RU2629418C1 - Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия - Google Patents

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия Download PDF

Info

Publication number
RU2629418C1
RU2629418C1 RU2016135976A RU2016135976A RU2629418C1 RU 2629418 C1 RU2629418 C1 RU 2629418C1 RU 2016135976 A RU2016135976 A RU 2016135976A RU 2016135976 A RU2016135976 A RU 2016135976A RU 2629418 C1 RU2629418 C1 RU 2629418C1
Authority
RU
Russia
Prior art keywords
scandium
aluminum
molten mixture
oxide
scandium oxide
Prior art date
Application number
RU2016135976A
Other languages
English (en)
Inventor
Юрий Павлович Зайков
Андрей Викторович Суздальцев
Андрей Юрьевич Николаев
Ольга Юрьевна Ткачева
Дмитрий Анатольевич Виноградов
Виталий Валерьевич Пингин
Юрий Михайлович Штефанюк
Виктор Христьянович Манн
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук
Priority to RU2016135976A priority Critical patent/RU2629418C1/ru
Application granted granted Critical
Publication of RU2629418C1 publication Critical patent/RU2629418C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре 800-850°С и катодной плотности тока не выше 1А/см2 с периодической выгрузкой алюминиевой лигатуры из электролизера и загрузкой оксида скандия и металлического алюминия в электролизер с расплавленной смесью, при этом оксид скандия в расплавленную смесь загружают в количестве 3-6 мас.% от расплавленной смеси, а металлический алюминий – в количестве, обеспечивающем соотношение масс алюминия и расплавленной смеси в электролизере, составляющее 1:1-4. Обеспечивается непрерывное получение лигатуры и снижение себестоимости получаемого из лигатуры алюминиевого сплава. 1 табл.

Description

Изобретение относится к металлургии цветных металлов, в частности к получению алюминиевой лигатуры с редкоземельными металлами, и может быть использовано для получения алюминиевой лигатуры с 2 мас.% скандия (лигатура AlSc2), которая может быть использована для приготовления многофункциональных алюминиевых сплавов со скандием, применяемых в автомобилестроении, роботостроении, аэрокосмической отрасли.
Преимущество алюминиевых лигатур заключается в уменьшении затрат на транспортировку готовой продукции и повышенное извлечение из исходного сырья ценного компонента, к которым относится скандий. Актуальность разработки энергосберегающих и ресурсосберегающих технологий получения алюминиевых лигатур со скандием подтверждается их присутствием в списке стандартизированных лигатур (см. ГОСТ Р 53777-2010).
Известно, что к достоинствам алюминиевых лигатур относится воспроизводимость их свойств в получаемых алюминиевых сплавах. К преимуществам лигатуры AlSc2 относится то, что в соответствии с фазовой диаграммой системы «алюминий-скандий», лигатура AlSc2 с воспроизводимыми свойствами может быть получена при относительно низкой температуре (до 900°С).
В настоящее время в России и за рубежом лигатуру AlSc2 получают восстановлением фторида скандия алюминием из реакционной смеси хлорида калия, фторида натрия и фторида алюминия при 900°С (Цветные металлы, 2010, №5, 95-96) [1]. Известный способ характеризуется рядом существенных недостатков, среди которых такие как использование относительно дорогого фторида скандия и быстрое накопление оксида в солевом флюсе, которое приводит к необходимости периодической регенерации либо замены реакционной смеси, к большим потерям ценного компонента (фторида скандия) и, как следствие, к повышению себестоимости получаемой лигатуры. Помимо этого, алюмотермическое восстановление фторида скандия представляется сложным с точки зрения подбора параметров синтеза и поэтому требует непрерывного мониторинга.
Известен способ получения алюминиевой лигатуры с содержанием скандия от 1.5 до 30 мас. % алюмотермическим восстановлением фторида скандия при соотношении в реакционной смеси ScF3:Al 1:(1.6-8) в три стадии с постепенным повышением температуры до 1300°С в течение 5-6 часов(SU873692, C22C1/03, опубл. 30.11.1983)[2]. Процесс осуществляется в закрытой восстановительной камере, изолированной от внешней атмосферы. Недостатками известного способа являются высокая температура и длительность процесса, невоспроизводимость содержания скандия в готовой лигатуре, трудоемкость и многостадийность процесса. Кроме того, существенным недостатком является присутствие субфторида алюминия AlF в готовой лигатуре, который при охлаждении диссоциирует с образованием фторида алюминия и мелкодисперсного алюминия. При разгерметизации восстановительной камеры мелкодисперсный алюминий окисляется с выделением большого количества энергии.
При более низкой температуре, из более дешевого оксида скандия, с более высокой воспроизводимостью содержания скандия в готовой лигатуре и с меньшей трудоемкостью алюминиевую лигатуру получают способом (RU 2124574, C22C1/03, опубл.10.01.1999) [3]. Данный способ включает расплавление и выдержку при 820°С реакционной смеси алюминия,хлорида калия, фторида натрия, фторида алюминия и оксида скандия. Помимо того, что этим способом получают алюминиевую лигатуру с содержанием скандия 1.82-1.84 мас.%, т.е. менее 2 мас. %,способ характеризуется накоплением оксида алюминия в реакционной смеси, приводящее к необходимости периодической регенерации либо замены реакционной смеси, что повышает себестоимость получаемой лигатуры.
Известен способ получения алюминиевой лигатуры с использованием относительно дешевого оксида скандия, снижающего себестоимость алюминиевого сплава с заданным содержанием скандия (WO2006079353A1, публ. 03.08.2006) [4]. Данный способ включает электролиз при 1000°С криолитового расплава, представляющего смесь фторидов натрия и алюминия, содержащего оксид алюминия, оксид или фторид скандия, который позволяет организовать непрерывное получение алюминиевой лигатуры и по технической сущности может быть принят в качестве наиболее близкого аналога к заявленному изобретению.
Однако, как показали исследования (Advanced Materials Research, 2015, Vol.1088, pp.213-216)[5], при электролизе криолитового расплава с добавками оксида скандия при катодной плотности тока не выше 1 А/см2 может быть получена алюминиевая лигатура с содержанием скандия не выше 1.3 мас.%. Лигатуру AlSc2 данным способом получить можно, однако для этого потребуется повышение катодной плотности тока до 2-3 А/см2, что приведёт к выделению щелочного металла, солевой пассивации электродов в электролизере и остановке процесса, либо для получения лигатуры AlSc2 данным способом потребуется использование дорогого фторида скандия, что приведет к повышению себестоимости получения этой лигатуры (Цветные металлы, 1998, № 7, с. 43-46) [6].
Задачей изобретения является непрерывное получение лигатуры AlSc2 при катодной плотности тока не выше 1 А/см2 и снижении себестоимости получаемого из лигатуры алюминиевого сплава.
Поставленная задача решается тем, что электролитический способ получения алюминиевой лигатуры с 2 мас.% скандия включает электролиз расплава, содержащего фториды калия, натрия, алюминия и оксид скандия, при этом в расплав, содержащий фториды калия, натрия и алюминия загружают оксид скандия, и электролиз расплавленной смеси с оксидом скандия ведут в электролизере при температуре 800-850°С, периодически осуществляя выгрузку готовой алюминиевой лигатуры из электролизера и загрузку оксида скандия и металлического алюминия в электролизер с расплавленной смесью, при этом оксид скандия в расплавленную смесь загружают в количестве 3-6 мас.% от расплавленной смеси, а металлический алюминий – в количестве, чтобы соотношение масс алюминия и расплавленной смеси в электролизере составляло 1 : 1-4.
Сущность заявленного способа заключается в следующем. При введении оксида скандия в расплавленную смесь KF-NaF-AlF3 происходит его растворение с образованием скандий-содержащих ионов. Несмотря на то, что скандий является более электроотрицательным металлом по отношению к алюминию, при контакте скандий-содержащей расплавленной смеси с жидким алюминием происходит восстановление скандия по суммарной реакции:
2Al + Sc2O3 = 2Sc + Al2O3 (1)
Восстановленный скандий растворяется в алюминии с образованием алюминиевой лигатуры, а оксид алюминия (Al2O3) растворяется в расплавленной смеси KF-NaF-AlF3 с оксидом скандия. Экспериментально показано, что в зависимости от температуры и состава расплавленной смеси KF-NaF-AlF3, содержащей 3-6 мас.% оксида скандия, в алюминий по реакции (1) переходит до 1.3 мас.% скандия. Сдвигу реакции (1) вправо и повышению извлечения скандия способствуют непрерывный отвод продуктов от фронта реакции: скандия вглубь алюминия; оксида алюминия – в объем расплавленной смеси.
В заявляемом способе отвод скандия вглубь алюминия практически не затруднен, поскольку температура синтеза (800-850°С) обеспечивает конвекцию скандия и алюминия за счет высокого перегрева алюминия (140-190°С). Отвод оксида алюминия из зоны реакции интенсифицируется за счет его электролитического разложения, которое происходит при электролизе расплавленной смеси KF-NaF-AlF3, содержащей оксиды алюминия и скандия. При электролизе на алюминиевом катоде и углеродном аноде параллельно протекают суммарные реакции разложения оксидов алюминия (Al2O3) и скандия (Sc2O3):
Al2O3 + 3С + 6е- = 2Al + CO + CO2 (2)
Sc2O3 + 3С + 6е- = 2Sc + CO + CO2 (3)
Экспериментально показано, что доля электрического тока, расходуемого на реакцию (3), незначительна ввиду быстрого расходования оксида скандия и накопления оксида алюминия по реакции (1).
Увеличение содержания скандия до 2 мас.% в алюминиевой лигатуре в сравнении с прототипом обеспечивается за счет поддержания концентрации оксида скандия в расплавленной смеси KF-NaF-AlF3 в диапазоне 3-6 мас.%. Эмпирически показано, что содержание скандия в лигатуре, получаемой при электролизе расплавленной смеси KF-NaF-AlF3, содержащей менее 3 мас.% оксида скандия при катодной плотностью тока не выше 1 А/см2, не превышает 1.6-1.8 мас.%. Верхний предел концентрации оксида скандия (6 мас.%) обусловлен растворимостью оксида в расплавленной смеси. Превышение концентрации оксида скандия в расплавленной смеси приведет к пассивации катодного алюминия.
Соотношение масс алюминия и расплавленной смеси (1:1-4) в электролизере подобрано эмпирически.
Непрерывность получения лигатуры обеспечивается тем, что готовую алюминиевую лигатуру периодически выгружают из электролизера, а металлический алюминий вместе с очередной добавкой оксида скандия периодически загружают в электролизер.
Таким образом, заявляемый способ непрерывного получения алюминиевой лигатуры с 2 мас.% скандия включает наплавление алюминия, наплавление фторидов калия, натрия и алюминия в электролизере, введение оксида скандия в расплавленную смесь фторидов, восстановление оксида скандия алюминием, электролиз расплавленной смеси KF-NaF-AlF3, периодическую выгрузку готовой алюминиевой лигатуры, периодическую загрузку металлического алюминия и периодическую загрузку оксида скандия в электролизер с алюминием и расплавленной смесью KF-NaF-AlF3.
При восстановлении оксида скандия алюминием до 1.3 мас.% скандия растворяется в алюминии, а в расплавленной смеси KF-NaF-AlF3 образуется оксид алюминия. При электролизе расплавленной смеси KF-NaF-AlF3, содержащей оксиды скандия и алюминия, происходит электролитическое разложение оксидов, преимущественно оксида алюминия, приводящее к сдвигу реакции (1) вправо и повышению извлечения скандия в алюминий до 2 мас.%. Требуемое содержание скандия в алюминиевой лигатуре (2 мас.%) достигается путем подбора соотношения масс алюминия и расплавленной смеси KF-NaF-AlF3 в электролизере, силы тока на конкретном электролизере и периодичности выгрузки готовой алюминиевой лигатуры с содержанием скандия 2.0 ± 0.2 мас.%.
Технический результат, достигаемый заявленным способом, заключается в интенсификации отвода оксида алюминия от фронта алюмотермической реакции (1) за счет электролитического разложения оксидов алюминия и скандия, преимущественно оксида алюминия, при электролизе расплавленной смеси KF-NaF-AlF3.
Заявляемый способ реализован в лабораторном электролизере на силу тока 20 А. Лабораторный электролизер состоит из графитового тигля, который размещают в печи сопротивления. В тигель электролизера загружают 400 г приготовленной смеси:
- фторида калия -30-50 мас. %, преимущественно 39 мас. %;
- фторида натрия - 1-12 мас. %, преимущественно 10 мас. %;
- фторида алюминия – остальное, преимущественно 51 мас. %.
Электролизер со смесью KF-NaF-AlF3 нагревают до температуры синтеза (800-850°С), после чего загружают в тигель электролизера 12-24 г (3-6 мас.%) оксида скандия. Спустя 30-60 минут в тигель электролизера загружают 400г алюминия. При контакте алюминия с расплавленной смесью начинает протекать реакция (1), в ходе которой в алюминии образуется скандий, а в расплавленной смеси KF-NaF-AlF3 - оксид алюминия. При этом температура в электролизере опускается до 720-740°С. При достижении температуры синтеза (800-850°С) в полученную расплавленную смесь погружают анод из плотного графита.
Электролиз расплавленной смеси KF-NaF-AlF3, содержащей оксиды скандия и алюминия, осуществляют путем пропускания электрического тока силой 10-20А между графитовым анодом и графитовым тиглем электролизера, который служит токоподводом к жидкому алюминиевому катоду. Размеры катода подбираются таким образом, чтобы катодная плотность тока не превышала 1 А/см2. В ходе электролиза фиксируют изменение напряжения на электролизере и отбирают пробы расплавленной смеси и алюминия с целью определения их элементного состава. На рисунке показано изменение содержания скандия в расплавленной смеси и в алюминии в ходе электролиза расплавленной смеси KF-NaF-AlF3 с разовой добавкой 6 мас.% Sc2O3.
Видно, что за 120-180 минут электролиза обеспечивается требуемое содержание скандия в алюминии, 2 мас.%. Для обеспечения непрерывности получения алюминиевой лигатуры с 2 мас.% скандия часть массы алюминия со скандием, преимущественно половину, выгружают из электролизера с периодичностью 1 выгрузка в 3 часа, а металлический алюминий вместе с очередной добавкой оксида скандия загружают в электролизер. Скорость загрузки оксида скандия составляет 1г за 10 минут.
Всего в лабораторном эксперименте в электролизер было загружено алюминия – 2408г, оксида скандия – 124г; произведено 11 выгрузок алюминиевой лигатуры общей массой 2378г и содержанием скандия 1.98-2.14 мас.%.
Заявляемый способ реализован также в укрупненном лабораторном электролизере на силу тока 100А. Укрупненный лабораторный электролизер состоит из графитового тигля, который размещают в печи сопротивления. В тигель электролизера загружают 4000г приготовленной смеси:
- фторида калия - 39 мас.%;
- фторида натрия - 10 мас.%;
- фторида алюминия – 51 мас.%.
Электролизер со смесью KF-NaF-AlF3 нагревают до температуры 820°С, после чего загружают в тигель электролизера 200г (5 мас.%) оксида скандия и 4000г алюминия. При этом температура в электролизере опускается до 760-770°С. При достижении температуры 820°С в полученную расплавленную смесь погружают анод из плотного графита.
Электролиз расплавленной смеси KF-NaF-AlF3, содержащей оксиды скандия и алюминия, осуществляют путем пропускания электрического тока силой 80А между графитовым анодом и графитовым тиглем электролизера, который служит токоподводом к жидкому алюминиевому катоду. Размеры катода подбираются таким образом, чтобы катодная плотность тока не превышала 1 А/см2. В ходе электролиза фиксируют изменение напряжения на электролизере и отбирают пробы расплавленной смеси и алюминия с целью определения их элементного состава. На основании лабораторных экспериментов и экстраполяции результатов было оценено, что для обеспечения непрерывного получения алюминиевой лигатуры необходимо производить ее выгрузку из электролизера с периодичностью 1 выгрузка по 2000г в 3 часа, а в электролизер, соответственно загружать 2000г чистого алюминия с очередной партией оксида скандия. Скорость загрузки оксида скандия составляет 5г за 6 минут.
Всего в укрупненном лабораторном эксперименте было произведено 8 выгрузок алюминиевой лигатуры общей массой 15.5 кг и содержанием скандия 1.99-2.12 мас.%. Химический состав получаемой алюминиевой лигатуры со скандием, мас.%: скандия – 2.0; железа – 0.006; кремния – 0.007; меди – менее 0.001; натрия – 0.0002; лития – не более 0.0001; калия – 0.0003. Таким образом, способ также позволяет существенно снизить содержание примесей в алюминиевой лигатуре со скандием в сравнении с содержанием примесей по ГОСТ Р 53777-2010. Содержание скандия в получаемых слитках лигатуры входит в пределы содержания скандия (1.7-2.3 мас.%), допустимых по ГОСТ Р 53777-2010.
Параметры, отражающие получение алюминиевой лигатуры с 2 мас.% скандия в зависимости от заявленных пределов температуры электролиза, количества загружаемого скандия и соотношения масс алюминия и расплавленной смеси приведены в таблице. Содержание скандия в получаемых слитках лигатуры 1.91-2.18 входит в пределы содержания скандия (1.7-2.3 мас.%), допустимых по ГОСТ Р 53777-2010.
Заявленный способ позволяет непрерывно получать лигатуру AlSc2 при катодной плотности тока не выше 1 А/см2 и снизить себестоимость получаемого из лигатуры алюминиевого сплава.

Claims (1)

  1. Способ электролитического получения алюминиевой лигатуры с 2 мас.% скандия, включающий электролиз расплава, содержащего фториды калия, натрия, алюминия и оксид скандия, отличающийся тем, что в упомянутый расплав загружают оксид скандия и ведут электролиз расплавленной смеси с оксидом скандия в электролизере при температуре 800-850°С и катодной плотности тока не выше 1А/см2 с периодической выгрузкой алюминиевой лигатуры из электролизера и загрузкой оксида скандия и металлического алюминия в электролизер с расплавленной смесью, при этом оксид скандия в расплавленную смесь загружают в количестве 3-6 мас.% от расплавленной смеси, а металлический алюминий – в количестве, обеспечивающем соотношение масс алюминия и расплавленной смеси в электролизере, составляющее 1:1-4.
RU2016135976A 2016-09-07 2016-09-07 Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия RU2629418C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016135976A RU2629418C1 (ru) 2016-09-07 2016-09-07 Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016135976A RU2629418C1 (ru) 2016-09-07 2016-09-07 Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Publications (1)

Publication Number Publication Date
RU2629418C1 true RU2629418C1 (ru) 2017-08-29

Family

ID=59797877

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016135976A RU2629418C1 (ru) 2016-09-07 2016-09-07 Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Country Status (1)

Country Link
RU (1) RU2629418C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2124574C1 (ru) * 1997-10-16 1999-01-10 Институт химии твердого тела Уральского Отделения РАН Способ получения лигатуры скандий-алюминий (его варианты)
CN1410599A (zh) * 2002-12-03 2003-04-16 中国铝业股份有限公司 一种电解生产铝钪合金的方法
WO2006079353A1 (de) * 2005-01-25 2006-08-03 Alcan Technology & Management Ltd. Verfahren zur herstellung ainer aluminium-scandium-vorliegerung
CN104694975A (zh) * 2015-03-26 2015-06-10 中南大学 一种制备铝-钪中间合金的电解质
CN104746106A (zh) * 2015-04-21 2015-07-01 中南大学 一种制备铝-钪中间合金的熔盐电解方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2124574C1 (ru) * 1997-10-16 1999-01-10 Институт химии твердого тела Уральского Отделения РАН Способ получения лигатуры скандий-алюминий (его варианты)
CN1410599A (zh) * 2002-12-03 2003-04-16 中国铝业股份有限公司 一种电解生产铝钪合金的方法
WO2006079353A1 (de) * 2005-01-25 2006-08-03 Alcan Technology & Management Ltd. Verfahren zur herstellung ainer aluminium-scandium-vorliegerung
CN104694975A (zh) * 2015-03-26 2015-06-10 中南大学 一种制备铝-钪中间合金的电解质
CN104746106A (zh) * 2015-04-21 2015-07-01 中南大学 一种制备铝-钪中间合金的熔盐电解方法

Similar Documents

Publication Publication Date Title
CN107532317B (zh) 生产铝钪合金的方法和实施该方法的反应器
US5024737A (en) Process for producing a reactive metal-magnesium alloy
US11261532B2 (en) Method and apparatus for electrolytic reduction of a feedstock comprising oxygen and a first metal
RU2593246C1 (ru) Способ получения лигатуры алюминий-скандий
TW201042089A (en) Primary production of elements
Suzdaltsev et al. Extraction of scandium and zirconium from their oxides during the electrolysis of oxide–fluoride melts
JPH0633161A (ja) 均質で純粋なインゴットに加工することのできる耐熱金属合金及び該合金の製造方法
CN112534074A (zh) 铝-钪合金的生产方法
RU2629418C1 (ru) Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия
RU2621207C1 (ru) Способ получения сплава на основе алюминия и устройство для осуществления способа
GB2534332A (en) Method and apparatus for producing metallic tantalum by electrolytic reduction of a feedstock
CN101298684A (zh) 一步电解法生产铝-Me中间合金的方法
RU2716727C1 (ru) Электролитический способ получения лигатур алюминия из оксидного сырья
RU2599312C1 (ru) Электролитический способ непрерывного получения алюминиевого сплава со скандием
RU2658556C1 (ru) Способ получения лигатур алюминия с цирконием
US2782156A (en) Purification of fused salt electrolytes
JP2004315891A (ja) 希土類金属を含むマグネシウム合金の製造方法
CN110565119A (zh) 一种纯化铝合金的方法
CN112921361A (zh) 一种钇铝中间合金及其制备方法
RU2819113C1 (ru) Способ электролитического получения сплавов алюминия со скандием
RU2455398C2 (ru) Способ электролитического производства алюминия
RU2819114C1 (ru) Способ электролитического получения сплавов алюминия с иттрием с использованием кислородвыделяющего анода
CN103132108B (zh) 熔盐体系中电解制备耐热镁铝钕合金的方法
RU2777071C1 (ru) Способ получения циркония электролизом расплавленных солей
RU2811340C1 (ru) Способ электролитического получения сплавов алюминия с иттрием