RU2613983C1 - Способ получения глинозема из хромсодержащих бокситов - Google Patents

Способ получения глинозема из хромсодержащих бокситов Download PDF

Info

Publication number
RU2613983C1
RU2613983C1 RU2016106900A RU2016106900A RU2613983C1 RU 2613983 C1 RU2613983 C1 RU 2613983C1 RU 2016106900 A RU2016106900 A RU 2016106900A RU 2016106900 A RU2016106900 A RU 2016106900A RU 2613983 C1 RU2613983 C1 RU 2613983C1
Authority
RU
Russia
Prior art keywords
magnetic
bauxite
chromium
pulp
soda
Prior art date
Application number
RU2016106900A
Other languages
English (en)
Inventor
Олег Александрович Дубовиков
Денис Александрович Логинов
Алина Азатовна Шайдулина
Александра Дмитриевна Тихонова
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет"
Priority to RU2016106900A priority Critical patent/RU2613983C1/ru
Application granted granted Critical
Publication of RU2613983C1 publication Critical patent/RU2613983C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/08Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals with sodium carbonate, e.g. sinter processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/04Chromium halides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение может быть использовано в химической промышленности. Способ получения глинозема из хромсодержащих бокситов включает мокрое спекание шихты, выщелачивание спека промывной водой с получением алюминатных растворов, из которых извлекают гидроксид алюминия. Боксит отдельно от известняка подвергают мокрому измельчению на упаренном оборотном содовом растворе при объемном отношении Ж:Т=3:1. Получают пульпу с частицами крупностью менее 0,05 мм. Пульпу подвергают магнитной сепарации с получением магнитного и немагнитного продуктов. Магнитный продукт с содержанием оксида хрома(III) от 25 до 30% отправляют на переработку на хромат натрия. Немагнитный продукт вместе с измельченным известняком и свежей содой направляют на корректировку шихты. После этого шихту спекают. Полученный спек выщелачивают промывной водой с получением алюминатных растворов, из которых извлекают гидроксид алюминия. Гидроксид алюминия фильтруют, промывают и направляют на кальцинацию. Изобретение позволяет повысить комплексность переработки низкокачественных бокситов с получением глинозема и хромата натрия, снизить экологическую нагрузку на окружающую среду за счет извлечения части соединений хрома. 6 ил., 3 пр.

Description

Изобретение относится к производству глинозема из бокситов.
Известен способ получения глинозема по способу Байера (Лайнер А.И. Производство глинозема / А.И.Лайнер, Еремин Н.И., Лайнер Ю.А., Певзнер И.З. - М.: "Металлургия". - 1978. - С. 61-183), основанный на взаимодействии бокситовых руд со щелочными растворами и последующим разложением алюминатных растворов с выделением из них гидроксида алюминия согласно реакциям:
Figure 00000001
Figure 00000002
Маточный раствор от разложения алюминатных растворов при упаривании его до 40-44°
Figure 00000003
(уд. Вес 1,20-1,22), подобно растворам едкого натра, растворяет глинозем из боксита за 1,5 часа при перемешивании и под давлением в 3-4 ат. При этом хромсодержащие минералы, представленные трехвалентным хромом, переходят в красный шлам и, являясь водонерастворимыми формами, не оказывают вредного влияния на окружающую среду.
Недостатком этого способа является пригодность его только для переработки высококачественных бокситов с высоким кремниевым модулем (весовое отношение Al2O3 к SiO2) более 7÷8.
Известен способ получения глинозема по последовательному варианту комбинированного способа Байер-спекание (Лайнер А.И. Производство глинозема / А.И. Лайнер, Еремин Н.И., Лайнер Ю.А., Певзнер И.З. - М: "Металлургия". - 1978. - С. 268-271), основанный на том, что шлам от автоклавной варки, богатый по содержанию Al2O3 и Na2O, спекают в смеси с известняком и содой. Обескремненный алюминатный раствор от выщелачивания спека смешивают с разбавленным раствором от автоклавной варки для совместного выкручивания, рыжую соду от упарки маточного раствора смешивают со шламом перед спеканием.
Недостатками данного способа являются большие капитальные затраты на 1 т глинозема, состав красного шлама иногда затрудняет спекание приготовленной из него шихты, при переработке бокситов с большим содержанием хрома спеканием происходит окисление хрома в процессе спекания и загрязнение его водорастворимыми соединениями технологических растворов, воздуха и красного шлама.
Известен способ переработки высококремнистых бокситов (Изучение вещественного состава и обогатимости бокситов Северо-Онежского и Средне-Тиманского месторождений. / Алгебраистова Н.К., Филенкова Н.В., Маркова С.А., Гроо Е.А., Кондратьева А.А., Свиридов Л.И., Шепелев И.И. // Сборник докладов II Международного Конгресса «Цветные металлы - 2010». - г. Красноярск. - 2-4 сентября, 2010. - с. 43-45), основанный на извлечении из них диоксида кремния и алюминия с использованием микробиологического выщелачивания и последующим селективным выделением глинозема из жидкой фазы.
Недостатки данного способа заключаются в длительности процесса и необходимости использования крупногабаритного оборудования.
Известен способ получения глинозема путем совместной переработки бокситов с нефелиновым сырьем методом спекания (Виноградов С.А. Технология совместной переработки нефелинов и бокситов // Записки Горного института. - СПб.: СПГТИ, 2007, Т. 170, с. 153-155), основанный на том, что добавка к нефелиновому сырью 14% боксита позволяет повысить содержание оксида алюминия в спеке до существующего в настоящее время уровня (~15%), тем самым позволяя достичь извлечения оксида алюминия и щелочей около 90%.
Недостатком данного способа является то, что наличие стадии спекания двухкомпонентной шихты неизбежно приведет к образованию водорастворимых хроматов натрия. Кроме того, доля вовлекаемых в переработку бокситов по данному способу невелика.
Известен способ получения глинозема по способу спекания, (Лайнер А.И. Производство глинозема / А.И. Лайнер., Еремин Н.И., Лайнер Ю.А., Певзнер И.З. – М.: "Металлургия". - 1978. - С. 184-263), принятый за прототип, согласно которому бокситы подвергают дроблению и последующему мокрому измельчению совместно с известняком на упаренном оборотном содовом растворе. В пульпу дополнительно дозируется сода и после корректировки готовая пульпа подвергается спеканию. Спек выщелачивается водой с получением алюминатных растворов, из которых извлекают гидроксид алюминия.
Недостатком этого способа является то, что при переработке хромсодержащих бокситов спеканием происходит окисление хрома в процессе спекания и загрязнение его водорастворимыми соединениями технологических растворов, воздуха и красного шлама. Это вполне закономерно, так как и при переработке хромита реализуется окислительный обжиг при 1100-1200°С с содой и доломитом. Соединения Cr(VI) обладают местным и общетоксичным действием, вызывая поражения органов дыхания, кожного покрова, слизистых оболочек, желудочно-кишечного тракта.
Техническим результатом изобретения является частичное удаление хромсодержащих минералов из боксита с последующей возможной их переработкой на хромат натрия.
Технический результат достигается тем, что боксит отдельно от известняка подвергают мокрому измельчению на упаренном оборотном содовом растворе при объемном отношении Ж:Т=3:1 с получением пульпы с частицами крупностью менее 0,05 мм, затем пульпу подвергают магнитной сепарации с получением магнитного и немагнитного продуктов, далее магнитный продукт с содержанием в нем оксида хрома(III) от 25 до 30% отправляют на переработку на хромат натрия, а немагнитный продукт вместе с измельченным известняком и свежей содой направляют на корректировку шихты, после чего шихту спекают, полученный спек выщелачивают промывной водой с получением алюминатных растворов, из которых извлекают гидроксид алюминия, гидроксид алюминия фильтруют, промывают и направляют на кальцинацию.
Способ поясняется следующими фигурами:
фиг. 1 - схема получения глинозема из хромсодержащих бокситов;
фиг. 2 - вещественный состав хромсодержащих бокситов Иксинского месторождения;
фиг. 3 - распределение оксида хрома(III) по минералам бокситов;
фиг. 4 - результаты магнитной сепарации хромсодержащих бокситов,
фиг. 5 - зависимость извлечения оксида хрома(III) в магнитный продукт от его выхода и крупности фракции;
фиг. 6 - показатели критерия эффективности магнитной сепарации в зависимости от крупности фракции;
Способ осуществляется следующим образом.
Исходный хромсодержащий боксит подвергают дроблению в щековой дробилке. Далее дробленый боксит подают совместно с оборотным содовым раствором от карбонизации в шаровую мельницу мокрого помола при объемном отношении жидкого вещества к твердому (Ж:Т), равному 3:1, с целью получения фракции -0,05 мм. Далее пульпу подвергают магнитной сепарации в полиградиентном магнитном сепараторе при силе тока в катушке магнитного сепаратора от 6 до 12 А. Магнитный продукт, содержащий оксиды хрома(III) и железа(III), перерабатывается на хромат натрия по известной технологии. При выходе магнитного продукта 6,1-6,2% извлечение оксида хрома(III) в него составляет 25÷32,0%, а снижение содержания оксида хрома(III) в немагнитном продукте составило 23÷28%. Немагнитный продукт совместно с измельченным известняком, свежей содой, белым шламом от обескремнивания алюминатных растворов и карбонатным шламом, полученным при каустификации содовых растворов, подается в большие емкости с воздушным перемешиванием, в которых осуществляется корректировка шихты. В шихте должны быть выдержаны следующие молекулярные соотношения:
Na2O:(Al2O3+Fe2O3)=1,00±0,05 и СаО:SiO2=2,00±0,05.
После корректировки пульпа через питающие бассейны откачивается на вращающиеся барабанные печи спекания диаметром от 3 до 5 м и длиной от 50 до 100 м. Так как в бокситовой шихте содержится много свободной соды, приводящей к окомкованию шихты при ее сушке, поэтому бокситосодоизвестняковая пульпа подается в трубчатую вращающуюся печь распылом через форсунки. При мокром спекании распыленные капельки суспензии подсушиваются в газовом потоке, образующиеся сухие гранулы падают на слой сухого материала и далее перемещаются при вращении печи в зону более высоких температур. Температура образования спека 1150-1250°С. Спек охлаждается во вращающихся барабанных холодильниках от 1000-1100°С до ~100°С. После охлаждения спек подают на выщелачивание, а отходящие газы из печей спекания очищают от пыли в системе последовательно расположенных пылевых камер, циклонов и электрофильтров. Шлам после выщелачивания бокситовых спеков отмывают горячей водой, которую затем используют для выщелачивания спеков, после чего шлам направляют в отвал. Для обеспечения стойкости растворов в процесс вводят едкую щелочь в составе оборотного содово-щелочного раствора. Алюминатный раствор направляют на обескремнивание. Обескремнивание проводят в две стадии. На первой стадии раствор выдерживают в автоклавах при 150-170°С в течение 1,5-2 ч, в результате чего кремнезем выпадает в осадок в виде гидроалюмосиликата натрия состава Na2O⋅Al2O3⋅l,7SiO2⋅2H2O, в растворе остается 0,4-0,5 г/л SiO2. Сгущенный и отфильтрованный шлам от первой стадии обескремнивания отправляют в голову процесса для приготовление шихты. Вторую стадию обескремнивания проводят в мешалках с добавкой известкового молока при температуре 90-95°С в течение 1,5-2 ч. Известковое молоко дозируют в количестве 3-5 г/л СаОакт, что соответствует отношению по массе СаО:SiO2=20÷40. В результате происходящих взаимодействий образуется малорастворимый гидроалюмосиликат кальция (гидрогранат) состава 3CaO⋅Al2O3⋅mSiO2⋅(6-2m)H2O, где m=0,1÷0,4. После второй стадии обескремнивания раствор отделяют от шлама, фильтруют и направляют на разложение. Сгущенный и отфильтрованный шлам от второй стадии обескремнивания подвергают содовой обработке для регенерации глинозема и получения щелочного раствора, используемого для выщелачивания спека. Содовую обработку шлама проводят в две стадии. Около 50% карбонатного шлама после первой обработки используют вместо извести на второй стадии обескремнивания, остальной шлам после второй содовой обработки направляют на шихтовку и спекание. Содово-щелочной раствор с каустическим модулем 2,5-3,0, полученный при содовой обработке, используют при выщелачивании спеков как источник едкой щелочи. Шлам после второй стадии обескремнивания может быть использован как затравка на первой и второй стадиях обескремнивания, после чего возвращен на приготовление шихты. После глубокого обескремнивания алюминатный раствор подвергается карбонизации до остаточного содержания в нем ~5 г/л Al2O3. Карбонизацию проводят в присутствии затравочного гидроксида алюминия, количество которого примерно равно содержанию гидроксида алюминия в алюминатном растворе. Пульпу после карбонизации разделяют на гидроциклонах. Нижний продукт гидроциклонов, содержащий, в основном, крупную фракцию гидроксида алюминия, фильтруют и промывают. Промытый и отфильтрованный гидроксид алюминия направляют па прокалку (кальцинацию) для получения продукционного глинозема. Верхний слив сгущают, сгущенную пульпу, содержащую мелкую фракцию гидроксида алюминия, используют в качестве затравки при карбонизации. Маточные растворы после карбонизации являются оборотными. Их подвергают контрольной фильтрации и выпариванию, после чего используют для магнитной сепарации исходного боксита. Часть маточного раствора используется для содовой обработки шламов после второй стадии обескремнивания. Схема получения глинозема из хромсодержащих бокситов приведена на фиг. 1.
Способ поясняется следующими примерами.
Пример 1.
Переработке подвергались высококремнистые хромсодержащие бемит-каолинитовые бокситы Иксинского месторождения (фиг. 2). Кристаллооптический анализ бокситов дал следующий минералогический состав в порядке убывания: бемит, каолинит, гиббсит, цеолит, кварц, слюда, кальцит, полевой шпат, турмалин, органические остатки. Из рудных непрозрачных минералов имеются минералы группы хромшпинелидов и железосодержащие минералы.
Рентгенофазовый анализ установил следующий минералогический состав: бемит, гиббсит, каолинит, гидрослюда, хлорит или монтмориллонит, анатаз, сильно дисперсный хромит. Минералы перечислены в порядке уменьшения их содержания. Распределение оксида хрома(III) по минералам было установлено при помощи микрозондового анализа (фиг. 3). 48% Cr2O3 приходится на долю алюмохромита. В состав каолинита изоморфно входит около 10% Cr2O3, с бемитом и гиббситом связано до 25%, в минералах железа сконцентрировано порядка 15÷17%. Помимо алюмохромита в исходном боксите были найдены хромпикотит, а также хромсодержащие алюмогетит и магнетит. Хромшпинелиды в основной массе немагнитны или иногда слабомагнитны. Значительная степень магнитности наблюдается у разновидностей, обогащенных в значительной мере Fe2O3. Магнетит, который в нашем случае содержит Cr2O3, в свою очередь, сильномагнитен.
Исходный хромсодержащий боксит подвергали дроблению в щековой дробилке. Гранулометрический состав дробленого материала:
Figure 00000004
Далее дробленый боксит вместе с оборотным содовым раствором измельчили в шаровой мельнице до крупности -0,05 мм при объемном отношении Ж:Т=3:1, пульпу пропустили через рабочую ячейку полиградиентного магнитного сепаратора (сила тока в катушках магнитного сепаратора 6 А). Магнитный продукт промывали водой и после размагничивания смывали. Пульпу полученных продуктов фильтровали, сушили, определяли ее выход и далее подвергали химическому анализу.
Способ позволил при выходе магнитного продукта в количестве 6,1% извлечь в него 25,41% оксида хрома(III) и, соответственно, снизить его содержание в немагнитном продукте на 23,33% (фиг. 4). В немагнитный продукт добавляется известняк и свежая сода, и шихта перерабатывается на глинозем спеканием. Магнитный продукт может быть переработан на целевой хромсодержащий продукт Na2CrO4.
Экспериментально установлено, что эффективность магнитной сепарации снижается при крупности частиц пульпы более 0,05 мм (фиг. 5). Магнитная сепарация фракции с частицами крупностью -2 мм не позволяет достичь удовлетворительного извлечения Cr2O3 и Fe2O3 в магнитный продут даже при повышении тока сепаратора, что указывает на недостаточное раскрытие минералов при данной крупности. Повышению эффективности магнитной сепарации способствует более тонкое измельчение.
Критерием эффективности магнитной сепарации служит отношение извлечения оксида хрома(III) в магнитный продукт (ε) к выходу магнитного продукта (γ), численно равное тангенсу угла наклона аппроксимирующей зависимости к линии оси абсцисс или сам угол (фиг. 6).
Пример 2.
Хромсодержащие бокситы, химико-минералогический состав которых представлен на фиг. 2 и 3, предварительно измельчили до крупности менее 0,05 мм вместе с упаренным оборотным содовом раствором при объемном отношении Ж:Т=3:1, пульпу подвергали магнитной сепарации при силе тока в катушках магнитного сепаратора 9 А. В немагнитный продукт добавляется известняк и свежая сода, и шихта перерабатывается на глинозем спеканием. Магнитный продукт может быть переработан по известной технологии на целевой хромсодержащий продукт Na2CrO4.
При данной силе тока способ позволяет извлечь в магнитный продукт 25,25% оксида хрома(III) и, соответственно, снизить его содержание в немагнитном продукте на 23,33%, выход магнитного продукта составляет 6,16% (фиг. 4).
Пример 3.
Хромсодержащие бокситы (фиг. 2 и 3), измельченные на упаренном оборотном содовом растворе (объемное отношение Ж:Т=3:1) до крупности менее 0,05 мм, подвергаются магнитной сепарации (сила тока в катушках магнитного сепаратора 12 А). В немагнитный продукт добавляется известняк и свежая сода, и шихта перерабатывается на глинозем способом спекания. Магнитный продукт может быть переработан по известной технологии на целевой хромсодержащий продукт Na2CrO4.
При силе тока в катушках магнитного сепаратора 12 А способ позволяет при выходе магнитного продукта в количестве 6,2% извлечь в него 32,03% оксида хрома(III) и, соответственно, снизить его содержание в немагнитном продукте на 28,33% (фиг. 4).
Преимущество данного способа по сравнению со способом, принятым за прототип, состоит в том, что предварительная магнитная сепарация измельченного на упаренном оборотном содовом растворе хромсодержащего боксита позволяет снизить экологическую нагрузку на окружающую среду за счет извлечения части соединений хрома, а также повысить комплексность процесса переработки низкокачественных бокситов за счет переработки соединений хрома на целевой продукт - хромат натрия.

Claims (1)

  1. Способ получения глинозема из хромсодержащих бокситов, включающий мокрое спекание шихты, выщелачивание спека промывной водой с получением алюминатных растворов, из которых извлекают гидроксид алюминия, отличающийся тем, что боксит отдельно от известняка подвергают мокрому измельчению на упаренном оборотном содовом растворе при объемном отношении Ж:Т=3:1 с получением пульпы с частицами крупностью менее 0,05 мм, затем пульпу подвергают магнитной сепарации с получением магнитного и немагнитного продуктов, далее магнитный продукт с содержанием в нем оксида хрома(III) от 25 до 30% отправляют на переработку на хромат натрия, а немагнитный продукт вместе с измельченным известняком и свежей содой направляют на корректировку шихты, после чего шихту спекают, полученный спек выщелачивают промывной водой с получением алюминатных растворов, из которых извлекают гидроксид алюминия, гидроксид алюминия фильтруют, промывают и направляют на кальцинацию.
RU2016106900A 2016-02-25 2016-02-25 Способ получения глинозема из хромсодержащих бокситов RU2613983C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016106900A RU2613983C1 (ru) 2016-02-25 2016-02-25 Способ получения глинозема из хромсодержащих бокситов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016106900A RU2613983C1 (ru) 2016-02-25 2016-02-25 Способ получения глинозема из хромсодержащих бокситов

Publications (1)

Publication Number Publication Date
RU2613983C1 true RU2613983C1 (ru) 2017-03-22

Family

ID=58453294

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016106900A RU2613983C1 (ru) 2016-02-25 2016-02-25 Способ получения глинозема из хромсодержащих бокситов

Country Status (1)

Country Link
RU (1) RU2613983C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2706907C1 (ru) * 2019-05-28 2019-11-21 Борис Николаевич Улько Способ переработки бокситов

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU931716A1 (ru) * 1980-11-27 1982-05-30 Уральский ордена Трудового Красного Знамени политехнический институт им.С.М.Кирова Способ переработки высококачественных и низкокачественных бокситов
RU2152904C2 (ru) * 1997-08-11 2000-07-20 Акционерное общество "Алюминий Казахстана" Способ получения глинозема из высокосернистого и высококарбонатного боксита
US20110158868A1 (en) * 2008-08-06 2011-06-30 Rio Tinto Alcan International Limited Improvement to the bayer process for producing alumina trihydrate, said process comprising a step in which the supersaturated liquor is filtered at high temperature before decomposition
CN104163445A (zh) * 2014-07-25 2014-11-26 中国铝业股份有限公司 一种铝土矿的综合利用方法
EA021253B1 (ru) * 2012-06-20 2015-05-29 Плизон Венчерез Лтд. Способ комплексной переработки боксита

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU931716A1 (ru) * 1980-11-27 1982-05-30 Уральский ордена Трудового Красного Знамени политехнический институт им.С.М.Кирова Способ переработки высококачественных и низкокачественных бокситов
RU2152904C2 (ru) * 1997-08-11 2000-07-20 Акционерное общество "Алюминий Казахстана" Способ получения глинозема из высокосернистого и высококарбонатного боксита
US20110158868A1 (en) * 2008-08-06 2011-06-30 Rio Tinto Alcan International Limited Improvement to the bayer process for producing alumina trihydrate, said process comprising a step in which the supersaturated liquor is filtered at high temperature before decomposition
EA021253B1 (ru) * 2012-06-20 2015-05-29 Плизон Венчерез Лтд. Способ комплексной переработки боксита
CN104163445A (zh) * 2014-07-25 2014-11-26 中国铝业股份有限公司 一种铝土矿的综合利用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЛАЙНЕР А.И. и др., Производство глинозема, Москва, Металлургия, 1978, сс. 184-263. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2706907C1 (ru) * 2019-05-28 2019-11-21 Борис Николаевич Улько Способ переработки бокситов
WO2020242347A1 (ru) 2019-05-28 2020-12-03 Йоханн АЙРИХ Способ переработки бокситов

Similar Documents

Publication Publication Date Title
CA2877650C (en) Alumina production method
US20210380490A1 (en) Method for finely processing nonmetallic mineral
EA035062B1 (ru) Извлечение продукции из титансодержащих минералов
RU2613983C1 (ru) Способ получения глинозема из хромсодержащих бокситов
RU2634017C2 (ru) Способ получения сульфата магния и железоокисных пигментов из отходов производств
RU2535254C1 (ru) Способ комплексной переработки серпентин-хромитового рудного сырья
CN106882838B (zh) 一种废酸自循环的非高炉钛渣硫酸法生产钛白的方法
KR20160147563A (ko) 제철 슬래그를 이용한 산화 마그네슘 및 실리카의 회수방법
RU2711198C1 (ru) Способ переработки бокситов на глинозем
RU2694937C1 (ru) Способ получения оксидов кремния, алюминия и железа при комплексной безотходной переработке из золошлаковых материалов
RU2202516C1 (ru) Способ получения оксида алюминия
KR101796041B1 (ko) 침강성탄산칼슘 원료용 고품위 석회유 제조를 위한 실리카 제거 방법
RU2344076C2 (ru) Способ комплексной переработки магнийхромсодержащего рудного сырья
RU2701939C1 (ru) Способ получения железооксидных пигментов
RU2687470C1 (ru) Способ извлечения оксида алюминия из отходов глиноземного производства
RU2700071C1 (ru) Способ получения железосодержащих пигментов
RU2750429C1 (ru) Способ получения магнетита
RU2572119C1 (ru) Способ переработки алюминийсодержащего сырья
RU2744191C1 (ru) Комплекс для переработки золоотвалов
RU2466097C1 (ru) Способ получения монохромата натрия
RU2602564C1 (ru) Способ подготовки шихты в глиноземном производстве
JPH0747301A (ja) アルミナ含有鉱石からのシリカ含有物質の除去方法
RU2571909C1 (ru) Способ получения редкометаллического концентрата из хлоридных возгонов, образующихся при очистке парогазовой смеси производства тетрахлорида титана
RU2078044C1 (ru) Способ комплексной переработки алюмосиликатного сырья
GB2078211A (en) Benefication of Iron Oxide Waste

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200226