RU2455398C2 - Способ электролитического производства алюминия - Google Patents

Способ электролитического производства алюминия Download PDF

Info

Publication number
RU2455398C2
RU2455398C2 RU2010133245/02A RU2010133245A RU2455398C2 RU 2455398 C2 RU2455398 C2 RU 2455398C2 RU 2010133245/02 A RU2010133245/02 A RU 2010133245/02A RU 2010133245 A RU2010133245 A RU 2010133245A RU 2455398 C2 RU2455398 C2 RU 2455398C2
Authority
RU
Russia
Prior art keywords
phase
anodes
iron
nickel
content
Prior art date
Application number
RU2010133245/02A
Other languages
English (en)
Other versions
RU2010133245A (ru
Inventor
Дмитрий Александрович Симаков (RU)
Дмитрий Александрович Симаков
Александр Олегович Гусев (RU)
Александр Олегович Гусев
Сергей Юрьевич Васильев (RU)
Сергей Юрьевич Васильев
Александр Юрьевич Филатов (RU)
Александр Юрьевич Филатов
Марина Игоревна Борзенко (RU)
Марина Игоревна Борзенко
Зоя Викторовна Кузьминова (RU)
Зоя Викторовна Кузьминова
Вероника Кестучё Лауринавичюте (RU)
Вероника Кестучё Лауринавичюте
Евгений Викторович Антипов (RU)
Евгений Викторович Антипов
Original Assignee
Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" filed Critical Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр"
Priority to RU2010133245/02A priority Critical patent/RU2455398C2/ru
Publication of RU2010133245A publication Critical patent/RU2010133245A/ru
Application granted granted Critical
Publication of RU2455398C2 publication Critical patent/RU2455398C2/ru

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

Изобретение относится к способу электролитического производства алюминия из глиноземсодержащего фторидного расплава. Способ осуществляют с использованием анодов, содержащих двухфазные металлические сплавы на основе меди и железа, в том числе легированные небольшими количествами никеля, состоящих из обогащенной по железу реакционноспособной фазы и обогащенной по меди сплошной инертной фазы и содержащих от 30 до 77 мас.% меди, от 23 до 65 мас.% железа и до 15 мас.% никеля, в которых содержание реакционноспособной фазы в двухфазном сплаве Cu-Fe-Ni составляет 24-83%, а инертная фаза находится в пространстве между дендритами реакционноспособной фазы. Обеспечивается возможность существенно снизить скорости коррозии анодов в глиноземсодержащих фторидных расплавах с рабочей температурой менее 950°С в условиях анодной поляризации, а также обеспечить получение алюминия с низким содержанием металлов - компонентов анода. 2 з.п. ф-лы, 1 табл.

Description

Изобретение относится к области цветной металлургии и может быть использовано для получения металлов электролизом расплавленных электролитов с инертными анодами, в частности для электролитического получения алюминия в криолит-глиноземных расплавах.
В последние десятилетия интенсивно ведутся работы по созданию малорасходуемых («несгораемых» или «инертных») анодов для замены расходуемых углеродистых анодов при электролитическом получении алюминия. В результате замены ожидаются снижение затрат на производство алюминия, большая компактность конструкции технологического аппарата (электролизера) с меньшими тепловыми потерями, повышение экологической безопасности производства. Основное внимание уделяется металлическим сплавам, как более технологичным материалам [1, 2] по сравнению с керамическими и керметными материалами. Первоначально работы в этом направлении были ориентированы на сплавы с высоким содержанием никеля [3-5]. Эти материалы планировалось использовать в расплавах, традиционно применяемых в промышленном производстве алюминия электролизом (криолитовое отношение КО=2.2-3.0, Т=950-1000°С). Здесь и далее криолитовое отношение, КО=[NaF]/[AlF3], представляет собой отношение молярных концентраций фторида натрия и фторида алюминия в расплаве (условно такие расплавы называют высокотемпературными). В дальнейшем было показано, что путем снижения температуры электролита (при одновременном уменьшении КО) удается добиться существенного снижения скорости коррозии ряда металлов (типичных компонентов сплавов) в расплаве при анодной поляризации [2]. В то же время никельсодержащие сплавы демонстрируют существенное ухудшение стабильности при снижении КО расплава из-за преимущественного образования на поверхности анода плохопроводящих слоев фторида никеля [6]. Поэтому начали активно исследоваться сплавы на основе меди с пониженным содержанием никеля [2, 7-14]. Снижение КО и рабочей температуры приводит к смещению равновесий между образующимися на поверхности анода твердыми продуктами окисления и растворенными комплексами металлов в расплаве, что сопровождается образованием в некоторых условиях плохопроводящих слоев на поверхности анода и увеличением скорости его коррозии. Таким образом, при снижении температуры электролиза и соответствующем изменении состава электролита требуется определение составов металлических сплавов, на поверхности которых не образуются непроводящие фазы при анодной поляризации.
Впервые сплавы на основе меди/железа/никеля в качестве материала для малорасходуемых анодов, эксплуатируемых в расплавах с высоким содержанием фторида алюминия (с низким КО и температурой плавления), были предложены в [7]. В качестве оптимального материала предлагался высокопористый (плотностью 60-70% от теоретической) анод из сплава, содержащего от 25 до 70 мас.% Cu, от 15 до 60 мас.% Ni и 1 до 30 мас.% Fe. При этом анод изготавливается методами порошковой металлургии и эксплуатируется в расплаве, содержащем 42-48 мол.% AlF3. В дальнейшем работы в этом направлении активно развивались [8-14].
Прототипом настоящего изобретения является патент [14], в котором были достигнуты наилучшие результаты по деградационной стойкости таких металлических сплавов. В данном патенте предложено использовать в качестве материала для малорасходуемого анода сплавы, содержащие от 10 до 70 мас.% Cu, от 15 до 60 мас.% Ni, остальное железо. В [14] приводится также уточненный интервал составов: от 20 до 50 мас.% Cu, от 20 до 40 мас.% Ni и от 20 до 40 мас.% Fe. Поскольку все такие сплавы являются двухфазными, так как при их кристаллизации из металлического расплава фаза, богатая железом, формируется в виде дендритов, в пространстве между которыми затем кристаллизуется вторая фаза, богатая медью, то для обеспечения наилучшей деградационной стойкости в прототипе предложено подвергать отливки специальной термической обработке для получения метастабильного однофазного состояния. Электролиз предлагается проводить при температуре не выше 900°С в криолит-глиноземных расплавах с температурой ликвидуса 715-860°С, путем пропускания постоянного тока между катодами и анодами.
Исследования деградационного поведения сплавов системы медь/железо/никель в расплавах различного состава показали, что составы, предложенные в [14], не являются оптимальными: в них присутствует значительное количество никеля, что во многих случаях приводит к образованию блокирующих слоев непроводящего фторида никеля и быстрому разрушению анода. Кроме того, сплавы, подвергнутые специальной термической обработке для получения метастабильного однофазного состояния, менее стабильны в условиях электрохимической поляризации по сравнению с двухфазными сплавами того же элементного состава.
Существенным недостатком прототипа является значительная скорость коррозии материала анода, делающая невозможным использование таких составов в промышленности из-за слишком высокого уровня загрязнения алюминия компонентами анода. Концентрация никеля, меди и железа в получаемом катодном алюминии регулируется ГОСТ 11069-2001. В нем в частности указано, что содержание меди и никеля не должно превышать 0.05 и 0.03% соответственно, а железа 0.35% для алюминия технической чистоты.
Задачей настоящего изобретения является повышение коррозионной стойкости инертных анодов на основе сплавов системы Cu-Fe-Ni по сравнению со сплавами, составы которых предложены в патенте [14].
Решение поставленной задачи достигается тем, что в способе электролитического производства алюминия из глиноземсодержащего фторидного расплава в электролизере при температуре менее 950°С путем пропускания постоянного тока между катодами и анодами согласно заявляемому изобретению используют аноды, изготовленные из двухфазного сплава Cu-Fe-Ni, состоящего из обогащенной по железу реакционноспособной фазы, формирующейся в виде дендритов, и обогащенной по меди сплошной инертной фазы, и содержащие от 30 до 77 мас.% меди, от 23 до 65 мас.% железа и до 15 мас.% никеля.
Способ могут дополнять следующие существенные признаки.
В способе могут быть использованы аноды, в которых содержание железа в двухфазном сплаве Cu-Fe-Ni превышает содержание никеля не менее чем в два раза.
В способе могут быть использованы аноды, в которых содержание реакционноспособной фазы в двухфазном сплаве Cu-Fe-Ni составляет 24-83%, а инертная фаза находится в пространстве между дендритами реакционноспособной фазы.
Следовательно, решение поставленной задачи достигается в первую очередь снижением общего содержания никеля в сплаве до значений, не превышающих 15 мас.%, при указанном в формуле изобретения содержании меди и железа. С целью снижения риска образования оксидов и фторидов никеля содержание железа в сплаве должно, по крайней мере, вдвое превышать содержание никеля.
Также было доказано, что двухфазные сплавы демонстрируют более высокую стабильность в ходе электрохимической поляризации по сравнению с однофазными сплавами того же элементного состава. При этом одна из фаз, богатая железом, в составе двухфазного сплава растворяется и окисляется значительно быстрее второй фазы и поэтому называется реакционноспособной фазой. Соответственно, вторая фаза, обогащенная по меди, называется инертной фазой. Наличие реакционноспособной фазы и непрерывность сплошной инертной фазы оказывают существенное влияние на механизм и скорость коррозии анода.
Только при наличии реакционноспособной фазы и непрерывности сплошной инертной фазы обеспечивается равномерное окисление сплава и сдерживается его механическое разрушение после окисления и растворения реакционноспособной фазы в поверхностном слое анода. Содержание обеих фаз в системе Cu-Fe-Ni при постоянном содержании Ni в количестве до 15 мас.% можно изменять в широких пределах.
Количество фаз в сплаве однозначно связано с его элементным составом и может быть легко определено с использованием соответствующей трехкомпонентной фазовой диаграммы. Оптимальный элементный состав используемых анодов: от 30 до 77 мас.% Cu, до 15 мас.% Ni и от 23 до 65 мас.% Fe, - однозначно определяет оптимальные соотношения фаз. Содержание реакционноспособной фазы в двухфазном сплаве Cu-Fe-Ni может составлять 24-83%, а инертная фаза находится в пространстве между дендритами реакционноспособной фазы.
Таким образом, поставленная задача решается при одновременной оптимизации состава и ключевых параметров микроструктуры материала анода - наличия реакционноспособной фазы и непрерывности сплошной инертной фазы.
Достигаемый при использовании изобретения технический результат обеспечивается благодаря повышению коррозионной стойкости анодов, используемых в процессе электролиза глиноземсодержащих фторидных расплавов при температуре менее 950°С, что гарантирует снижение загрязнения получаемого алюминия компонентами анода.
Для экспериментальной проверки заявляемых материалов были подготовлены образцы анодов различного состава (см. в таблице), и проведено их испытание в условиях анодной поляризации в криолит-глиноземных расплавах различного состава. Образцы металлических анодов Cu-Fe с добавкой Ni и без нее различного состава изготавливались путем плавления исходных порошков чистых металлов в печи сопротивления в инертной атмосфере. Расплав выдерживали в течение 10-30 минут при температуре 1600-1650°С для усреднения состава, затем отливали в форму. Получаемые цилиндрические аноды диаметром от 8 до 15 мм и высотой от 30 до 150 мм приваривались путем электродуговой сварки к токоподводу. Электролиз проводили при анодной плотности тока около 0.3-0.7 А/см2 в графитовом тигле, содержащем 400 граммов расплава. Испытания проводились при температурах 760 и 920°С в расплавах с КО 1.3 и 1.86 соответственно и содержанием глинозема 2%. Расплав готовился из смеси реагентов Na3AlF6, AlF3, Al2O3 квалификации не ниже «ч». В качестве катодов использовался графит. В ходе электролиза проводилась периодическая загрузка в расплав глинозема с интервалом 30 мин. Продолжительность испытаний составляла не менее 2-х часов. Глубина погружения электродов в расплав, как правило, составляла 10-15 мм (рабочая площадь анода - около 3-4 см2).
Для количественного сопоставления скорости коррозии двухфазных сплавов, демонстрирующих в ходе электролиза образование протяженного пористого слоя за счет селективного окисления и растворения реакционноспособной фазы, использовалась величина интегральной скорости коррозии, которая характеризует долю тока (в процентах), расходуемую на окисление металлической основы анода в ходе электролиза. Интегральная скорость коррозии рассчитывалась на основании электронно-микроскопических данных, полученных с поперечных шлифов образцов после лабораторных испытаний. При этом расчет производили исходя не только из изменения геометрических размеров анода, но и с учетом объема пор, образовавшихся в поверхностном слое сплава. Таким образом, показатель интегральной скорости коррозии анодов характеризует величину среднего остаточного тока коррозии для заданной общей плотности тока в ходе электролиза. Так как все эксперименты проводились в идентичных условиях, то рассчитанная интегральная скорость коррозии может быть использована для прямого сопоставления наблюдаемой скорости коррозии материалов с различной микроструктурой и протяженностью пористых слоев.
Из данных таблицы следует, что образец анода по прототипу (№1) демонстрирует высокую скорость коррозии. В то же время переход от однофазного сплава к двухфазному и снижение содержания никеля в составе сплава приводят к быстрому уменьшению общей скорости окисления материала, что связано со снижением вероятности образования фторидов никеля. Тем не менее, небольшие количества никеля в сплаве, приводящие к образованию в оксидном слое феррита никеля, позитивно сказываются на деградационной устойчивости материала. Так, минимальную скорость коррозии демонстрирует сплав с содержанием никеля около 8 мас.%. Высокую стабильность также демонстрируют двухкомпонентные сплавы Cu-Fe, у которых содержание реакционноспособной фазы близко к 50-60%. Наилучшую устойчивость к окислению демонстрируют сплавы №6 и №11. Для таких материалов достигается минимальное поступление в расплав (а тем самым и в алюминий) компонентов анода.
Figure 00000001
Figure 00000002
Как показывают результаты лабораторного тестирования, предлагаемые материалы оптимизированного состава и микроструктуры обладают высокой стабильностью в глиноземсодержащих фторидных расплавах в условиях анодной поляризации. Поэтому аноды из этих материалов имеют низкую скорость коррозии и позволяют получать алюминий с низким содержанием компонентов сплава.
Figure 00000003
Figure 00000004

Claims (3)

1. Способ электролитического производства алюминия из глиноземсодержащего фторидного расплава в электролизере при температуре менее 950°С путем пропускания постоянного тока между катодами и анодами, отличающийся тем, что используют аноды, изготовленные из двухфазного сплава Cu-Fe-Ni, состоящего из обогащенной по железу реакционно-способной фазы и обогащенной по меди сплошной инертной фазы и содержащие от 30 до 77 мас.% меди, от 23 до 65 мас.% железа и до 15 мас.% никеля.
2. Способ по п.1, отличающийся тем, что используют аноды, в которых содержание железа в двухфазном сплаве Cu-Fe-Ni превышает содержание никеля не менее чем в два раза.
3. Способ по п.1, отличающийся тем, что используют аноды, в которых содержание реакционно-способной фазы в двухфазном сплаве Cu-Fe-Ni составляет 24-83%, а инертная фаза находится в пространстве между дендритами реакционно-способной фазы.
RU2010133245/02A 2010-08-09 2010-08-09 Способ электролитического производства алюминия RU2455398C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010133245/02A RU2455398C2 (ru) 2010-08-09 2010-08-09 Способ электролитического производства алюминия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010133245/02A RU2455398C2 (ru) 2010-08-09 2010-08-09 Способ электролитического производства алюминия

Publications (2)

Publication Number Publication Date
RU2010133245A RU2010133245A (ru) 2012-02-20
RU2455398C2 true RU2455398C2 (ru) 2012-07-10

Family

ID=45854201

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010133245/02A RU2455398C2 (ru) 2010-08-09 2010-08-09 Способ электролитического производства алюминия

Country Status (1)

Country Link
RU (1) RU2455398C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026257A1 (ru) * 2013-08-19 2015-02-26 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Анод на основе железа для получения алюминия электролизом расплавов

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2524848A1 (en) * 2003-05-08 2004-12-02 Northwest Aluminum Technologies Cu-ni-fe anode for use in aluminum producing electrolytic cell
RU2291915C1 (ru) * 2005-07-29 2007-01-20 Общество с ограниченной ответственностью "Инженерно-технологический центр" Оксидный материал для несгораемых анодов алюминиевых электролизеров (варианты)
RU2344201C2 (ru) * 2006-12-19 2009-01-20 Государственное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) Устройство для преобразования энергии
RU2352690C2 (ru) * 2003-10-07 2009-04-20 Алюминиюм Пешинэ Инертный анод, предназначенный для получения алюминия электролизом в расплавленных солях, и способ получения этого анода

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7077945B2 (en) * 2002-03-01 2006-07-18 Northwest Aluminum Technologies Cu—Ni—Fe anode for use in aluminum producing electrolytic cell
CA2524848A1 (en) * 2003-05-08 2004-12-02 Northwest Aluminum Technologies Cu-ni-fe anode for use in aluminum producing electrolytic cell
RU2352690C2 (ru) * 2003-10-07 2009-04-20 Алюминиюм Пешинэ Инертный анод, предназначенный для получения алюминия электролизом в расплавленных солях, и способ получения этого анода
RU2291915C1 (ru) * 2005-07-29 2007-01-20 Общество с ограниченной ответственностью "Инженерно-технологический центр" Оксидный материал для несгораемых анодов алюминиевых электролизеров (варианты)
RU2344201C2 (ru) * 2006-12-19 2009-01-20 Государственное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) Устройство для преобразования энергии

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026257A1 (ru) * 2013-08-19 2015-02-26 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Анод на основе железа для получения алюминия электролизом расплавов
RU2570149C1 (ru) * 2013-08-19 2015-12-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Анод на основе железа для получения алюминия электролизом расплавов
AU2013398387B2 (en) * 2013-08-19 2017-06-29 Obshestvo S Ogranichennoy Otvetstvennost'yu "Ob'edinennaya Kompania "Inzhenerno-Tekhnologicheskiy Tsentr" Iron-based anode for producing aluminum by electrolysis of melts
US10711359B2 (en) 2013-08-19 2020-07-14 United Company RUSAL Engineering and Technology Centre LLC Iron-based anode for obtaining aluminum by the electrolysis of melts

Also Published As

Publication number Publication date
RU2010133245A (ru) 2012-02-20

Similar Documents

Publication Publication Date Title
Pawlek Inert anodes: an update
Gordo et al. Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts
US5024737A (en) Process for producing a reactive metal-magnesium alloy
KR101684813B1 (ko) 알루미늄 전해를 위해 사용된 전해조 및 상기 전해조를 이용하는 전해방법
CN101717969A (zh) 一种适用于金属熔盐电解槽惰性阳极的合金材料
Gallino et al. Oxidation and corrosion of highly alloyed Cu–Fe–Ni as inert anode material for aluminum electrowinning in as-cast and homogenized conditions
EA013139B1 (ru) Электрод
US20240191382A1 (en) Method for preparing rare earth alloys
CN102011144A (zh) 适用于金属熔盐电解槽惰性阳极的镍基合金材料
CA2876336C (en) Inert alloy anode for aluminum electrolysis and preparing method thereof
Padamata et al. Improving corrosion resistance of Cu− Al-based anodes in KF− AlF3− Al2O3 melts
RU2570149C1 (ru) Анод на основе железа для получения алюминия электролизом расплавов
RU2455398C2 (ru) Способ электролитического производства алюминия
Kovrov et al. Oxygen evolving anodes for aluminum electrolysis
Singh et al. Performance Evaluation of Low-Temperature KF-NaF-AlF3 Electrolytes for Aluminum Electrolysis Using Vertical Inert Cu–Ni–Fe Alloy Anodes
EP2304080A1 (en) Method of determining the extent of a metal oxide reduction
JPH0688280A (ja) 希土類及び他の金属の合金を製造する電解法
He The Metal Phase Selection of 10NiO-NiFe 2 O 4-Based Cermet Anodes for Aluminum Electrolysis
RU2819113C1 (ru) Способ электролитического получения сплавов алюминия со скандием
JP7515880B2 (ja) 鉄スクラップ中のトランプエレメントの電気化学的分離方法
RU2599312C1 (ru) Электролитический способ непрерывного получения алюминиевого сплава со скандием
WO2023276440A1 (ja) チタン含有電析物の製造方法及び金属チタン電析物
RU2819114C1 (ru) Способ электролитического получения сплавов алюминия с иттрием с использованием кислородвыделяющего анода
AU2006260791B2 (en) Electrode
Zhang et al. Electrolytic Preparation of Al-Sm Alloy in SmF3-LiF-Sm2O3 Molten Salt System