходы вспомогательного воздуха могут иметь тангенциальный угол между +/-45° относительно касательной к оси топливной трубки.
Проходы вспомогательного воздуха могут иметь тангенциальный угол приблизительно 0° относительно касательной к оси топливной трубки.
Топливная трубка и воспламенитель могут быть расположены на одинаковом радиальном расстоянии от оси горелки.
Топливная трубка и воспламенитель могут быть расположены на различном радиальном расстоянии от оси горелки, и воспламенитель предпочтительно расположен радиально внутри топливной трубки.
Топливный выход и топливная трубка могут быть расположены на поверхности или вблизи нее.
Воспламенитель может быть по меньшей мере частично расположен внутри тела и иметь концевую торцевую поверхность, при этом концевая торцевая поверхность расположена на поверхности или вблизи нее.
Горелка может содержать кольцевую решетку завихряющих лопастей, расположенных вокруг оси горелки, и которые образуют проходы основного воздушного потока.
Проходы основного воздушного потока могут быть наклонены в направлении против часовой стрелки, и проходы вспомогательного воздуха могут быть наклонены в направлении против часовой стрелки относительно нормали к поверхности.
Проходы основного воздушного потока могут быть наклонены в направлении по часовой стрелке, и проходы вспомогательного воздуха могут быть наклонены в направлении по часовой стрелке относительно нормали к поверхности.
В одном примере топливный выход является предварительным образователем пленки топлива, который сходится в направлении своего конца и может образовывать конус топлива. В другом примере топливный выход является отверстием, которое может создавать распыление топлива. В еще одном примере топливный выход является несколькими отверстиями, при этом каждое отверстие может создавать распыление топлива.
Краткое описание чертежей
Другие признаки, свойства и преимущества данного изобретения поясняются в приведенном ниже описании вариантов выполнения со ссылками на прилагаемые чертежи, на которых изображено:
фиг. 1 - разрез турбинного двигателя, в котором осуществляется данное изобретение;
фиг. 2 - разрез части блока камеры сгорания турбинного двигателя и детальное расположение горелки, включая растопочную горелку, окруженную основной горелкой, при этом растопочная горелка имеет трубку жидкого топлива и воспламенитель и выполнена согласно данному изобретению, в изометрической проекции;
фиг. 3 - разрез части растопочной горелки и детально трубка жидкого топлива, согласно данному изобретению;
фиг. 4 - вид вдоль оси камеры сгорания поверхности горелки, показанной на фиг. 2, где растопочная горелка окружена в основном основной горелкой, имеющей решетку завихряющих лопастей, при этом растопочная горелка имеет трубку жидкого топлива, согласно данному изобретению;
фиг. 5 и 6 - разрез основного воздушного потока вдоль путей А-А и В-В соответственно, на фиг. 4, иллюстрирующий соответствующие распределения капелек топлива, выходящих из трубки жидкого топлива;
фиг. 7 - наконечник трубки жидкого топлива, согласно одному варианту выполнения трубки жидкого топлива, имеющий в основном вдоль ее оси решетку выходов, расположенных вокруг топливного выхода; при этом решетка выходов направляет растопочный воздушный поток для соударения, сдвига и распыления пленки жидкого топлива;
фиг. 8А - трубка жидкого топлива со схематичным изображением относительного радиального угла μ одного из воздушных проходов, в изометрической проекции; другие воздушные проходы не изображены для ясности;
фиг. 8В - открытая поверхность наконечника 72 трубки жидкого топлива согласно фиг. 3;
фиг. 9 - поверхность горелки вдоль центральной оси горелки с указанием ориентации трубки жидкого топлива относительно основного воздушного потока из основной горелки и относительно центральной оси горелки согласно данному изобретению.
Подробное описание изобретения
На фиг. 1 показан в разрезе пример газотурбинного двигателя 10, расположенного в основном вокруг горизонтальной оси 20. Газотурбинный двигатель 10 содержит в направлении потока вход 12, компрессорную секцию 14, секцию 16 камеры сгорания и турбинную секцию 18, которые расположены в целом последовательно вдоль потока и в целом в направлении продольной или вращательной оси 20. Кроме того, газотурбинный двигатель 10 содержит вал 22, который установлен с возможностью вращения вокруг оси 20 вращения и который проходит в продольном направлении через газотурбинный двигатель 10. Вал 22 соединяет приводящим образом турбинную секцию 18 с компрессорной секцией 12. Секция 16 камеры сгорания содержит кольцевую решетку блоков 16 камеры сгорания, из которых изображен лишь один блок.
При работе газотурбинного двигателя 10, воздух 24, который входит через воздушный вход, сжимается с помощью компрессорной секции 14 и подается в секцию или блок 16 камеры сгорания. Блок 16 камеры сгорания содержит пленум 26 горелок, предварительную камеру 29, камеру 28 сгорания, заданную имеющей двойные стенки коробкой 27, и по меньшей мере одну горелку 30, закрепленную в каждой камере 28 сгорания. Предварительная камера 29, камера 28 сгорания и горелка 30 расположены внутри пленума 26 горелки. Сжатый воздух 31, проходящий через компрессор 12, входит в диффузор 32 и выходит из диффузора 32 в пленум 26 горелки, из которого часть воздуха входит в горелку 30 и смешивается с газообразным и/или жидким топливом. Затем смесь воздуха и топлива сжигается, и получающийся газ 34 сгорания, или рабочий газ, из камеры сгорания направляется через переходной канал 35 в турбинную секцию 18.
Турбинная секция 18 содержит несколько несущих лопатки роторных дисков, закрепленных на валу 22. В показанном примере изображены два диска 36, несущих каждый кольцевую группу турбинных лопаток 38. Однако количество несущих лопатки роторных дисков может быть различным, т.е. лишь один диск или более двух дисков. Дополнительно к этому, направляющие лопатки 40, которые закреплены на статоре 42 газотурбинного двигателя 10, расположены между турбинными лопатками 38. Между выходом камеры 28 сгорания и передними турбинными лопатками 38 предусмотрены входные направляющие лопасти 44.
Газ 34 сгорания из камеры 28 сгорания входит в турбинную секцию 18 и приводит во вращение турбинные лопатки 38, которые, в свою очередь, вращают вал 22 для приведения в действие компрессорной секции 12. Направляющие лопасти 40, 44 служат для оптимизации угла газа сгорания или рабочего газа на турбинных лопатках 38. Компрессорная секция 12 содержит осевую последовательность ступеней 46 направляющих лопастей и ступеней 48 роторных лопаток.
Понятия выше по потоку и ниже по потоку относятся к направлению воздушного потока и/или потока рабочего газа через двигатель, если не указано другое. Понятия спереди и сзади относятся к общему потоку через двигатель. Понятие осевой, радиальный и окружной относятся к оси 20 вращения двигателя, если не указано другое.
На фиг. 2 показана в изометрической проекции часть блока 16 камеры сгорания с изображением горелки 30, предварительной камеры 29 и части камеры 28 сгорания. Камера 28 сгорания образована в форме трубы с помощью имеющей двойные стенки коробки 27 (см. фиг. 1), проходящей вдоль оси 50 камеры сгорания. Блок 16 камеры сгорания проходит вдоль оси 50 камеры сгорания и содержит предварительную камеру 29 и основную камеру 28 сгорания, при этом последняя проходит в окружном направлении 61 вокруг оси 50 камеры сгорания и в основном вниз по потоку относительно направления потока газа предварительной камеры 29.
Горелка 30 содержит растопочную горелку 52 и основную горелку 54. Растопочная горелка 52 содержит тело 53 горелки, трубку 56 жидкого топлива и воспламенитель 58. Основная горелка 54 содержит завихряющую систему 55, имеющую кольцевую решетку завихряющих лопастей 60, задающих проходы 62 между ними. Кольцевая решетка завихряющих лопастей 60 расположена в основном вокруг оси 50 горелки, которая в этом примере совпадает с осью 50 камеры сгорания обычным образом. Завихряющая система 55 включает основные выходы впрыска топлива, которые не показаны, но хорошо известны из уровня техники. Основная горелка 54 задает часть предварительной камеры 29. Растопочная горелка 52 расположена в раскрыве 57 и в основном радиально внутри основной горелки 54, относительно оси 50 горелки/камеры сгорания. Растопочная горелка 52 имеет поверхность 64, которая задает часть концевой стенки предварительной камеры 29. Концевая стенка дополнительно задана с помощью основной горелки 54.
Трубка 56 жидкого топлива по меньшей мере частично расположена в первом отверстии 66, образованном в теле 53 растопочной горелки 52. Проход 69 для растопочного воздушного потока образован между трубкой 56 жидкого топлива и стенками первого отверстия 66. Трубка 56 жидкого топлива содержит удлиненное тело 86 топливной трубки и наконечник 72 жидкого топлива. Удлиненное тело 86 топливной трубки является в основном цилиндрическим и задает проход 70 для потока топлива. Наконечник 72 жидкого топлива установлен на одном конце удлиненного тела 86 топливной трубки и расположен вблизи или на поверхности 64. Трубка 56 жидкого топлива будет пояснена более детально со ссылками на фиг. 3. Воспламенитель 58 расположен во втором проходе 74, образованном в теле 53 растопочной горелки 52. Конец воспламенителя 58 расположен вблизи или на поверхности 64. Воспламенитель 58 является хорошо известным из уровня техники устройством и не нуждается в подробном описании. В других камерах 16 сгорания может быть предусмотрено более одной трубки жидкого топлива и/или более одного воспламенителя.
Во время работы газотурбинного двигателя и, в частности, во время пуска двигателя, стартер прокручивает двигатель так, что компрессор 14 и турбина 12 вращаются вместе с валом 22. Компрессор 14 создает поток сжатого воздуха 34, который подается в один или несколько блоков 16 камеры сгорания. Первая или большая часть сжатого воздуха 34 является основным воздушным потоком 34А, который проталкивается через проходы 62 завихряющей системы 55, где завихряющие лопасти 60 придают завихрение сжатому воздуху 34, как показано стрелками. Вторая, или меньшая часть сжатого воздуха 34 является растопочным воздушным потоком 34В, который проталкивается через проходы 69 растопочного воздушного потока. Растопочный воздушный поток 34В можно называть также вспомогательным воздушным потоком. Жидкое топливо 76 проталкивается через проход 70 топливного потока и смешивается с растопочным воздушным потоком 34В и основным воздушным потоком 34А для распыления жидкого топлива. Распыление жидкого топлива на очень мелкие капельки увеличивает площадь поверхности для облегчения последующего испарения.
Основной воздушный поток 34А в основном завихряется вокруг оси 50 камеры сгорания. Завихряющие лопасти 60 придают тангенциальную составляющую направления основному воздушному потоку 34А для придания большинству основного воздушного потока 34 окружного направления потока. Это окружное направление потока является дополнением к основному направлению смеси воздуха и топлива вдоль оси 50 камеры сгорания от или вблизи поверхности 64 в направлении переходного канала 35 (см. фиг. 1). Смесь воздуха и топлива проходит через предварительную камеру 29 и в камеру 28 сгорания. Основной воздушный поток 34А ускоряет растопочный воздушный поток 34В и увлекает топливо к воспламенителю 58, который воспламеняет смесь воздуха и топлива.
Для пуска двигателя, стартер вращает вал 22, компрессор 14 и турбину 18 до достижения определенной скорости, когда подается и воспламеняется растопочное топливо. После воспламенения внутренняя геометрия камеры сгорания и характер воздушного потока приводят к существованию растопочного пламени. Когда двигатель начинает работать самостоятельно, то отключается пусковой мотор. Если того требует двигатель или повышается нагрузка после пуска, то топливо подается в основные выходы впрыска топлива и смешивается с основным воздушным потоком 34А. Образуется основное пламя в камере 28 сгорания, которое расположено радиально снаружи относительно растопочного пламени. На фиг. 3 схематично показана в изометрической проекции и в разрезе часть горелки 52 и детально трубка 56 жидкого топлива. Трубка 56 жидкого топлива содержит удлиненное тело 86 топливной трубки и наконечник 72 жидкого топлива, которые являются элементами, которые могут быть выполнены в виде единого целого или по отдельности. Наконечник 72 жидкого топлива расположен с охватом сужением 78 на конце первого отверстия 66 с образованием плотной посадки. В конце прохода 70 топливного потока наконечник 72 жидкого топлива имеет завихряющую пластину 80, которая задает решетку топливных каналов 82, имеющих входы и выходы. Топливные каналы 82, лишь один из которых изображен, наклонены относительно продольной оси 79 трубки 56 жидкого топлива. По потоку после завихряющей пластины 80 находится камера 84 завихрения топлива, а затем топливный выход 86, который в этом примере является образователем топливной пленки. Этот образователь 86 топливной пленки сходится и образует конус жидкого топлива. В других примерах выполнения топливный выход 86 может быть отверстием, которое создает распыление топлива, или же несколькими отверстиями, каждое из которых распыляет топливо.
Наконечник 72 жидкого топлива образует решетку каналов 88 растопочного воздушного потока, имеющих входы, которые соединены с проходом 69 растопочного воздушного потока, и выходы 90, которые окружают образователь 86 пленки топлива. В этом примере выполнения каналы 88 растопочного воздушного потока наклонены внутрь или расположены под углом как в окружном направлении, так и в радиальном направлении относительно продольной оси 79 трубки 56 жидкого топлива. В других вариантах выполнения, каналы 88 растопочного воздушного потока могут быть на одной линии в осевом направлении или наклонены внутрь лишь в окружном направлении или в радиальном направлении относительно продольной оси 79. В этом примере выполнения имеется 8 каналов 88 растопочного воздушного потока, хотя в других вариантах выполнения может быть больше или меньше каналов.
Растопочное жидкое топливо, протекающее в проходе 70 топливного потока, входит во входы топливных каналов 82 и выходит через выходы, придающие завихрение топливу в камере 84 завихрения топлива. Завихренное топливо образует тонкую пленку над образователем 86 топливной пленки, который испускает топливо в сравнительно тонком конусе. Растопочный воздушный поток 34В ударяется в конус топлива и разбивает топливо на небольшие капельки. Вихрь воздуха из выходов 90 пульверизирует топливо вдоль основного воздушного потока 34А.
Растопочный воздушный поток 34В является особенно полезным при пуске двигателя и при малой требуемой мощности, когда основной воздушный поток 34А имеет относительно небольшую массу потока по сравнению с более высокой требуемой мощностью, поскольку небольшой массовый поток менее способен распылять жидкое топливо. Предпочтительно растопочный воздушный поток 34В обеспечивает охлаждение трубки растопочного топлива и помогает предотвращению коксования топлива и образования угольного отложения на трубке растопочного топлива.
На фиг. 4 показан вид вдоль оси 50 камеры сгорания поверхности 64 горелки 30, где растопочная горелка 52 по существу окружена основной горелкой 54. Трубка 56 жидкого топлива и воспламенитель 58 установлены в теле 53 растопочной горелки 52. Завихряющая система 55 основной горелки 54 окружает поверхность 64 и направляет основной воздушный поток 34А через кольцевую решетку проходов 62. Кольцевая решетка завихряющих лопастей 60 и проходы 62 предназначены для придания тангенциальной составляющей потока основному воздушному потоку 34А так, что когда части воздушного потока из каждого прохода 62 сливаются, то они образуют вихрь 34С в основном вокруг оси 50 камеры сгорания. В этом варианте выполнения вихрь 34С вращается в основном против часовой стрелки, как показано на фиг. 4; можно сказать, что этот вихрь 34С вращается в направлении часовой стрелки при его прохождении в направлении от поверхности 64 к переходному каналу 35 через предварительную камеру 29 и затем через камеру 28 сгорания.
В этом примере выполнения вихрь 34С является единственным вихрем, однако в других примерах расположения растопочной горелки 52 и основной горелки 54 может создаваться несколько вихрей, вращающихся либо в одинаковом направлении, либо в различных направлениях и с различными скоростями вращения.
Положения трубки 56 жидкого топлива и воспламенителя 58 выбраны так, что завихренный или вращающийся основной воздушный поток 34А проходит над или вокруг трубки 56 жидкого топлива, а затем к воспламенителю 58. Поскольку основной воздушный поток 34А образует вихрь 34С вокруг оси 50, то трубка 56 жидкого топлива и воспламенитель 58 расположены приблизительно на одинаковом радиальном расстоянии от оси 50. Таким образом, когда топливная трубка 56 впрыскивает или распыляет топливо в предварительную камеру 29, то основной воздушный поток 34А увлекает топливо и подает его в направлении воспламенителя 58, где может происходить воспламенение. Однако было установлено, что топливная трубка 56 и воспламенитель 58 могут быть расположены на разных радиальных расстояниях от оси 50 горелки, и предпочтительно воспламенитель 58 может быть расположен радиально внутри топливной трубки 56, поскольку вращающиеся в одном направлении вихри втягивают растопочный вихрь внутрь по сравнению с противоположно вращающимися вихрями.
Вихрь 34С имеет множество различных скоростей течения внутри своего массового потока. В данном примере часть вихря, обозначенная стрелкой 34Сs, движется с меньшей скоростью, чем часть вихря, обозначенная стрелкой 34Сf. Часть 34Cs основного воздушного потока находится радиально внутри части 34Cf основного воздушного потока относительно оси 50. Часть 34Cs основного воздушного потока находится приблизительно в том же радиальном положении, что и радиально внутренняя часть трубки 56 жидкого топлива, и часть 34Cf основного воздушного потока находится приблизительно в том же радиальном положении, что и радиально наружная часть трубки 56 жидкого топлива.
На фиг. 5 и 6 показаны разрезы вдоль пути А-А и В-В прохождения основного воздушного потока соответственно на фиг. 4 и распределение капелек топлива. На фиг. 4 путь В-В потока находится радиально снаружи трубки 56 жидкого топлива и воспламенителя 58, и путь А-А потока находится приблизительно на том же радиусе, что и по меньшей мере часть трубки 56 жидкого топлива и воспламенителя 58.
На фиг. 6 трубка 56 жидкого топлива и воспламенитель 58 изображены штриховыми линиями для ориентации. Как показано на фиг. 6, каждая часть основного воздушного потока, выходящая из каждого прохода 62, проходит короткую дистанцию непосредственно поперек поверхности 64, перед покиданием поверхности 64 и прохождением от поверхности 64 вдоль оси 50, где соединяется с другой частью основного воздушного потока из соседнего в окружном направлении прохода 62. Таким образом, можно видеть, что любые капельки 92 топлива, увлекаемые в эту часть основного воздушного потока вдоль пути В-В потока, быстро поднимаются от поверхности 64 и тем самым от воспламенителя 58.
На фиг. 5 основной воздушный поток 34А проходит над трубкой 56 жидкого топлива и в направлении воспламенителя 58. Выходы 90, которые окружают образователь 86 пленки топлива трубки 56 жидкого топлива, направляют растопочный воздушный поток 34В для соударения с конусом топлива, выходящего из образователя 86 пленки топлива, и разрушения пленки топлива на мелкие капельки 92. Вращающийся вихрь растопочного воздуха, обозначенный схематично позицией 94, из выходов 90 распыляет топливо при его смешивании с основным воздушным потоком 34А. Вращающийся вихрь 94 растопочного воздуха образует эффективно барьер текучей среды и приводит к образованию на его подветренной или нижней по потоку стороне зоны рециркуляции или зоны 96 низкого давления. Эта зона рециркуляции или зона 96 низкого давления втягивает основной воздушный поток 34А в направлении поверхности 64 между трубкой 56 жидкого топлива и воспламенителем 58. Часть капелек 92 топлива также притягивается в направлении поверхности 64 и поэтому близко к воспламенителю 58, так что обеспечивается возможность хорошего воспламенения смеси топлива и воздуха.
На фиг. 7 показан наконечник 72 трубки 56 жидкого топлива в основном вдоль ее оси 79, при этом решетка выходов 90 направляет растопочный воздушный поток 34В как с тангенциальной, так и радиальной составляющей направления. Эти тангенциальные и радиальные составляющие будут пояснены более подробно ниже со ссылками на фиг. 8А и 8В. Когда части растопочного воздушного потока 34В выходят из каждого выхода 90, то они объединяются в вихрь 94 растопочного воздуха. Вихрь 94 растопочного воздуха вращается в основном против часовой стрелки, как показано на фиг. 7; этот вихрь 94 можно называть также вращающимся по часовой стрелке, поскольку он движется в направлении от наконечника 72 в направлении переходного канала 35 через предварительную камеру 29 и затем через камеру 28 сгорания. В одном примере выполнения имеется 8 выходов 90, расположенных симметрично вокруг оси 79 топливной трубки и вокруг образователя 86 пленки топлива. Такое расположение выходов приводит к образованию, по меньшей мере вначале, симметричного растопочного вихря 94. В других примерах выходы 90 могут быть расположены асимметрично вокруг образователя 86 пленки топлива, и одно или каждое из отверстий 90 могут иметь различный размер.
В случае известной топливной трубки 56 и расположения основного завихрителя, при котором имеются противоположно вращающиеся вихри, на практике было установлено, что выходы 90 блокируются угольными отложениями, образующимися из жидкого топлива, попадающего на поверхности трубки 56 жидкого топлива. Дополнительно к этому, угольные отложения могут образовываться на других поверхностях системы горелок. Это блокирование уменьшает количество растопочного воздушного потока 34В, что, в свою очередь, уменьшает эффективность растопочного воздушного потока 34В при сдвиге и разрушении пленки топлива. В результате затрудняется и становится непредсказуемым воспламенение смеси топлива и воздуха. Таким образом, было установлено, что противоположно вращающиеся основной вихрь и растопочный вихрь 94 приводят, в частности, к характеристикам воздушного потока, которые вызывают контакт жидкого топлива с поверхностью топливной трубки, который затем приводит к образованию угольных отложений, которые блокируют выходы 90.
Противоположно вращающийся подаваемый растопочный воздушный поток 34В и противоположно вращающийся растопочный вихрь 94 остаются достаточно сильными для эффективного образования буфера 94 текучей среды и образования на его подветренной или нижней по потоку стороне зоны 96 рециркуляции или зоны 96 низкого давления. Таким образом, зона 96 рециркуляции или зона 96 низкого давления втягивает основной воздушный поток 34А в направлении поверхности 64 между трубкой 56 жидкого топлива и воспламенителем 58. Часть капелек 92 топлива также втягивается в направлении поверхности 64 и поэтому ближе к воспламенителю 56, так что обеспечивается также возможность хорошего воспламенения смеси топлива и воздуха.
Было установлено, что расположение топливной трубки 56 и расположение основного завихрителя так, что их соответствующие вихри вращаются в одинаковом направлении вращения, т.е. оба по часовой стрелке или оба против часовой стрелки, может предотвращать или по существу предотвращать угольные отложения, поскольку меньше жидких капелек 92 приходят в контакт с поверхностями трубки 56 жидкого топлива и горелки.
На фиг. 8А показана в изометрической проекции трубка 56 жидкого топлива со схематичным изображением относительного радиального угла μ одного из воздушных проходов 88; другие воздушные проходы не изображены для ясности. Проходы 88 вспомогательного воздуха имеют входы 91 и центральную ось 92. Проходы вспомогательного воздуха обычно просверлены, однако могут быть образованы также с помощью лазерного сверления или с помощью электронного луча. Возможно, что наконечник топливной трубки образован с помощью технологии отложения слоев, такой как непосредственное лазерное осаждение, так что форма проходов вспомогательного воздуха может быть изогнутой в любом направлении, и в этом случае указываемые углы могут относиться к направлению выхода воздушного потока.
Проходы 88 вспомогательного воздуха радиально наклонены под углом μ относительно оси 79 топливной трубки. В этом предпочтительном варианте выполнения проходы вспомогательного воздуха наклонены радиально под углом μ приблизительно 45° относительно оси 79 топливной трубки. Однако минимальный угол μ приблизительно равен 5° относительно оси 79 топливной трубки. Для наилучших результатов проходы 88 вспомогательного воздуха радиально наклонены под углом μ между 30° и 60° включительно относительно оси 79 топливной трубки. Возможно даже, что проходы 88 вспомогательного воздуха радиально наклонены на угол между 0° и 0° включительно относительно оси 79 топливной трубки в некоторых примерах выполнения изобретения.
На фиг. 8В показана открытая поверхность наконечника 72 трубки жидкого топлива, показанной, например, на фиг. 3. Для ясности изображен лишь один из проходов 88 вспомогательного воздуха. Здесь центральная ось 92 проходов 88 вспомогательного воздуха имеет тангенциальный угол δ приблизительно 30° относительно касательной 93 к оси 79 жидкого топлива. Этот тангенциальный угол δ приблизительно равен +30° относительно касательной 93, т.е. центральная ось 92 наклонена «внутрь». Здесь выход 90 расположен радиально внутри входа 91 относительно оси 79. За счет наклона воздушных проходов внутрь создается более плотный вихрь, который может предпочтительно распылять топливо, выходящее из топливной форсунки 86. В других вариантах выполнения тангенциальный угол δ может составлять между 25° и 45° относительно касательной 93 в зависимости от угла распыления или угла жидкостного конуса топлива, выходящего из топливного выхода.
В качестве альтернативного решения, тангенциальный угол δ может составлять приблизительно -45° относительно касательной 93, т.е. центральная ось 92 наклонена «наружу». В этом случае выход 90 расположен радиально внутри входа 91 относительно оси 79. Это может приводить к созданию более слабого или менее плотного вихря, который может быть предпочтительным, когда большой объем воздуха используется для вспомогательного воздуха или когда создается плоский конус топлива из топливного отверстия 86. В других примерах выполнения проходы 88 вспомогательного воздуха могут иметь тангенциальный угол δ приблизительно 0° относительно касательной к оси 79 топливной трубки.
На фиг. 9 показана поверхность 64 горелки 30 вдоль оси 50, от которой отходит радиальная линия 102 и проходит через ось 79 трубки 56 жидкого топлива. Топливная трубка 56 и воспламенитель 58 показаны вместе со стрелками основного воздушного потока 34А, выходящего из проходов 62 основного воздушного потока. Как указывалось выше, часть вихря, обозначенная стрелкой 34Сf, движется в основном с более высокой скоростью, чем часть вихря, обозначенная стрелкой 34Сs. Относительно более медленный поток находится в основном внутри более быстрого воздуха.
Топливная трубка 56, как указывалось выше, по меньшей мере частично расположена внутри тела 53 горелки 30, и выходы 90 и образователь 86 пленки топлива расположены на или вблизи поверхности 64. В этом примере выходы 90 и образователь 86 пленки топлива расположены ниже поверхности 64 в теле 53 горелки. Воспламенитель 58 также частично расположен внутри тела 53 горелки и имеет концевую торцевую поверхность 59, расположенную непосредственно под поверхностью 64, но может быть на или вблизи поверхности 64.
Кроме того, горелка 30 включает решетку выходов 122 впрыска газа, образованных в основном в радиально наружной части горелки 30 и под окружным выступом 124, как показано на фиг. 2. Эти выходы 122 впрыска газа могут подавать растопочное газовое топливо, как известно из уровня техники.
Понятия по часовой стрелке и против часовой стрелки даны относительно поверхности 64 горелки 30, как показано на фиг. 9.

Claims (19)

1. Горелка (30) для камеры (16) сгорания газовой турбины, при этом горелка (30) содержит тело (53), имеющее поверхность (64) и ось (50) горелки, топливную трубку (56), воспламенитель (58) и проход (62) или проходы (62) для основного воздушного потока,
при этом проход (62) или проходы (62) основного воздушного потока наклонены относительно оси (50) горелки и создают основной вихрь (34С) вокруг оси (50) горелки в первом направлении вращения, при этом основной вихрь перемещается в направлении вдоль оси (50) горелки и от поверхности (64),
при этом воспламенитель (58) расположен по потоку после топливной трубки (56)относительно первого направления вращения основного вихря, так что часть основного воздушного потока (34А) проходит над топливной трубкой (56) и затем над воспламенителем (58),
при этом топливная трубка (56) содержит ось (79) топливной трубки, наконечник (72) для жидкого топлива, имеющий выход (86) для топлива, и решетку проходов (88) вспомогательного воздуха, имеющих выходы (90), расположенные вокруг топливного выхода (86),
причем проходы (88) вспомогательного воздуха наклонены относительно оси (79) топливной трубки для создания вихря (96) вспомогательного воздуха вокруг оси (79) топливной трубки в том же направлении вращения относительно первого направления вращения.
2. Горелка (30) для камеры (16) сгорания газовой турбины по п. 1, в которой проход (62) или проходы (62) основного воздушного потока тангенциально наклонены относительно оси (50) горелки.
3. Горелка (30) для камеры (16) сгорания газовой турбины по любому из пп. 1 или 2, в которой проходы (88) вспомогательного воздуха радиально наклонены под углом μ относительно оси (79) топливной трубки.
4. Горелка (30) для камеры (16) сгорания газовой турбины по п. 3, в которой проходы (88) вспомогательного воздуха радиально наклонены на угол μ между 15° и 60° включительно относительно оси (79) топливной трубки.
5. Горелка (30) для камеры (16) сгорания газовой турбины по п. 3, в которой проходы (88) вспомогательного воздуха радиально наклонены под углом μ приблизительно 30° относительно касательной к оси (79) топливной трубки.
6. Горелка (30) для камеры (16) сгорания газовой турбины по любому из пп. 1-5, в которой проходы (88) вспомогательного воздуха имеют тангенциальный угол δ между +/-45° относительно касательной к оси (79) топливной трубки.
7. Горелка (30) для камеры (16) сгорания газовой турбины по п. 6, в которой проходы (88) вспомогательного воздуха имеют тангенциальный угол δ приблизительно 0° относительно касательной к оси (79) топливной трубки.
8. Горелка (30) для камеры (16) сгорания газовой турбины по любому из пп. 1-7, в которой топливная трубка (56) и воспламенитель (58) расположены на одинаковом радиальном расстоянии от оси (50) горелки.
9. Горелка (30) для камеры (16) сгорания газовой турбины по любому из пп. 1-7, в которой топливная трубка (56) и воспламенитель (58) расположены на различном радиальном расстоянии от оси (50) горелки, и воспламенитель (58) предпочтительно расположен радиально внутри топливной трубки (56).
10. Горелка (30) для камеры (16) сгорания газовой турбины по любому из пп. 1-9, в которой топливный выход (86) топливной трубки (56) расположен на поверхности (64) или вблизи нее.
11. Горелка (30) для камеры (16) сгорания газовой турбины по любому из пп. 1-10, в которой воспламенитель (58) по меньшей мере частично расположен внутри тела (53) и имеет концевую торцевую поверхность (59), при этом концевая торцевая поверхность (59) расположена на поверхности (64) или вблизи нее.
12. Горелка (30) для камеры (16) сгорания газовой турбины по любому из пп. 1-11, в которой горелка содержит кольцевую решетку завихряющих лопастей (55), расположенных вокруг оси (50) горелки, и которые образуют проходы (62) основного воздушного потока.
13. Горелка (30) для камеры (16) сгорания газовой турбины по любому из пп. 1-12, в которой проходы (62) основного воздушного потока наклонены в направлении против часовой стрелки, и проходы (88) вспомогательного воздуха наклонены в направлении против часовой стрелки относительно нормали к поверхности (64).
14. Горелка (30) для камеры (16) сгорания газовой турбины по любому из пп. 1-12, в которой проходы (62) основного воздушного потока наклонены в направлении по часовой стрелке, и проходы (88) вспомогательного воздуха наклонены в направлении по часовой стрелке относительно нормали к поверхности (64).
15. Горелка (30) для камеры (16) сгорания газовой турбины по любому из пп. 1-14, в которой топливный выход (86) является либо предварительным образователем пленки топлива, либо отверстием, либо несколькими отверстиями.
RU2016142822A 2014-05-02 2015-04-15 Расположение горелок камеры сгорания RU2642971C1 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP14166841.8 2014-05-02
EP14166841.8A EP2940389A1 (en) 2014-05-02 2014-05-02 Combustor burner arrangement
EP14185650.0A EP2940390A1 (en) 2014-05-02 2014-09-19 Combustor burner arrangement
EP14185650.0 2014-09-19
PCT/EP2015/058215 WO2015165735A1 (en) 2014-05-02 2015-04-15 Combustor burner arrangement

Publications (1)

Publication Number Publication Date
RU2642971C1 true RU2642971C1 (ru) 2018-01-29

Family

ID=50639310

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2016142822A RU2642971C1 (ru) 2014-05-02 2015-04-15 Расположение горелок камеры сгорания
RU2016142786A RU2672216C2 (ru) 2014-05-02 2015-04-30 Расположение горелок камеры сгорания

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2016142786A RU2672216C2 (ru) 2014-05-02 2015-04-30 Расположение горелок камеры сгорания

Country Status (5)

Country Link
US (2) US20170082289A1 (ru)
EP (4) EP2940389A1 (ru)
CN (2) CN106415132B (ru)
RU (2) RU2642971C1 (ru)
WO (2) WO2015165735A1 (ru)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170248318A1 (en) * 2016-02-26 2017-08-31 General Electric Company Pilot nozzles in gas turbine combustors
US10739003B2 (en) 2016-10-03 2020-08-11 United Technologies Corporation Radial fuel shifting and biasing in an axial staged combustor for a gas turbine engine
CN110274227B (zh) * 2017-05-22 2021-03-16 中国北方车辆研究所 一种燃烧供风圆板及其燃烧器***
CN107838572B (zh) * 2017-11-01 2020-08-25 湖北三江航天红阳机电有限公司 一种针栓式喷注器的焊接方法
US11149950B2 (en) * 2018-06-11 2021-10-19 Woodward, Inc. Pre-swirl pressure atomizing tip
CN109718650A (zh) * 2019-02-28 2019-05-07 中国华能集团清洁能源技术研究院有限公司 Sncr脱硝***的阶梯式喷射装置及采用该装置的脱硝***
FR3099547B1 (fr) * 2019-07-29 2021-10-08 Safran Aircraft Engines Nez d'injecteur de carburant pour turbomachine comprenant une chambre de mise en rotation intérieurement délimitée par un pion
CN111520757B (zh) * 2020-03-31 2022-06-10 西北工业大学 直射式凹腔旋流喷嘴
CN112984558A (zh) * 2021-03-17 2021-06-18 中国航发动力股份有限公司 一种燃气轮机天然气喷嘴
US20230194095A1 (en) * 2021-12-21 2023-06-22 General Electric Company Fuel nozzle and swirler
CN114517921A (zh) * 2022-03-15 2022-05-20 西北工业大学 一种带有水滴型扰流柱的甩油盘
EP4279812A1 (en) * 2022-05-18 2023-11-22 Ansaldo Energia Switzerland AG Fuel oil injector with shielding air supply
US20240167680A1 (en) * 2022-11-23 2024-05-23 Woodward, Inc. Tangential pressure atomizing tip without feed chamber
CN116358004B (zh) * 2023-03-27 2023-12-05 中国航发贵阳发动机设计研究所 一种中推航空发动机环形燃烧室火焰筒结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289676B1 (en) * 1998-06-26 2001-09-18 Pratt & Whitney Canada Corp. Simplex and duplex injector having primary and secondary annular lud channels and primary and secondary lud nozzles
RU2212001C2 (ru) * 1997-05-07 2003-09-10 Дзе Бок Груп ПЛС Кислородно-нефтяная центробежная форсунка
US6863228B2 (en) * 2002-09-30 2005-03-08 Delavan Inc. Discrete jet atomizer
EP2003398A2 (en) * 2007-06-14 2008-12-17 Pratt & Whitney Canada Corp. Fuel nozzle providing shaped fuel spray
EP2489939A1 (en) * 2011-02-18 2012-08-22 Siemens Aktiengesellschaft Combustion chamber with a wall section and a brim element

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402740A (en) * 1980-07-30 1983-09-06 Southwire Company Dual fuel burner for metal melting furnaces
US4717332A (en) * 1985-11-22 1988-01-05 Edens P Clifton Flame retention burner apparatus and method
US5431019A (en) * 1993-04-22 1995-07-11 Alliedsignal Inc. Combustor for gas turbine engine
DE69421766T2 (de) * 1993-07-30 2000-06-21 United Technologies Corp., Hartford Wirbelmischvorrichtung für eine Brennkammer
FR2754590B1 (fr) * 1996-10-16 1998-11-20 Snecma Dispositif d'alimentation en comburant d'une turbine a gaz comprenant des diaphragmes de reglage du debit commandes par paires
JP3557815B2 (ja) * 1996-11-01 2004-08-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
US5996336A (en) * 1997-10-28 1999-12-07 Hamedani; Mohammad F. Jet engine having radial turbine blades and flow-directing turbine manifolds
US6082113A (en) * 1998-05-22 2000-07-04 Pratt & Whitney Canada Corp. Gas turbine fuel injector
CA2335349C (en) * 1998-06-26 2008-10-07 Lev A. Prociw Fuel injector for gas turbine engine
US6547163B1 (en) * 1999-10-01 2003-04-15 Parker-Hannifin Corporation Hybrid atomizing fuel nozzle
DE102004049491A1 (de) * 2004-10-11 2006-04-20 Alstom Technology Ltd Vormischbrenner
US20100170253A1 (en) * 2009-01-07 2010-07-08 General Electric Company Method and apparatus for fuel injection in a turbine engine
ATE540265T1 (de) * 2009-04-06 2012-01-15 Siemens Ag Drallvorrichtung, brennkammer und gasturbine mit verbessertem drall
US8534040B2 (en) * 2010-11-11 2013-09-17 General Electric Company Apparatus and method for igniting a combustor
US8528338B2 (en) * 2010-12-06 2013-09-10 General Electric Company Method for operating an air-staged diffusion nozzle
US8351780B2 (en) * 2011-02-01 2013-01-08 Hamilton Sundstrand Corporation Imaging system for hollow cone spray
US8763401B2 (en) * 2011-05-30 2014-07-01 Pratt & Whitney Canada Corp. Integrated fuel nozzle and ignition assembly for gas turbine engines
CN102230623B (zh) * 2011-07-12 2013-04-17 重庆赛迪工业炉有限公司 扁平燃烧装置
FR2980554B1 (fr) * 2011-09-27 2013-09-27 Snecma Chambre annulaire de combustion d'une turbomachine
FR2982010B1 (fr) * 2011-10-26 2013-11-08 Snecma Chambre de combustion annulaire dans une turbomachine
US20130189632A1 (en) * 2012-01-23 2013-07-25 General Electric Company Fuel nozzel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2212001C2 (ru) * 1997-05-07 2003-09-10 Дзе Бок Груп ПЛС Кислородно-нефтяная центробежная форсунка
US6289676B1 (en) * 1998-06-26 2001-09-18 Pratt & Whitney Canada Corp. Simplex and duplex injector having primary and secondary annular lud channels and primary and secondary lud nozzles
US6863228B2 (en) * 2002-09-30 2005-03-08 Delavan Inc. Discrete jet atomizer
EP2003398A2 (en) * 2007-06-14 2008-12-17 Pratt & Whitney Canada Corp. Fuel nozzle providing shaped fuel spray
EP2489939A1 (en) * 2011-02-18 2012-08-22 Siemens Aktiengesellschaft Combustion chamber with a wall section and a brim element

Also Published As

Publication number Publication date
CN106461219A (zh) 2017-02-22
EP3137815A1 (en) 2017-03-08
RU2016142786A3 (ru) 2018-06-05
US10533748B2 (en) 2020-01-14
CN106415132A (zh) 2017-02-15
CN106461219B (zh) 2020-07-31
RU2672216C2 (ru) 2018-11-12
EP2940390A1 (en) 2015-11-04
EP3137815B1 (en) 2020-02-19
CN106415132B (zh) 2020-08-18
RU2016142786A (ru) 2018-06-05
EP3137814B1 (en) 2020-08-19
EP3137814A1 (en) 2017-03-08
US20170045231A1 (en) 2017-02-16
WO2015165735A1 (en) 2015-11-05
EP2940389A1 (en) 2015-11-04
US20170082289A1 (en) 2017-03-23
WO2015166017A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
RU2642971C1 (ru) Расположение горелок камеры сгорания
JP5269350B2 (ja) ガスタービンエンジン燃料ノズル用の吸気流調整装置
JP5591408B2 (ja) ガスタービン用の低発熱量燃料燃焼器
US20060127827A1 (en) Combustor and combustion method for combustor
US11421882B2 (en) Swirler, combustor assembly, and gas turbine with improved fuel/air mixing
JP2008008612A5 (ru)
JP2008008612A (ja) 空気と燃料の混合物を噴射するための装置と、このような装置を備える燃焼室およびターボ機械
KR20130066691A (ko) 노즐 및 가스 터빈 연소기, 가스 터빈
CA2859435A1 (en) Burner arrangement and method for operating a burner arrangement
US20140144150A1 (en) Fuel nozzle for use in a turbine engine and method of assembly
KR20150088638A (ko) 연소기
CN107850308B (zh) 用于燃气轮机的燃烧器
EP3078913A1 (en) Combustor burner arrangement
WO2017121872A1 (en) Combustor for a gas turbine
US20170307220A1 (en) Pilot liquid fuel lance, pilot liquid fuel system and method of use
US11725819B2 (en) Gas turbine fuel nozzle having a fuel passage within a swirler