RU2621572C2 - Method of reversing liquefaction of the rich methane of fraction - Google Patents

Method of reversing liquefaction of the rich methane of fraction Download PDF

Info

Publication number
RU2621572C2
RU2621572C2 RU2014148678A RU2014148678A RU2621572C2 RU 2621572 C2 RU2621572 C2 RU 2621572C2 RU 2014148678 A RU2014148678 A RU 2014148678A RU 2014148678 A RU2014148678 A RU 2014148678A RU 2621572 C2 RU2621572 C2 RU 2621572C2
Authority
RU
Russia
Prior art keywords
fraction
methane
pressure
rich fraction
nitrogen
Prior art date
Application number
RU2014148678A
Other languages
Russian (ru)
Other versions
RU2014148678A (en
Inventor
Хайнц БАУЭР
Хуберт ФРАНКЕ
Андреас БУБ
Original Assignee
Линде Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Линде Акциенгезелльшафт filed Critical Линде Акциенгезелльшафт
Publication of RU2014148678A publication Critical patent/RU2014148678A/en
Application granted granted Critical
Publication of RU2621572C2 publication Critical patent/RU2621572C2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/105Removal of contaminants of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0219Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. using a deep flash recycle loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0295Shifting of the compression load between different cooling stages within a refrigerant cycle or within a cascade refrigeration system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/061Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/061Natural gas or substitute natural gas
    • F25J3/0615Liquefied natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/0635Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/064Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/066Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/46Compressors or pumps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/48Expanders, e.g. throttles or flash tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/90Boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/32Compression of the product stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

FIELD: chemistry.
SUBSTANCE: method of reverse liquefaction of a methane-rich fraction, in particular a vaporized gas, is claimed. In this case, the methane-rich fraction is compressed to a pressure that is at least 20% higher than the critical pressure of the fraction to be compressed, liquefied and supercooled. Further, it is discharged to a pressure between 5 and 20 bar and is separated into a gaseous nitrogen-rich fraction and a liquid nitrogen-depleted fraction. The nitrogen-depleted fraction is discharged to a pressure between 1.1 and 2.0 bar. The resulting gaseous fraction without being heated and compressed is mixed in a methane rich fraction. The liquid fraction of the product is obtained by unloading the nitrogen-poor liquid has a nitrogen content ≤1.5 mol. %.
EFFECT: reducing the costs.
5 cl, 1 dwg

Description

Изобретение относится к способу обратного сжижения богатой метаном фракции, в частности испаренного газа.The invention relates to a method for the reverse liquefaction of a methane-rich fraction, in particular vaporized gas.

Под понятием «испаренный газ» следует в последующем понимать как испаренный газ, так и газовые смеси, которые имеют аналогичный состав; лишь в качестве примера можно назвать вытеснительные газы, которые возникают, например, при погрузке сжиженного природного газа в транспортировочные баки на судах или грузовых автомобилях.The term "vaporized gas" should subsequently be understood as both vaporized gas and gas mixtures that have a similar composition; only as an example can be called displacing gases, which occur, for example, when loading liquefied natural gas into transport tanks on ships or trucks.

Богатые метаном газы, соответственно, испаренные газы требуют при их сжижении, начиная с определенной доли азота, принятия подходящих мер для извлечения через шлюз богатой азотом фракции с целью ограничения содержания азота в сжиженном природном газе обычным 1 мол.%.Methane-rich gases, respectively, vaporized gases require, when they are liquefied, starting from a certain fraction of nitrogen, taking appropriate measures to extract the nitrogen-rich fraction through the sluice in order to limit the nitrogen content in liquefied natural gas to an ordinary 1 mol.%.

В US 5036671 показан способ извлечения через шлюз богатой азотом фракции, в котором на холодном конце процесса сжижения подлежат отводу через один или несколько сепараторов газовые потоки, которые имеют относительно неочищенного газа значительно более высокое содержание азота. Эти газовые потоки, как правило, сжимают, возможно частично возвращают в неочищенный газ и обычно применяют в качестве горючего газа. В указанном в US 5036671 процессе сжижения выходящий из расположенного после процесса сжижения бака сжиженного природного газа испаренный газ нагревают и сжимают при приблизительно окружающей температуре.US 5036671 shows a method for recovering a nitrogen-rich fraction through a sluice, in which, at the cold end of the liquefaction process, gas streams that have a relatively high gas content with a significantly higher nitrogen content are to be removed through one or more separators. These gas streams are typically compressed, possibly partially returned to the crude gas, and are typically used as combustible gas. In the liquefaction process indicated in US 5,036,671, the vaporized gas leaving the liquefied natural gas tank after the liquefaction process is heated and compressed at approximately ambient temperature.

Поскольку рабочее давление в таких баках сжиженного природного газа, как правило, лишь немного, обычно на 50 мбар, превышает окружающее давление, то при сжижении всасываемого с нагреванием испаренного газа существует повышенная вероятность создания в компрессоре разряжения. Это может приводить к входу воздуха, и тем самым кислорода, и тем самым представлять угрозу для безопасности.Since the working pressure in such tanks of liquefied natural gas, as a rule, is only a little, usually 50 mbar, higher than the ambient pressure, there is an increased likelihood of creating a vacuum in the compressor when liquefying the vaporized gas heated by heating. This can lead to the entry of air, and thereby oxygen, and thereby pose a safety hazard.

Задачей данного изобретения является создание способа обратного сжижения богатой метаном фракции, который предотвращает указанные выше недостатки.The objective of the invention is to provide a method for the reverse liquefaction of a methane-rich fraction, which prevents the above disadvantages.

Для решения этой задачи предлагается соответствующий способ обратного сжижения богатой метаном фракции, в которомTo solve this problem, an appropriate method for the reverse liquefaction of a methane-rich fraction in which

а) богатую метаном фракцию сжимают до давления, которое по меньшей мере на 20% превышает критическое давление подлежащей сжатию фракции,a) the methane-rich fraction is compressed to a pressure that is at least 20% higher than the critical pressure of the fraction to be compressed,

b) сжижают и переохлаждают,b) liquefy and supercool,

с) расширяют до давления между 5 и 20 бар,c) expand to a pressure between 5 and 20 bar,

d) разделяют на газообразную богатую азотом фракцию и жидкую обедненную азотом фракцию, иd) separating into a gaseous nitrogen-rich fraction and a liquid nitrogen-depleted fraction, and

е) разгружают (снимают давление) обедненную азотом фракцию до давления между 1,1 и 2,0 бар,e) unload (relieve pressure) depleted in nitrogen fraction to a pressure between 1.1 and 2.0 bar,

f) при этом получающуюся газообразную фракцию без нагревания и сжатия смешивают с богатой метаном фракцией, иf) wherein the resulting gaseous fraction is mixed with the methane-rich fraction without heating and compression, and

g) получающаяся при разгрузке бедная азотом жидкая фракция продукта имеет содержание азота ≤1,5 мол.%.g) the resulting nitrogen-poor liquid fraction of the product has a nitrogen content of ≤1.5 mol%.

Поскольку сжижение и переохлаждение богатой метаном фракции осуществляется с помощью по меньшей мере одного контура охлаждающего средства и/или по меньшей мере одного контура смеси охлаждающих средств и они имеют по меньшей мере один компрессор контура, то давление, до которого сжимается богатая метаном фракция, давление, до которого разгружается сжиженная и переохлажденная богатая метаном фракция, и температура, до которой охлаждается богатая метаном фракция, выбираются или варьируются согласно изобретению так, чтоSince the liquefaction and supercooling of the methane-rich fraction is carried out using at least one circuit of the coolant and / or at least one circuit of the mixture of coolants and they have at least one compressor of the circuit, the pressure to which the methane-rich fraction is compressed is to which the liquefied and supercooled methane-rich fraction is unloaded, and the temperature to which the methane-rich fraction is cooled, are selected or varied according to the invention so that

- приводная мощность применяемого для сжатия богатой метаном фракции компрессора и приводная мощность компрессора или компрессоров контура сдвигаются относительно друг друга, без изменения общей мощности более чем на ±5%, или- the drive power of the compressor fraction used for compression rich in methane and the drive power of the compressor or circuit compressors are shifted relative to each other, without changing the total power by more than ± 5%, or

- приводная мощность применяемого для сжатия богатой метаном фракции компрессора и приводная мощность компрессора или компрессоров контура сдвигаются относительно друг друга так, что достигается распределение общей мощности между 30/70 и 70/30.- the drive power used to compress the methane-rich fraction of the compressor and the drive power of the compressor or circuit compressors are shifted relative to each other so that a total power distribution between 30/70 and 70/30 is achieved.

Другие предпочтительные варианты выполнения способа, согласно изобретению, для обратного сжижения богатой метаном фракции, которые представляют предметы зависимых пунктов формулы изобретения, характеризуются тем, чтоOther preferred embodiments of the method according to the invention for the reverse liquefaction of a methane-rich fraction, which are the objects of the dependent claims, are characterized in that

- богатую метаном фракцию сжимают до давления, которое по меньшей мере на 30% превышает критическое давление подлежащей сжатию фракции,the methane-rich fraction is compressed to a pressure that is at least 30% higher than the critical pressure of the fraction to be compressed,

- сжиженную и переохлажденную богатую метаном фракцию разгружают до давления между 7 и 15 бар, и/или- the liquefied and supercooled methane-rich fraction is discharged to a pressure between 7 and 15 bar, and / or

- обедненную азотом фракцию разгружают до давления между 1,2 и 1,8 бар.- the nitrogen-depleted fraction is discharged to a pressure between 1.2 and 1.8 bar.

Ниже приводится более подробное пояснение способа, согласно изобретению, для обратного сжижения богатой метаном фракции, а также его других предпочтительных вариантов выполнения, со ссылками на прилагаемый чертеж, на котором изображено:The following is a more detailed explanation of the method according to the invention for the reverse liquefaction of a methane-rich fraction, as well as its other preferred embodiments, with reference to the accompanying drawing, which shows:

фиг. 1 - пример выполнения способа согласно изобретению.FIG. 1 is an example of a method according to the invention.

Подлежащую обратному сжижению богатую метаном фракцию 1 сжимают в выполненном одноступенчатым или многоступенчатым компрессорном блоке С1 до давления, которое по меньшей мере на 20%, предпочтительно по меньшей мере на 30% превышает критическое давление подлежащей обратному сжижению богатой метаном фракции 1. За счет этого предотвращаются двухфазные потоки подлежащей обратному сжижению богатой метаном фракции 1 в теплообменнике или теплообменниках следующей ступени сжижения.The methane-rich fraction 1 to be liquefied is compressed in a single-stage or multi-stage compressor block C1 to a pressure that is at least 20%, preferably at least 30% higher than the critical pressure of the methane-rich fraction 1 to be liquefied. This prevents two-phase flows of the methane-rich fraction 1 to be liquefied in a heat exchanger or heat exchangers of the next liquefaction stage.

Согласно изобретению, подлежащую обратному сжижению богатую метаном фракцию 1 перед ее сжатием С1 не нагревают. На основании сжатия С1 подлежащая обратному сжижению богатая метаном фракция нагревается до температуры выше температуры окружения, за счет чего она в теплообменнике Е1 охлаждается с помощью воды или воздуха примерно до температуры окружения.According to the invention, the methane rich fraction 1 to be liquefied is not heated prior to its compression C1. On the basis of compression C1, the methane-rich fraction to be liquefied is heated to a temperature above ambient temperature, due to which it is cooled in the heat exchanger E1 with water or air to approximately ambient temperature.

Сжатую богатую метаном фракцию 2 охлаждают в теплообменнике Е2 до температуры между -100 и -140°C и при этом сжижают и переохлаждают.Compressed methane-rich fraction 2 is cooled in a heat exchanger E2 to a temperature between -100 and -140 ° C and at the same time it is liquefied and supercooled.

Охлаждение сжатой богатой метаном фракции можно в принципе осуществлять в любом контуре охлаждающего средства или контуре смеси охлаждающих средств, а также в их комбинации. Показанный на фиг. 1 контур охлаждающего средства представляет лишь один из множества вариантов. Показанный на фиг. 1 теплообменник Е2 может быть образован в действительности из нескольких отдельных теплообменников и/или теплообменных участков. Предпочтительно, он выполнен в виде спирального теплообменника с двумя пучками труб или в виде паяного пластинчатого теплообменника.The cooling of the compressed methane-rich fraction can, in principle, be carried out in any circuit of the coolant or the circuit of the mixture of coolants, as well as in a combination thereof. Shown in FIG. 1 coolant circuit is just one of many options. Shown in FIG. 1, the heat exchanger E2 can be formed in reality from several separate heat exchangers and / or heat exchangers. Preferably, it is made in the form of a spiral heat exchanger with two bundles of pipes or in the form of a brazed plate heat exchanger.

После выполненного сжижения и переохлаждения давление выходящей из теплообменника Е2 богатой метаном фракции 3 уменьшают в клапане V1 до значения между 5 и 20 бар, предпочтительно между 7 и 15 бар. Получающуюся при этом газообразную богатую азотом фракцию 4 отводят из головки расположенного после клапана V1 сепаратора D1, нагревают в теплообменнике Е2 с помощью подлежащей охлаждению богатой метаном фракции 2, причем это нагревание является не обязательным. Затем подогретую богатую азотом фракцию 5, если это желательно, сжимают в одноступенчатом или многоступенчатом компрессорном блоке С2 и подают через трубопровод 6 для ее дальнейшего применения, например, в качестве горючего газа. Эта богатая азотом фракция 5 имеет предпочтительно давление между 5 и 20 бар, в частности, между 7 и 15 бар. Таким образом, она, например, пригодна непосредственно для сжигания в паровых котлах. При применении в качестве горючего газа в газовых турбинах значительно уменьшаются расходы на сжатие по сравнению с уровнем техники, в котором исходным является более низкое давление в баке.After liquefaction and supercooling have been performed, the pressure of the methane-rich fraction 3 exiting the heat exchanger E2 is reduced in valve V1 to a value between 5 and 20 bar, preferably between 7 and 15 bar. The resulting gaseous nitrogen-rich fraction 4 is withdrawn from the head of the separator D1 located after the valve V1 and heated in the heat exchanger E2 by means of the methane-rich fraction 2 to be cooled, and this heating is optional. Then, the heated nitrogen-rich fraction 5, if desired, is compressed in a single-stage or multi-stage compressor block C2 and fed through a pipe 6 for its further use, for example, as combustible gas. This nitrogen rich fraction 5 preferably has a pressure between 5 and 20 bar, in particular between 7 and 15 bar. Thus, it is, for example, suitable directly for burning in steam boilers. When used as combustible gas in gas turbines, the cost of compression is significantly reduced compared to the prior art, in which the lower pressure in the tank is the source.

Давление получающейся после расширения в сепараторе D1 жидкой обедненной азотом фракции снижают в клапане V2 до значения между 1,1 и 2,0 бар, предпочтительно между 1,2 и 1,8 бар. Получающуюся при этом снижении давления (разгрузке) газообразную фракцию отводят через трубопровод 8 из головки сепаратора D2 и без нагревания подмешивают к подлежащей сжатию богатой метаном фракции 1. Образующаяся в сборнике сепаратора D2 жидкая фракция представляет сжиженный природный газ; он имеет содержание азота ≤1,5 мол.%.The pressure resulting from the expansion in the separator D1 of the liquid nitrogen-depleted fraction is reduced in the valve V2 to a value between 1.1 and 2.0 bar, preferably between 1.2 and 1.8 bar. The gaseous fraction resulting from this pressure reduction (unloading) is discharged through line 8 from the head of the separator D2 and without heating is mixed with the methane-rich fraction 1 to be compressed. The liquid fraction formed in the collector of the separator D2 is liquefied natural gas; it has a nitrogen content of ≤1.5 mol.%.

На основании холодного всасывания подлежащих сжатию в компрессорной ступени С1 фракций, соответственно, газовых смесей 1 и 8 можно эффективно предотвращать упомянутую в начале угрозу безопасности, которая существует при сжатии всасываемых с нагреванием испаренных газов. Таким образом, исключается нежелательный и опасный вход воздуха, и тем самым кислорода, в компрессор С1.Based on the cold suction of the fractions, respectively, of the gas mixtures 1 and 8, which are to be compressed in the compressor stage C1, it is possible to effectively prevent the safety risk mentioned at the beginning, which exists when the vaporized gases sucked in by heating are compressed. Thus, an undesirable and dangerous entry of air, and thereby oxygen, into the compressor C1 is eliminated.

На основании обратной подачи получающейся после второго расширителя V2 газообразной фракции 8 в подлежащую сжижению богатую метаном фракцию 1 можно экономично увеличивать количество производимого сжиженного природного газа и снижать общее потребление энергии.Based on the reverse supply of the gaseous fraction 8 obtained after the second expander V2 into the methane-rich fraction 1 to be liquefied, it is possible to economically increase the amount of liquefied natural gas produced and reduce the total energy consumption.

Не изображенный на фиг. 1 альтернативный способ состоит в замене сепаратора D1 колонной для отгонки легких фракций. В нем расширенная в клапане V1 богатая метаном фракция 3 через подходящие вставки, такие как набивка или почвы, пропускается снизу через частичное количество подлежащей охлаждению богатой метаном фракции 2 с отделением азота. В качестве необходимого отгоночного газа подается частичный поток подлежащей охлаждению богатой метаном фракции 2 либо между теплообменниками Е1 и Е2, и при выполнении в виде спирального теплообменника с двумя пучками труб - между пучками.Not shown in FIG. 1 alternative method is to replace the separator D1 column for distillation of light fractions. In it, the methane-rich fraction 3 expanded in valve V1 through suitable inserts such as packing or soils is passed from below through a partial amount of the methane-rich fraction 2 to be cooled to be separated with nitrogen separation. A partial stream of the methane-rich fraction 2 to be cooled, either between the heat exchangers E1 and E2, and, when made in the form of a spiral heat exchanger with two tube bundles, between the bundles, is supplied as a necessary stripping gas.

Как указывалось выше, охлаждение и сжижение богатой метаном фракции 2 происходит в теплообменнике Е2 с помощью показанного лишь в качестве примера контура смеси охлаждающих средств. Эта смесь охлаждающих средств после подогрева и испарения в теплообменнике Е2 с помощью подлежащей охлаждению богатой метаном фракции 2 подается через трубопровод 10 в расположенный перед двухступенчатым компрессорным блоком С3 сепаратор D3. Он служит для безопасности компрессорного блока С3, поскольку в нем отделяются увлекаемые в смеси охлаждающих средств частицы жидкости.As mentioned above, the cooling and liquefaction of fraction 2 rich in methane takes place in the heat exchanger E2 using the circuit shown as an example of a mixture of coolants. This mixture of cooling means, after heating and evaporation in the heat exchanger E2, is supplied through the pipe 10 to the separator D3 located in front of the two-stage compressor block C3, using the methane-rich fraction 2 to be cooled. It serves for the safety of the compressor unit C3, since liquid particles carried away in the mixture of cooling means are separated therein.

Подлежащая сжатию смесь охлаждающих средств из головки сепаратора D3 подается через трубопровод 11 в компрессорный блок С3 и сжимается в его первой ступени до промежуточного давления. После охлаждения в промежуточном охладителе Е3 сжатая до промежуточного давления смесь охлаждающих средств через трубопровод 12 подается во второй сепаратор D4. Отводимая из его головки, имеющая более низкую температуру кипения фракция смеси охлаждающих средств подается через трубопровод 13 во вторую компрессорную ступень компрессорного блока С3 и сжимается в нем до желаемого конечного давления. Затем эта фракция смеси охлаждающих средств охлаждается в охладителе Е4 и через трубопровод 15 подается в третий сепаратор D5.The mixture of coolants to be compressed from the head of the separator D3 is fed through a pipe 11 to the compressor block C3 and is compressed in its first stage to an intermediate pressure. After cooling in the intercooler E3, the mixture of coolants compressed to an intermediate pressure is fed through a pipe 12 to a second separator D4. The fraction of the mixture of coolants withdrawn from its head having a lower boiling point is supplied through line 13 to the second compressor stage of the compressor unit C3 and is compressed in it to the desired final pressure. Then this fraction of the mixture of cooling means is cooled in the cooler E4 and fed through the pipe 15 to the third separator D5.

Создаваемая в этом сепараторе D5 жидкая фракция подается обратно через трубопровод 16 и клапан V3 перед вторым сепаратором D4. Извлекаемая из головки третьего сепаратора D5 через трубопровод 17, имеющая более низкую температуру кипения фракция смеси охлаждающих средств после смешивания с извлекаемой из отстойника второго сепаратора D4 жидкой, имеющей более высокую температуру кипения фракцией 14 смеси охлаждающих средств подается с помощью трубопровода 18 через теплообменник Е2. Для обеспечения возможности выравнивания разницы давления в трубопроводах 14 и 17 в трубопроводе 14 необходимо предусматривать насос Р.The liquid fraction created in this separator D5 is fed back through line 16 and valve V3 in front of the second separator D4. The coolant mixture fraction removed from the head of the third separator D5 through line 17 having a lower boiling point after being mixed with the liquid having a higher boiling point fraction 14 of the coolant mixture removed from the settler of the second separator D4 is supplied via line 18 through the heat exchanger E2. To ensure the possibility of equalizing the pressure difference in the pipelines 14 and 17 in the pipeline 14, it is necessary to provide a pump R.

Охлажденная, сжиженная и переохлажденная в теплообменнике Е2 смесь 18 охлаждающих средств после извлечения из теплообменника Е2 расширяется (разгружается) в клапане V4, а затем через трубопровод 19 подается в противотоке относительно подлежащей сжижению богатой метаном фракции 2 снова через теплообменник Е2.Cooled, liquefied and supercooled in the heat exchanger E2, the mixture of cooling agents 18, after being removed from the heat exchanger E2, expands (unloads) in the valve V4, and then is supplied through the pipe 19 in countercurrent with respect to the fraction rich in methane 2 to be liquefied again through the heat exchanger E2.

В способе, согласно изобретению, обратного сжижения богатой метаном фракции можно за счет подходящего выбора давлений после компрессорного блока С1 и клапана V1, а также температуры охлажденной богатой метаном фракции 3 перед расширением в клапане V1 сдвигать относительно друг друга мощности используемого компрессора С1 и компрессора С3 охлаждающего контура, без заметного изменения, т.е. без повышения или снижения на ±5% общей мощности.In the method according to the invention, the re-liquefaction of the methane-rich fraction can be achieved by shifting the capacities of the used compressor C1 and the cooling compressor C3 relative to each other due to the appropriate pressure selection after the compressor unit C1 and valve V1, as well as the temperature of the cooled methane-rich fraction 3 contour, without noticeable change, i.e. without increasing or decreasing by ± 5% of the total power.

Предпочтительно, можно требуемые мощности приводов А и В компрессорных блоков С1 и С3 согласовывать друг с другом так, что можно применять приводы (газовые турбины, паровые турбины и/или электродвигатели) одинаковой мощности. Эта унификация имеет большое экономическое преимущество. Такое перераспределение приводных мощностей используемого газового компрессора С1 и компрессора С3 охлаждающего контура не только не известно из уровня техники, но и не следует из него.Preferably, the required powers of the drives A and B of the compressor units C1 and C3 can be matched to each other so that drives (gas turbines, steam turbines and / or electric motors) of the same power can be used. This unification has a great economic advantage. Such a redistribution of the drive power of the used gas compressor C1 and compressor C3 of the cooling circuit is not only not known from the prior art, but also does not follow from it.

Извлекаемое из головки сепаратора D1 количество газа можно удерживать постоянным за счет изменения давления в сепараторе D1. Таким образом, получается варьируемое количество возвращаемой газообразной фракции 8 из сепаратора D2 на стороне всасывания используемого газового компрессора С1.The amount of gas extracted from the head of the separator D1 can be kept constant by changing the pressure in the separator D1. Thus, a variable amount of the returned gaseous fraction 8 is obtained from the separator D2 on the suction side of the used gas compressor C1.

Как указывалось выше, предпочтительное перераспределение между компрессорными блоками С1 и С3 приводит к одинаковым приводным мощностям. Вместо этого решения 50/50 может быть достигнуто также любое другое распределение между 30/70 и 70/30. Соответствующее предпочтительное решение зависит, например, от силовых ступеней широко применяемых приводов (газовых турбин).As indicated above, the preferred redistribution between the compressor units C1 and C3 leads to the same drive capacities. Instead of this 50/50 decision, any other distribution between 30/70 and 70/30 can also be achieved. An appropriate preferred solution depends, for example, on the power stages of widely used drives (gas turbines).

Claims (14)

1. Способ обратного сжижения богатой метаном фракции, в частности испаренного газа, в котором1. The method of reverse liquefaction of a methane-rich fraction, in particular of vaporized gas, in which а) богатую метаном фракцию (1) сжимают (С1) до давления, которое по меньшей мере на 20% превышает критическое давление подлежащей сжатию фракции,a) methane-rich fraction (1) is compressed (C1) to a pressure that is at least 20% higher than the critical pressure of the fraction to be compressed, b) сжижают и переохлаждают (Е2),b) liquefy and supercool (E2), с) разгружают (V1) до давления между 5 и 20 бар,c) unload (V1) to a pressure between 5 and 20 bar, d) разделяют на газообразную богатую азотом фракцию (4) и жидкую обедненную азотом фракцию (7) иd) separating into a gaseous nitrogen-rich fraction (4) and a liquid nitrogen-depleted fraction (7) and е) разгружают (V2) обедненную азотом фракцию (7) до давления между 1,1 и 2,0 бар, e) unloading (V2) the nitrogen-depleted fraction (7) to a pressure between 1.1 and 2.0 bar, f) при этом получающуюся газообразную фракцию (8) без нагревания и сжатия подмешивают в богатую метаном фракцию (1), иf) wherein the resulting gaseous fraction (8) is mixed without heating and compression into methane-rich fraction (1), and g) получающаяся при разгрузке бедная азотом жидкая фракция (9) продукта имеет содержание азота ≤1,5 мол.%.g) the resulting nitrogen-poor liquid fraction (9) of the product has a nitrogen content of ≤1.5 mol%. 2. Способ по п. 1, в котором сжижение и переохлаждение (Е2) богатой метаном фракции (1) осуществляется с помощью по меньшей мере одного контура охлаждающего средства и/или по меньшей мере одного контура смеси охлаждающих средств, и при этом они имеют по меньшей мере один компрессор (С3) контура, отличающийся тем, что давление, до которого сжимается (С1) богатая метаном фракция (1), давление, до которого разгружается (V1) сжиженная и переохлажденная богатая метаном фракция (3), и температура, до которой охлаждается богатая метаном фракция, выбираются или варьируются так, что2. The method according to p. 1, in which the liquefaction and supercooling (E2) of the methane-rich fraction (1) is carried out using at least one circuit of the coolant and / or at least one circuit of the mixture of coolants, and they have at least one compressor (C3) of the circuit, characterized in that the pressure to which the methane-rich fraction (1) is compressed (C1), the pressure to which the liquefied and supercooled methane-rich fraction (3) is unloaded (V1), and the temperature, to which cools the methane-rich fraction, sludge are selected and vary so that - приводная мощность применяемого для сжатия богатой метаном фракции (1) компрессора (С1) и приводная мощность компрессора (С3) или компрессоров контура сдвигаются относительно друг друга, без изменения общей мощности более чем на ±5%, или- the drive power of the compressor (C1) used to compress the methane-rich fraction (1) of the compressor and the drive power of the compressor (C3) or the circuit compressors are shifted relative to each other, without changing the total power by more than ± 5%, or - приводная мощность применяемого для сжатия богатой метаном фракции (1) компрессора (С1) и приводная мощность компрессора (С3) или компрессоров контура сдвигаются относительно друг друга так, что достигается распределение общей мощности между 30/70 и 70/30.- the drive power of the compressor (C1) used to compress the methane-rich fraction (1) and the drive power of the compressor (C3) or the circuit compressors are shifted relative to each other so that a total power distribution between 30/70 and 70/30 is achieved. 3. Способ по п. 1 или 2, отличающийся тем, что богатую метаном фракцию (1) сжимают (С1) до давления, которое по меньшей мере на 30% превышает критическое давление подлежащей сжатию фракции.3. The method according to p. 1 or 2, characterized in that the methane-rich fraction (1) is compressed (C1) to a pressure that is at least 30% higher than the critical pressure of the fraction to be compressed. 4. Способ по п. 1 или 2, отличающийся тем, что сжиженную и переохлажденную богатую метаном фракцию (3) разгружают (V1) до давления между 7 и 15 бар.4. The method according to p. 1 or 2, characterized in that the liquefied and supercooled methane-rich fraction (3) is discharged (V1) to a pressure between 7 and 15 bar. 5. Способ по п. 1 или 2, отличающийся тем, что обедненную азотом фракцию разгружают (V2) до давления между 1,2 и 1,8 бар.5. The method according to p. 1 or 2, characterized in that the nitrogen-depleted fraction is discharged (V2) to a pressure between 1.2 and 1.8 bar.
RU2014148678A 2012-05-03 2013-04-18 Method of reversing liquefaction of the rich methane of fraction RU2621572C2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012008961.9 2012-05-03
DE201210008961 DE102012008961A1 (en) 2012-05-03 2012-05-03 Process for re-liquefying a methane-rich fraction
PCT/EP2013/001157 WO2013164069A2 (en) 2012-05-03 2013-04-18 Process for reliquefying a methane-rich fraction

Publications (2)

Publication Number Publication Date
RU2014148678A RU2014148678A (en) 2016-06-27
RU2621572C2 true RU2621572C2 (en) 2017-06-06

Family

ID=48227143

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014148678A RU2621572C2 (en) 2012-05-03 2013-04-18 Method of reversing liquefaction of the rich methane of fraction

Country Status (6)

Country Link
US (1) US20150121953A1 (en)
AU (1) AU2013257026B2 (en)
DE (1) DE102012008961A1 (en)
MY (1) MY173721A (en)
RU (1) RU2621572C2 (en)
WO (1) WO2013164069A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015004125A1 (en) * 2015-03-31 2016-10-06 Linde Aktiengesellschaft Process for liquefying a hydrocarbon-rich fraction
WO2019177705A1 (en) * 2018-03-14 2019-09-19 Exxonmobil Upstream Research Company Method and system for liquefaction of natural gas using liquid nitrogen
FR3088416B1 (en) * 2018-11-08 2020-12-11 Air Liquide METHOD AND APPARATUS FOR LIQUEFACTION OF A GAS CURRENT CONTAINING CARBON DIOXIDE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2085815C1 (en) * 1991-10-23 1997-07-27 Елф Акитэн Продюксьон Method of removal of nitrogen from portion of liquefied mixture of hydrocarbons
RU2256130C2 (en) * 2003-09-24 2005-07-10 Открытое акционерное общество криогенного машиностроения (ОАО "Криогенмаш") Method of liquefaction of natural gas in throttling cycle
RU2344360C1 (en) * 2007-07-04 2009-01-20 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий-ВНИИГАЗ" Method of gas liquefaction and installation for this effect
RU2374576C2 (en) * 2004-05-13 2009-11-27 Линде Акциенгезельшафт Method and device for liquefying hydrocarbon-rich stream
WO2010108464A2 (en) * 2009-03-27 2010-09-30 Marine Service Gmbh Method and device for operating a driving engine for a vessel for transporting liquefied petrol gas

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1472533A (en) * 1973-06-27 1977-05-04 Petrocarbon Dev Ltd Reliquefaction of boil-off gas from a ships cargo of liquefied natural gas
US4225329A (en) * 1979-02-12 1980-09-30 Phillips Petroleum Company Natural gas liquefaction with nitrogen rejection stabilization
US4541852A (en) * 1984-02-13 1985-09-17 Air Products And Chemicals, Inc. Deep flash LNG cycle
US5036671A (en) 1990-02-06 1991-08-06 Liquid Air Engineering Company Method of liquefying natural gas
US5657643A (en) * 1996-02-28 1997-08-19 The Pritchard Corporation Closed loop single mixed refrigerant process
PE20060221A1 (en) * 2004-07-12 2006-05-03 Shell Int Research LIQUEFIED NATURAL GAS TREATMENT
ES2766767T3 (en) * 2006-04-07 2020-06-15 Waertsilae Gas Solutions Norway As Procedure and apparatus for preheating evaporated LNG gas to room temperature before compression in a reliquefaction system
NO330187B1 (en) * 2008-05-08 2011-03-07 Hamworthy Gas Systems As Gas supply system for gas engines
DE102010011052A1 (en) * 2010-03-11 2011-09-15 Linde Aktiengesellschaft Process for liquefying a hydrocarbon-rich fraction
DE102011010633A1 (en) * 2011-02-08 2012-08-09 Linde Ag Method for cooling a one-component or multi-component stream

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2085815C1 (en) * 1991-10-23 1997-07-27 Елф Акитэн Продюксьон Method of removal of nitrogen from portion of liquefied mixture of hydrocarbons
RU2256130C2 (en) * 2003-09-24 2005-07-10 Открытое акционерное общество криогенного машиностроения (ОАО "Криогенмаш") Method of liquefaction of natural gas in throttling cycle
RU2374576C2 (en) * 2004-05-13 2009-11-27 Линде Акциенгезельшафт Method and device for liquefying hydrocarbon-rich stream
RU2344360C1 (en) * 2007-07-04 2009-01-20 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий-ВНИИГАЗ" Method of gas liquefaction and installation for this effect
WO2010108464A2 (en) * 2009-03-27 2010-09-30 Marine Service Gmbh Method and device for operating a driving engine for a vessel for transporting liquefied petrol gas

Also Published As

Publication number Publication date
US20150121953A1 (en) 2015-05-07
MY173721A (en) 2020-02-18
AU2013257026A1 (en) 2014-10-30
AU2013257026B2 (en) 2017-04-13
DE102012008961A1 (en) 2013-11-07
RU2014148678A (en) 2016-06-27
WO2013164069A3 (en) 2015-04-16
WO2013164069A2 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
RU2337130C2 (en) Nitrogen elimination from condensated natural gas
KR101840721B1 (en) Natural gas liquefying system and liquefying method
US9671160B2 (en) Multi nitrogen expansion process for LNG production
TWI547676B (en) Integrated pre-cooled mixed refrigerant system and method
JP6144714B2 (en) Integrated nitrogen removal in the production of liquefied natural gas using intermediate feed gas separation
EP2564139B1 (en) Process and apparatus for the liquefaction of natural gas
RU2645185C1 (en) Method of natural gas liquefaction by the cycle of high pressure with the precooling of ethane and nitrogen "arctic cascade" and the installation for its implementation
EA013234B1 (en) Semi-closed loop lng process
US10082331B2 (en) Process for controlling liquefied natural gas heating value
CA2980042C (en) Mixed refrigerant cooling process and system
RU2730090C2 (en) Method and system for liquefaction of natural gas feed flow
US10753676B2 (en) Multiple pressure mixed refrigerant cooling process
WO2015069138A2 (en) Natural gas liquefaction method and unit
JP2021526625A (en) Pretreatment and precooling of natural gas by high pressure compression and expansion
RU2568697C2 (en) Liquefaction of fraction enriched with hydrocarbons
US20200386474A1 (en) Two-stage heavies removal in lng processing
RU2621572C2 (en) Method of reversing liquefaction of the rich methane of fraction
CN217483101U (en) Coil type heat exchanger unit
WO2016151636A1 (en) Production system and production method for natural gas
RU2423653C2 (en) Method to liquefy flow of hydrocarbons and plant for its realisation
JP7439195B2 (en) Integrated nitrogen rejection for natural gas liquefaction
AU2020367823A1 (en) Standalone high-pressure heavies removal unit for LNG processing