RU2617075C1 - Способ производства экономно-легированного высокопрочного проката для труб магистральных газопроводов высокого давления, а также для отраслей машиностроения и оффшорного судостроения - Google Patents

Способ производства экономно-легированного высокопрочного проката для труб магистральных газопроводов высокого давления, а также для отраслей машиностроения и оффшорного судостроения Download PDF

Info

Publication number
RU2617075C1
RU2617075C1 RU2016104657A RU2016104657A RU2617075C1 RU 2617075 C1 RU2617075 C1 RU 2617075C1 RU 2016104657 A RU2016104657 A RU 2016104657A RU 2016104657 A RU2016104657 A RU 2016104657A RU 2617075 C1 RU2617075 C1 RU 2617075C1
Authority
RU
Russia
Prior art keywords
carried out
rolling
accelerated cooling
temperature
steel
Prior art date
Application number
RU2016104657A
Other languages
English (en)
Inventor
Иван Анатольевич Симбухов
Юрий Дмитриевич Морозов
Original Assignee
Иван Анатольевич Симбухов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Иван Анатольевич Симбухов filed Critical Иван Анатольевич Симбухов
Priority to RU2016104657A priority Critical patent/RU2617075C1/ru
Application granted granted Critical
Publication of RU2617075C1 publication Critical patent/RU2617075C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к области черной металлургии. Для повышения прочности проката при одновременном повышении прокаливаемости, пластичности и ударной вязкости выплавляют сталь, содержащую, мас.%: углерод 0,04÷0,05, марганец 1,9÷2,0, кремний 0,22÷0,25, ниобий 0,07÷0,09, титан 0,02÷0,025, алюминий 0,025÷0,03, азот 0,005÷0,007, сера 0,001÷0,002, фосфор 0,006÷0,008, бор 0,0015÷0,002, железо - остальное, осуществляют непрерывную разливку стали в слябы, аустенизацию при 1050÷1100°С, черновую прокатку с деформацией 12÷20% в области температур рекристаллизации аустенита, чистовую - в области температур полного торможения рекристаллизации с общей степенью деформации 70÷80%, ускоренное охлаждение при температуре его завершения 350÷450°С и индукционный отпуск при температуре 620±10°С. 2 з.п. ф-лы, 2 табл., 3 ил.

Description

Изобретение относится к черной металлургии, в частности к производству экономнолегированной высокопрочной стали для труб магистральных газопроводов высокого давления, а также для отраслей машиностроения, офшорного судостроения.
Известен способ производства проката по патенту РФ №2355783, включающий выплавку стали, непрерывную разливку на слябы, аустенизацию, предварительную и окончательную деформации по продольно-поперечной схеме и охлаждение готового проката, при этом выплавляют сталь, содержащую, мас.%:
С 0,03-0,20
Mn 0,50-2,20
Si 0,25-0,60
Nb 0,01-0,15
Al 0,01-0,10
Ti 0,005-0,05
N 0,002-0,012
S 0,0005-0,010
P 0,003-0,030
Fe остальное
при этом предварительную прокатку в области температур рекристаллизации аустенита осуществляют с общей степенью деформации 50-80% и с частной деформацией 12-20% за проход в направлении поперек оси сляба, а окончательную деформацию осуществляют при температурах ниже температуры рекристаллизации аустенита с общей степенью деформации 60-80% вдоль оси сляба.
Техническим результатом заявленного изобретения является повышение прочностных показателей проката при одновременном повышении прокаливаемости и показателей пластичности (деформационной способности) и ударной вязкости (хладостойкости).
Поставленный результат в способе производства высокопрочного хладостойкого проката, включающем выплавку стали, непрерывную разливку в слябы, аустенизацию, черновую и чистовую стадию прокатки, ускоренное охлаждение, достигается тем, что выплавляют сталь следующего химического состава при соотношении ингредиентов, мас.%:
углерод (С) 0,04÷0,05
марганец (Mn) 1,9÷2,0
кремний (Si) 0,22÷0,25
ниобий (Nb) 0,07÷0,09
титан (Ti) 0,02÷0,025
алюминий (Al) 0,025÷0,03
азот (N2) 0,005÷0,007
сера (S) 0,001÷0,002
фосфор (Р) 0,006÷0,008
бор (В) 0,0015÷0,002
железо (Fe) остальное
аустенизацию проводят в интервале температур 1050÷1100°С, черновую прокатку производят с частной деформацией 12÷20% в области температур рекристаллизации аустенита, чистовую - в области температур полного торможения рекристаллизации с общей степенью деформации 70÷80%, ускоренное охлаждение завершают при температуре 350÷450°С, при этом, после ускоренного охлаждения, в потоке прокатного стана, дополнительно проводят кратковременный высокий индукционный отпуск при температуре 620±10°С.
Дополнительно сталь может включать один или несколько элементов из ряда, мас.%:
молибден (Мо) 0,2÷0,3
никель (Ni) 0,3÷0,4
хром (Cr) 0,2÷0,3
медь (Cu) 0,2÷0,3
ускорение охлаждения возможно осуществлять со скоростью 25÷35 град/с, а нагрев при индукционном отпуске осуществляют в темпе «прокатки» со скоростью от 15 до 120 секунд в зависимости от толщины проката.
Описание иллюстрируется фиг. 1 - спектры масс-положительных и отрицательных ионов, полученные для поверхности образца после его нагрева в вакууме при 550°С в зависимости от продолжительности выдержки (а - 10 мин; б - 30 мин; в - 60 мин; г - зависимость интенсивности линии бора на спектре масс от длительности нагрева); фиг. 2 - микроструктура опытного образца с увеличением ×6000, показано распределение бора по периферии бейнитной колонии; фиг. 3 - тонкая структура образца после индукционного отпуска, показана структура нижнего бейнита (темнопольное изображение в рефлексах мартенсита, температура окончания ускоренного охлаждения 450°С).
В целях обоснования достижения поставленного результата осуществили опытную выплавку низкоуглеродистой ниобийсодержащей стали, дополнительно легированной элементами, обеспечивающими твердорастворное упрочнение - Mn, Ni, Мо, Cr, Cu с микродобавкой бора. Сталь имела экономный уровень легирования, выражающийся величиной Сэкв=0,48% и Рст=0,19%, а ее химический состав представлен в таблице 1.
После выплавки сталь разливали в изложницы. Полученную заготовку прокатывали в полуавтоматическом режиме с ускоренным охлаждением. Нагрев (аустенизацию) осуществляли до температуры 1100°С. Температура начала черновой прокатки Тн.черн составила 1000÷1050°С, температура окончания черновой прокатки Тк.черн - 950÷1000°С. Чистовую прокатку проводили с завершением в нижней части γ-области при температуре начала чистовой прокатки Тн.чист 800÷850°С и температуре окончания чистовой прокатки Тк.чист 790-820°С. Суммарное обжатие при чистовой прокатке составило порядка 80%. Ускоренное охлаждение осуществляли при температуре 750÷790°С и завершали при температуре 350÷450°С со средней скоростью охлаждения 25÷35°С/с. По завершении ускоренного охлаждения для получения высокой деформационной способности (пластичности, вязкости) прокат дополнительно подвергали кратковременному высокому индукционному отпуску токами промышленной частоты в темпе «прокатки» при температуре 620±10°С в течении 5-10 с.
Значения механических свойств опытного проката представлено в таблице 2 (интервал значений в зависимости от температуры конца ускоренного охлаждения / среднее значение).
Особенности распределения бора в металле проката были исследованы методами спектроскопии Оже-электронов (ОЭС) и масс-спектрометрии вторичных ионов (ВИМС). На фиг. 1 представлены результаты масс-спектроскопического исследования поверхности образца, предварительно очищенного ионным травлением и затем нагретого до 550°С. На спектрах масс присутствуют кластеры В2 + и В- и отсутствуют более сложные кластеры бора с азотом (BN - масса порядка 25 а.е.м.), кислородом (ВО, BO2 - массой около 27 а.е.м. и 43 а.е.м., соответственно), или металлами, что свидетельствует о присутствии бора в свободном состоянии в сегрегациях на межфазных границах (фиг. 2). По результатам исследований установлено, что бор находится в свободном состоянии (твердом растворе) и не связан в нитриды бора, что способствует повышению прокаливаемости (прочности) стали. Кроме того, микролегирование стали бором способствует преимущественно сдвиговому превращению аустенита, бор замедляет превращение основных фаз - феррита, гранулярного бейнита, сдвигает область распада переохлажденного аустенита, облегчая тем самым образование нижнего реечного бейнита и малоуглеродистого мартенсита.
Легирование стали бором способствует повышению устойчивости аустенита и приводит к снижению критических точек температуры начала бейнитного превращения на 50°С, в результате чего область начала бейнитного превращения смещается в сторону более низких скоростей охлаждения, при этом изменяется морфология бейнита от зернистого к игольчатому.
Дополнительно было исследовано влияние индукционного отпуска после ускоренного охлаждения (УО) на повышение деформационной способности и хладостойкости опытного образца. Улучшение вязких свойств и пластичности связано с отсутствием МА-фазы (фиг. 3), аннигиляцией дислокаций, релаксацией локальных пиковых напряжений, характерных для мартенситной структуры (и/или структуры нижнего бейнита) в исходном состоянии, однако краткость индукционного нагрева не приводит к видимым изменениям общей дислокационной структуры. Таким образом, индукционный нагрев до 630°С способствует началу образования полигонизованной субструктуры, что приводит к улучшению вязких характеристик.
Заявленный способ применим для производства стали категории прочности Х90, X100, X120, К80, К90 для труб магистральных газопроводов высокого давления, а также для отраслей машиностроения, офшорного судостроения.
Figure 00000001
Figure 00000002

Claims (6)

1. Способ производства высокопрочного хладостойкого проката, включающий выплавку стали, непрерывную разливку в слябы, аустенизацию, черновую, чистовую прокатку и ускоренное охлаждение в потоке прокатного стана, отличающийся тем, что выплавляют сталь следующего химического состава при соотношении элементов, мас.%:
углерод 0,04÷0,05 марганец 1,9÷2,0 кремний 0,22÷0,25 ниобий 0,07÷0,09 титан 0,02÷0,025 алюминий 0,025÷0,03 азот 0,005÷0,007 сера 0,001÷0,002 фосфор 0,006÷0,008 бор 0,0015÷0,002 железо остальное
аустенизацию проводят в интервале температур 1050÷1100°С, черновую прокатку производят с деформацией 12÷20% в области температур рекристаллизации аустенита, чистовую - в области температур полного торможения рекристаллизации с общей степенью деформации 70÷80%, при этом ускоренное охлаждение завершают при температуре 350÷450°С, а после ускоренного охлаждения в потоке прокатного стана дополнительно проводят кратковременный высокий индукционный отпуск проката при температуре 620±10°С.
2. Способ по п. 1, отличающийся тем, что сталь дополнительно содержит один или несколько элементов из ряда, включающего, мас.%:
молибден 0,2÷0,3 никель 0,3÷0,4 хром 0,2÷0,3 медь 0,2÷0,3
3. Способ по п. 1, отличающийся тем, что ускоренное охлаждение производят со скоростью 25-35°С/с, а нагрев при индукционном отпуске осуществляют в течение от 15 до 120 с в зависимости от толщины проката.
RU2016104657A 2016-02-11 2016-02-11 Способ производства экономно-легированного высокопрочного проката для труб магистральных газопроводов высокого давления, а также для отраслей машиностроения и оффшорного судостроения RU2617075C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016104657A RU2617075C1 (ru) 2016-02-11 2016-02-11 Способ производства экономно-легированного высокопрочного проката для труб магистральных газопроводов высокого давления, а также для отраслей машиностроения и оффшорного судостроения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016104657A RU2617075C1 (ru) 2016-02-11 2016-02-11 Способ производства экономно-легированного высокопрочного проката для труб магистральных газопроводов высокого давления, а также для отраслей машиностроения и оффшорного судостроения

Publications (1)

Publication Number Publication Date
RU2617075C1 true RU2617075C1 (ru) 2017-04-19

Family

ID=58642797

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016104657A RU2617075C1 (ru) 2016-02-11 2016-02-11 Способ производства экономно-легированного высокопрочного проката для труб магистральных газопроводов высокого давления, а также для отраслей машиностроения и оффшорного судостроения

Country Status (1)

Country Link
RU (1) RU2617075C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774760C1 (ru) * 2021-09-08 2022-06-22 Публичное акционерное общество «Северсталь» (ПАО «Северсталь») Способ производства хладостойкого проката

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2385350C1 (ru) * 2008-12-12 2010-03-27 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Способ производства штрипса для труб магистральных трубопроводов
JP2010174343A (ja) * 2009-01-30 2010-08-12 Jfe Steel Corp 低温靭性に優れた厚肉高張力熱延鋼板の製造方法
EP0969112B1 (en) * 1997-03-17 2011-08-17 Nippon Steel Corporation A method of producing dual-phase high-strength steel sheets having high impact energy absorption properties
RU2465343C1 (ru) * 2011-08-31 2012-10-27 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства листов из низколегированной трубной стали класса прочности к56
RU2465346C1 (ru) * 2011-08-25 2012-10-27 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства высокопрочного штрипса для труб магистральных трубопроводов
RU2478133C1 (ru) * 2009-10-28 2013-03-27 Ниппон Стил Корпорейшн Стальной лист для производства магистральной трубы с превосходной прочностью и пластичностью и способ изготовления стального листа

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969112B1 (en) * 1997-03-17 2011-08-17 Nippon Steel Corporation A method of producing dual-phase high-strength steel sheets having high impact energy absorption properties
RU2385350C1 (ru) * 2008-12-12 2010-03-27 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Способ производства штрипса для труб магистральных трубопроводов
JP2010174343A (ja) * 2009-01-30 2010-08-12 Jfe Steel Corp 低温靭性に優れた厚肉高張力熱延鋼板の製造方法
RU2478133C1 (ru) * 2009-10-28 2013-03-27 Ниппон Стил Корпорейшн Стальной лист для производства магистральной трубы с превосходной прочностью и пластичностью и способ изготовления стального листа
RU2465346C1 (ru) * 2011-08-25 2012-10-27 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства высокопрочного штрипса для труб магистральных трубопроводов
RU2465343C1 (ru) * 2011-08-31 2012-10-27 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства листов из низколегированной трубной стали класса прочности к56

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774760C1 (ru) * 2021-09-08 2022-06-22 Публичное акционерное общество «Северсталь» (ПАО «Северсталь») Способ производства хладостойкого проката

Similar Documents

Publication Publication Date Title
CN107709598B (zh) 高强度冷轧钢板、高强度热浸镀锌钢板、以及高强度合金化热浸镀锌钢板
JP7275137B2 (ja) 靭性、延性及び強度に優れた鋼板及びその製造方法
CA2899570C (en) Thick, tough, high tensile strength steel plate and production method therefor
US10443110B2 (en) High toughness and high tensile strength thick steel plate and production method therefor
CA2969200C (en) Thick-walled high-toughness high-strength steel plate and method for manufacturing the same
JP6234845B2 (ja) 焼付け硬化性と曲げ性に優れた高強度合金化溶融亜鉛めっき鋼板
KR20160072099A (ko) 고경도 열간압연된 강 제품 및 이를 제조하는 방법
JP2007016296A (ja) 成形後の延性に優れたプレス成形用鋼板及びその成形方法、並びにプレス整形用鋼板を用いた自動車用部材
US20170349960A1 (en) High-strength high-tenacity steel plate with tensile strength of 800 mpa and production method therefor
JP2005126733A (ja) 高温加工性にすぐれた熱間プレス用鋼板及び自動車用部材
JP6311793B2 (ja) 熱延鋼板
US20150322552A1 (en) High strength cold rolled steel sheet with low yield ratio and method of manufacturing the same
KR20140110996A (ko) 고강도 열연 강판 및 그 제조 방법
RU2631063C1 (ru) Способ производства инструментального высокопрочного листового проката
KR20150112489A (ko) 강재 및 그 제조 방법
JP6284813B2 (ja) 強冷間加工性と加工後の硬さに優れる熱延鋼板
US20200070476A1 (en) Hot dip coated steel having excellent processability, and manufacturing method therefor
JP6795083B2 (ja) 鋼板およびその製造方法
KR102031499B1 (ko) 표면품질 및 충격인성이 우수한 압력용기용 강재 및 이의 제조방법
RU2617075C1 (ru) Способ производства экономно-легированного высокопрочного проката для труб магистральных газопроводов высокого давления, а также для отраслей машиностроения и оффшорного судостроения
KR101403262B1 (ko) 초고강도 용융도금강판 및 그의 제조방법
KR102540431B1 (ko) 고강도 강판 및 그 제조 방법
RU2695719C1 (ru) Способ изготовления арматурной стали
RU2652281C1 (ru) Способ производства горячекатаных листов из высокопрочной стали
KR101412354B1 (ko) 고강도 강판 제조 방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190212