RU2617948C2 - Способ клонального размножения растений в автотрофных условиях на гидропонике - Google Patents

Способ клонального размножения растений в автотрофных условиях на гидропонике Download PDF

Info

Publication number
RU2617948C2
RU2617948C2 RU2015124228A RU2015124228A RU2617948C2 RU 2617948 C2 RU2617948 C2 RU 2617948C2 RU 2015124228 A RU2015124228 A RU 2015124228A RU 2015124228 A RU2015124228 A RU 2015124228A RU 2617948 C2 RU2617948 C2 RU 2617948C2
Authority
RU
Russia
Prior art keywords
plants
hydroponics
carried out
autotrophic conditions
clonal propagation
Prior art date
Application number
RU2015124228A
Other languages
English (en)
Other versions
RU2015124228A (ru
Inventor
Захар Талхумович Абрамов
Борис Викторович Габель
Лев Наумович Цоглин
Original Assignee
Открытое акционерное общество научно-производственный центр "Продкартофель"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество научно-производственный центр "Продкартофель" filed Critical Открытое акционерное общество научно-производственный центр "Продкартофель"
Priority to RU2015124228A priority Critical patent/RU2617948C2/ru
Publication of RU2015124228A publication Critical patent/RU2015124228A/ru
Application granted granted Critical
Publication of RU2617948C2 publication Critical patent/RU2617948C2/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/04Stems

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Hydroponics (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

Изобретение относится к биотехнологии и сельскому хозяйству. Изобретение представляет собой способ клонального размножения растений в автотрофных условиях на гидропонике, в котором клональное размножение растений осуществляют путем черенкования регенерантов и укоренения черенков на питательной среде, где укоренение черенков проводят в автотрофных условиях на гидропонике с использованием жидких питательных сред, содержащих только минеральные элементы, культивирование растений осуществляют при нормальных, либо повышенных концентрация СО2 в посеве, при интенсивности облучения посева не менее 60 Вт ФАР/м2, орошение и аэрация оснований черенков и корневой системы растений производят путем периодического подтопления их питательным раствором. Изобретение позволяет достигнуть стабильности воспроизводства исходного генотипа, высокой скорости размножения растений-регенерантов, а также их быстрой адаптации при высадке в грунт или гидропонику. 3 з.п. ф-лы.

Description

Изобретение относится к биотехнологии и сельскому хозяйству, а именно к растениеводству, и может быть использовано для клонального размножения растений в автотрофных условиях культивирования на гидропонике.
Клональное микроразмножение широко используется для размножения новых сортов и трансгенных растений, а также для размножения существующих сортов с целью массового получения оздоровленного посадочного материала. Эффективность клонального размножения определяется стабильностью воспроизводства исходного генотипа, скоростью роста и развития растений-регенерантов, а также их способностью адаптироваться к последующим условиям культивирования.
Известен способ клонального микроразмножения растений (Пузанков О.П., Гришанович А.К. и др. Методические указания по оздоровлению семенного картофеля. Минск, Урожай, 1988, с. 29), основанный на активации уже существующих у растения меристем путем снятия апикального доминирования за счет удаления верхушечной части стебля и последующего микрочеренкования in vitro с добавлением в питательную среду веществ цитокининового типа действия, индуцирующих развитие пазушных побегов. Недостатком способа являются низкие скорости размножения, нестабильное воспроизводство исходного генотипа, длительный адаптационный период при высадке растений в грунт, высокая трудоемкость.
Наиболее близким способом к заявляемому изобретению является способ клонального микроразмножения растений (Патент РФ №2080780, МПК А01Н 4/00, опубл. 10.06.1997 г.), в котором клональное микроразмножение растений осуществляется в культуре in vitro путем микрочеренкования регенерантов и укоренения черенков на питательной среде, в которой в качестве источника углерода для укоренения используют фруктозу или смесь фруктозы с сахарозой.
Недостатком способа является то, что культивирование черенков осуществляют в преимущественно гетеротрофных условиях, что обуславливает существенно более низкие скорости роста и развития растений-регенерантов в сравнение с автотрофными условиями культивирования. Это следует из того, что фотосинтетический рост растений-регенерантов в культуре in vitro ограничен низкой концентрацией СО2 внутри пробирки, так как поступление углекислого газа из окружающего воздуха через изолирующую от внешней среды пробку незначительно из-за отсутствия достаточной разницы парциальных давлений. Для обеспечения высокой скорости фотосинтетического роста необходимо поступление в пробирку 400 мг (200 мл) СО2 за световой период, т.е. диффузия через пробку должна быть, по крайней мере, на порядок более интенсивной (Цоглин Л.Н. и др. Газообмен и фотосинтез растений картофеля в условиях in vitro // Доклады Академии Наук СССР, т. 316, №.4, 1991).
Важнейшим условием реализации фотосинтетического роста также является светообеспечение растений. Для фотоавтотрофного роста растений в естественных условиях характерны высокие (150÷200 Вт ФАР/м2) значения интенсивности света. Однако культивирование растений в пробирках при таких уровнях облучения практически невозможно из-за их перегрева в условиях естественного конвективного теплосъема. Поэтому в светокультуре растений культивирование in vitro осуществляют при интенсивностях света не выше 20÷30 Вт ФАР/м2.
Таким образом в культуре in vitro имеет место преимущественно гетеротрофный рост растений-регенерантов, для обеспечения которого питательная среда должна содержать достаточное количество углеродсодержащих органических соединений, витаминов, гормонов и микроэлементов. Такие питательные среды являются также хорошим субстратом и для широкого спектра грибов и микроорганизмов, что определяет высокие требования к стерильности культивирования.
Биологически активные компоненты питательных сред способны вызывать генетические изменения в клетках, что приводит к генетической вариабельности получаемых регенерантов. В процессе размножения в культуре in vitro генетические изменения накапливаются, увеличивается количество регенерантов со значительным морфофизиологическим разнообразием и утратой ценных хозяйственных признаков, а также снижением фотосинтетического потенциала (Леонова Н.С. "Использование метода культуры ткани в селекции картофеля". Сибирский вестник с/х науки, 1986, N3, с. 18-26; Grout B.W. et. al. Transplanting of Cauliflower Plants Regenerated from Meristem Culture. Carbon Dioxide Fixation and the Development of Photosynthetic Ability // Hort. Res. 1978. V. 17. №2. P. 65; Sutter E.G. et. al. Morphological Adaptation of Leaves of Strawberry Plants groun in vitro after Removal from Culture // Tissue Cult. Forest. and Agr. Proc. 3-rd Tenn. Symp. Plant Cell and Tissue Cult. Knoxville, Tenn. (9-13 Sept. 1984) N. Y.; L., 1985, p. 358). Причиной этого является не только биологически активные компоненты питательных сред, но и гетеротрофный рост в культуре in vitro и селекция по гетеротрофному признаку в процессе размножения при многократном пассировании растений (оператор отбирает лучшие растения для черенкования, т.е. наилучшим образом адаптированные именно к гетеротрофным условиям роста). Таким образом направленность автоселекционного процесса в популяции идет в сторону, обеспечивающую максиальную реализацию условий роста и развития, которую предоставляет именно гетеротрофный способ культивирования.
В рассматриваемом прототипе разработан способ, предусматривающий снижение отрицательного воздействия компонентов питательных сред на клетки и на стабильность воспроизведения исходного генотипа в процессе клонального микроразмножения растений. Для этого предлагается модифицировать питательную среду путем использования в качестве источника углерода фруктозы в количестве 10000-20000 мг/л или смеси фруктозы и сахарозы в соотношении 0,5-1:1. По сути это является борьбой со следствием, но никак не с причиной, что собственно и подтверждают авторы, претендуя лишь на «увеличение выхода регенерантов с исходным генотипом».
При культивировании растений в культуре in vitro как на жидких, так и на твердых питательных средах аэрация корневой системы существенным образом затруднена, что препятствует нормальному развитию корневой системы растений-регенерантов. Слабо развитые фотосинтетический аппарат и корневая система растений-регенерантов, размноженных в культуре in vitro, обуславливают длительный адаптационный период и плохую приживаемость растений при высадке в грунт или гидропонику (вследствие светового шока, отмирания старой корневой системы и образования новой).
Массовое производство (от нескольких тысяч до нескольких десятков тысяч) растений-регенерантов в культуре in vitro к заданному сроку для высадки в грунт или гидропонику сопряжено со значительными трудозатратами. Трудозатраты определяются, главным образом, множественностью ручных операций по подготовке тысяч пробирок: мытье, сушка, розлив в каждую пробирку заданного количества питательной среды, стерилизация пробирок, пробок и сред, фиксация черенка в пробирке и т.д. В себестоимость пробирочных растений вносит заметный вклад и достаточно высокая стоимость используемых органических питательных сред.
В основу изобретения положена задача, заключающаяся в создании способа клонального размножения растений, в котором при низких трудоемкости и затратах обеспечивается стабильность воспроизводства исходного генотипа, высокая скорость размножения растений-регенерантов, а также способность их к быстрой адаптации при высадке в грунт или гидропонику.
Указанный технический результат достигается тем, что в известном способе клонального микроразмножения растений, осуществляемом путем микрочеренкования регенерантов и укоренения черенков на питательной среде, содержащей в качестве источника углерода фруктозу в количестве 10000-20000 мг/л или смесь фруктозы и сахарозы в соотношении 0,5-1:1, согласно изобретению укоренение черенков производят в гидропонной установке на жидких питательных средах, содержащих только минеральные элементы, путем периодического орошения оснований черенков, а в дальнейшем и корневой системы растений при нормальных либо повышенных концентрация СО2 в атмосфере и интенсивности облучения посева не менее 60 Вт ФАР/м2.
Введение в известный способ совокупности существенных отличительных признаков позволяют реализовать фотоавтотрофные условия для культивирования растений-регенерантов и черенков.
Скорость фотосинтетического роста растений значительно выше гетеротрофного. Адаптированные к условиям роста in vivo (при нормальных или повышенных концентрациях CO2) растения-регенеранты способны увеличивать свою биомассу на 200 мг в сутки, а при росте in vitro - не более чем на 50 мг (Цоглин Л.Н. и др. Газообмен и фотосинтез растений картофеля в условиях in vitro II Доклады Академии Наук СССР, т. 316, №.4, 1991). В отличие от гетеротрофно выращенных растений, растения-регенеранты, выращенные в фотоавтотрофных условиях, имеют больший вес и большую площадь листовой поверхности, а их фотосинтетический аппарат хорошо развит, что обуславливает отсутствие адаптационного периода и практически 100% приживаемость при высадке в грунт или гидропонику. При клональном микроразмножении автотрофное культивирование растений-регенерантов определяет направленность автоселекционного процесса в популяции в сторону максимальной реализации условий фотосинтетического роста, т.е. в сторону улучшения хозяйственных качеств растений (Цоглин Л.Н., Габель Б.В. Селекционные процессы при гетератрофном и фототрофном микроклональном размножении растений // Доклады Академии Наук РФ, т. 334, №4, с. 533-534, 1994 г.; Tsoglin, L., Gabel, В., Satilo, V. Autoselection during plant micropropagation: potato phototrophic micropropagation in vitro. Conference on "PROGRESS IN PLANT SCIENCES from Plant Breeding to Growth Regulation" (17-19 June 1996), Mosonmagyarovar - Hungary, 1996, p. 11-13).
При автотрофном росте и развитии отпадает необходимость использования органических соединений в питательном растворе. Достаточно лишь обеспечить нелимитированное минеральное питание растений. Отсутствие биологически активных компонентов в питательной среде исключает вероятность генетических изменений в клетках и, соответственно, генетическую вариабельность регенерантов. Использование жидких питательных растворов на минеральной основе позволяет радикально снизить требования к стерильности условий культивирования. Это, в свою очередь, позволяет отказаться от необходимости размещения каждого черенка в изолированном от внешней среды объеме (пробирке), существенно упростить технологические процессы и снизить трудозатраты. Кроме этого использование жидких питательных растворов позволяет с помощью простых технических решений обеспечить эффективную аэрацию корневой системы растений и реализовать размножение растений на промышленной основе в гидропонных установках (Патент РФ №2049384, МПК A01G 31/02, опубл. 10.12.1995 г.,), существенно снизив при этом себестоимость растений в сравнение с традиционной технологией культивирования in vitro.
Предлагаемый способ клонального размножения растений е автотрофных условиях на гидропонике реализуется следующим образом. Черенкование исходных растений проводят в ламинар-боксе. Удаляют верхушечную меристему стебля и затем черенкуют побег в соответствии с количеством междоузлий таким образом, чтобы на каждом черенке остался один лист, а длина стебля ниже пазушной почки составляла 0.5-1.0 см. Черенки высаживают вдоль кассеты (Авторское свидетельство СССР №1287795, МПК A01G 31/02, опубл. 08.10.1986 г.) между ее вертикальными стенками и упругим вкладышем в шахматном порядке с шагом вдоль каждой 7
стороны, например, для картофеля и стевии 4 см, а для топинамбура - 5 см. При этом основание черенка заглубляют в кассету так, чтобы пазушная почка располагалась на уровне сопряжения упругого вкладыша со стенкой кассеты. Затем кассету с черенками размещают в вегетационной ванне гидропонной установки (Патент РФ на промышленный образец №42795, опуб. 16.09.1996 г.), которая периодически заполняется питательным раствором до уровня сопряжения упругого вкладыша со стенкой кассеты. В паузах между подтоплениями происходит аэрация корневой системы растений. Гидропонную установку размещают в чистом помещение, удовлетворяющем фитосанитарным требованиям. Культивирование растений в установке осуществляют до образования 4-0 междоузлей, например, для картофеля, стевии и тапинабура - 14-18 суток (в культуре in vitro - 27-34 дня). Затем растения можно опять отчеренковать и, высадив черенки в кассету, продолжить размножение в установке. Размноженные таким образом растения высаживают в грунт. В процессе размножения растений поддерживают следующие параметры культивирования: интенсивность облучения посева не менее 60 Вт ФАР/м2; концентрация СО2 в посеве - 0,04 до 0,4%; фотопериод - 16÷48 час./сут.; время наполнения ванны раствором - 5 мин, время аэрации корневой системы - 20 мин.; температура воздуха в режиме «День» - 21-23°С; температура воздуха в режиме «Ночь» -18-20°С; температура питательного раствора в баке 16-20°С; относительная влажность воздуха в помещение - 75-85% (круглосуточно).
Композицию питательного раствора для каждого вида растений подбирают в соответствие с характерным для них выносом минеральных макро- и микроэлементов. Например, для картофеля это питательный раствор на основе среды Пилгремма с половинной концентрацией состава минеральных элементов, а для стевии и топинамбура питательный раствор на основе среды Кнопа.
8
Клональное размножение в автотрофных условиях культивирования в сравнение с размножением в гетеротрофных условиях обладает следующими преимуществами:
- более высокой скоростью роста и развития растений и, соответственно, большей скоростью размножения;
- направленностью автоселекционных процессов в сторону отбора растений с лучшими фотосинтетическими свойствами;
- надежностью воспроизводства исходного генотипа растений;
- практически 100% приживаемостью растений при высадке в грунт или гидропонику и отсутствием адаптационного периода;
- использованием простых жидких питательных сред без органических соединений;
- существенно более низкими требованием к стерильности процессов микрочеренкования и культивирования;
- низкими затратами на питательные среды
- низкой трудоемкостью.

Claims (4)

1. Способ клонального размножения растений в автотрофных условиях на гидропонике, в котором клональное размножение растений осуществляют путем черенкования регенерантов и укоренения черенков на питательной среде, отличающийся тем, что укоренение черенков проводят в автотрофных условиях на гидропонике с использованием жидких питательных сред, содержащих только минеральные элементы.
2. Способ клонального размножения растений в автотрофных условиях на гидропонике по п. 1, отличающийся тем, что культивирование растений осуществляют при нормальных либо повышенных концентрациях СО2 в посеве.
3. Способ клонального размножения растений в автотрофных условиях на гидропонике по п. 1, отличающийся тем, что культивирование растений осуществляют при интенсивности облучения посева не менее 60 Вт ФАР/м2.
4. Способ клонального размножения растений в автотрофных условиях на гидропонике по п. 1, отличающийся тем, что орошение и аэрация оснований черенков и корневой системы растений производят путем периодического подтопления их питательным раствором.
RU2015124228A 2015-06-23 2015-06-23 Способ клонального размножения растений в автотрофных условиях на гидропонике RU2617948C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015124228A RU2617948C2 (ru) 2015-06-23 2015-06-23 Способ клонального размножения растений в автотрофных условиях на гидропонике

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015124228A RU2617948C2 (ru) 2015-06-23 2015-06-23 Способ клонального размножения растений в автотрофных условиях на гидропонике

Publications (2)

Publication Number Publication Date
RU2015124228A RU2015124228A (ru) 2017-01-10
RU2617948C2 true RU2617948C2 (ru) 2017-04-28

Family

ID=57955613

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015124228A RU2617948C2 (ru) 2015-06-23 2015-06-23 Способ клонального размножения растений в автотрофных условиях на гидропонике

Country Status (1)

Country Link
RU (1) RU2617948C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2670485C1 (ru) * 2017-12-27 2018-10-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Горский государственный аграрный университет" Способ размножения иммунноустойчивых образцов картофеля in vitro на аэрогидропонике

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2080780C1 (ru) * 1994-05-11 1997-06-10 Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии РАСХН Способ клонального микроразмножения растений

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2080780C1 (ru) * 1994-05-11 1997-06-10 Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии РАСХН Способ клонального микроразмножения растений

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ЗЕРНОВ В.Н., и др., Развитие и анализ технологического и технического обеспечения производства мини-клубней выращиваемых в условиях вегетационных сооружений, Инновационное развитие АПК России на базе интеллектуальных машинных технологий, Сборник научных докладов Международной научно-технической конференции 17-18 сентября 2014 г., Москва, с. 149-153. *
ЦОГЛИН Л.Н., и др., Селекционные процессы при гетеротрофном микроклональном размножении растений, Доклады Академии наук, том 334, номер 4, 1994, с.533-534. *
ЦОГЛИН Л.Н., и др., Селекционные процессы при гетеротрофном микроклональном размножении растений, Доклады Академии наук, том 334, номер 4, 1994, с.533-534. ЗЕРНОВ В.Н., и др., Развитие и анализ технологического и технического обеспечения производства мини-клубней выращиваемых в условиях вегетационных сооружений, Инновационное развитие АПК России на базе интеллектуальных машинных технологий, Сборник научных докладов Международной научно-технической конференции 17-18 сентября 2014 г., Москва, с. 149-153. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2670485C1 (ru) * 2017-12-27 2018-10-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Горский государственный аграрный университет" Способ размножения иммунноустойчивых образцов картофеля in vitro на аэрогидропонике

Also Published As

Publication number Publication date
RU2015124228A (ru) 2017-01-10

Similar Documents

Publication Publication Date Title
US7901938B2 (en) Method for mass production of seedling of seed potato
Corrêa et al. A comparison of potato seed tuber yields in beds, pots and hydroponic systems
CN106134997A (zh) 苹果砧木m26的组培快速育苗方法
Jones et al. Micropropagation of adult birch trees: production and field performance
JPS5914725A (ja) 植物の増殖材料の製造法
KR20030028522A (ko) 배 2본 주지 육묘법
Muthoni et al. Multiplication of seed potatoes in a conventional potato breeding programme: a case of Kenya's national potato programme
RU2617948C2 (ru) Способ клонального размножения растений в автотрофных условиях на гидропонике
CN103477976A (zh) 一种铁皮石斛茎段组培育苗法
KR101926384B1 (ko) 담배 식물의 수경재배 방법
CN105409748A (zh) 一种海三棱藨草的快速繁育方法
JP2003116382A (ja) パパイヤの栽培方法
KR101064947B1 (ko) 새우난초 엽절편으로부터 재분화된 식물체의 대량생산방법
JPS6258934A (ja) 組織培養によるナガイモの大量増殖法
CN104054578B (zh) 滇丁香的组培快繁方法
Idol et al. Vegetative and micropropagation of leucaena
KR20140037510A (ko) 조직배양기술을 이용한 아로니아의 줄기마디배양으로부터 유식물체의 대량 증식방법
JP6530584B2 (ja) カンゾウ属植物の苗の生産方法
JP5993157B2 (ja) ワサビ種子の発芽方法
CN106613689B (zh) 一种滇牡丹快速繁育的方法
Opata et al. Macropropagation of banana (Musa AAA): Responses to hormonal and mechanical corm manipulation
RU2627194C1 (ru) Способ клонального микроразмножения растений сем. Betulaceae
HU206012B (en) In vitro - in vivo method of high activity for producing potato small sized tubers
Attaya et al. Regulation of organogenesis via PGRs and LEDs light technology for Jatropha curcas L. plants
Batukaev et al. In vitro microclonal propagation of strawberries and ex vitro adaptation

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170624