RU2600890C1 - Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием, в каррагинане - Google Patents

Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием, в каррагинане Download PDF

Info

Publication number
RU2600890C1
RU2600890C1 RU2015124284/15A RU2015124284A RU2600890C1 RU 2600890 C1 RU2600890 C1 RU 2600890C1 RU 2015124284/15 A RU2015124284/15 A RU 2015124284/15A RU 2015124284 A RU2015124284 A RU 2015124284A RU 2600890 C1 RU2600890 C1 RU 2600890C1
Authority
RU
Russia
Prior art keywords
carrageenan
nanocapsules
medicinal plants
producing
suspension
Prior art date
Application number
RU2015124284/15A
Other languages
English (en)
Inventor
Александр Александрович Кролевец
Original Assignee
Александр Александрович Кролевец
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец filed Critical Александр Александрович Кролевец
Priority to RU2015124284/15A priority Critical patent/RU2600890C1/ru
Application granted granted Critical
Publication of RU2600890C1 publication Critical patent/RU2600890C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/84Valerianaceae (Valerian family), e.g. valerian
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Medical Informatics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Medicinal Preparation (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

Изобретение относится к области фармацевтики. Описан способ получения нанокапсул лекарственных растений. В качестве оболочки нанокапсул используют каррагинан. Согласно способу по изобретению 10 мл настойки валерианы добавляют в суспензию каррагинана в диэтиловом эфире, содержащую 1 г каррагинана, в присутствии препарата Е472с и перемешивают. Полученную суспензию нанокапсул отфильтровывают и сушат. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при их получении (увеличение выхода по массе). 1 ил., 4 пр.

Description

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности.
Ранее были известны способы получения микрокапсул.
В патенте 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения
В патенте 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в патенте 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения нанокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул лекарственных растений, обладающих спазмолитическим действием, отличающимйся тем, что в качестве оболочки нанокапсул используется каррагинан, а в качестве ядра - настойка валерьяны.
Отличительной особенностью предлагаемого метода является получение нанокапсул с использованием каррагинана в качестве оболочки и настойки валерьяны, обладающей спазмолитическим действием, - в качестве ядра.
Результатом предлагаемого метода является получение нанокапсул лекарственных растений, обладающих спазмолитическим действием.
ПРИМЕР 1
Получение нанокапсул настойки валерьяны, соотношение ядро : оболочка 1:3
10 мл настойки валерьяны добавляют в суспензию каррагинана в диэтиловом эфире, содержащую 3 г указанного полимера, в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2
Получение нанокапсул настойки валерьяны, соотношение ядро : оболочка 1:1
10 мл настойки валерьяны добавляют в суспензию каррагинана в диэтиловом эфире, содержащую 1 г указанного полимера, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3
Получение нанокапсул настойки валерьяны, соотношение ядро : оболочка 3:1
30 мл настойки валерьяны добавляют в суспензию каррагинана в диэтиловом эфире, содержащую 1 г указанного полимера, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 4
Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length:Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.

Claims (1)

  1. Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием, характеризующийся тем, что 10 мл настойки валерьяны добавляют в суспензию каррагинана в диэтиловом эфире, содержащую 1 г каррагинана, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, полученную суспензию отфильтровывают и сушат при комнатной температуре.
RU2015124284/15A 2015-06-22 2015-06-22 Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием, в каррагинане RU2600890C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015124284/15A RU2600890C1 (ru) 2015-06-22 2015-06-22 Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием, в каррагинане

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015124284/15A RU2600890C1 (ru) 2015-06-22 2015-06-22 Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием, в каррагинане

Publications (1)

Publication Number Publication Date
RU2600890C1 true RU2600890C1 (ru) 2016-10-27

Family

ID=57216514

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015124284/15A RU2600890C1 (ru) 2015-06-22 2015-06-22 Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием, в каррагинане

Country Status (1)

Country Link
RU (1) RU2600890C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды
US20070267287A1 (en) * 2004-09-17 2007-11-22 National Institute Of Advanced Industrial Science And Technology Nanocapsule-Type Structure
WO2009085952A1 (en) * 2007-12-20 2009-07-09 Brookwood Pharmaceuticals, Inc. Process for preparing microparticles having a low residual solvent volume
RU2500404C2 (ru) * 2012-03-19 2013-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в интерфероне
RU2535019C1 (ru) * 2014-01-23 2014-12-10 Карпов Алексей Николаевич Седативное и спазмолитическое средство

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (ru) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Способ получения микрокапсулированных препаратов, содержащих пиретроидные инсектициды
US20070267287A1 (en) * 2004-09-17 2007-11-22 National Institute Of Advanced Industrial Science And Technology Nanocapsule-Type Structure
WO2009085952A1 (en) * 2007-12-20 2009-07-09 Brookwood Pharmaceuticals, Inc. Process for preparing microparticles having a low residual solvent volume
RU2500404C2 (ru) * 2012-03-19 2013-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в интерфероне
RU2535019C1 (ru) * 2014-01-23 2014-12-10 Карпов Алексей Николаевич Седативное и спазмолитическое средство

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СОЛОДОВНИК В. Д. "Микрокапсулирование",-М.:Химия, 1980.-216стр., стр.136-137. *

Similar Documents

Publication Publication Date Title
RU2626828C1 (ru) Способ получения нанокапсул резвератрола в каппа-каррагинане
RU2648816C2 (ru) Способ получения нанокапсул спирулина в альгинате натрия
RU2590666C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием
RU2599484C1 (ru) Способ получения нанокапсул экстракта зеленого чая
RU2639091C2 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием
RU2631479C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих седативным действием
RU2642230C1 (ru) Способ получения нанокапсул кверцетина или дигидрокверцетина в каррагинане
RU2625501C2 (ru) Способ получения нанокапсул сухого экстракта шиповника
RU2639092C2 (ru) Способ получения нанокапсул сухого экстракта шиповника
RU2599009C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих седативным действием в конжаковой камеди
RU2578411C1 (ru) Способ получения нанокапсул рибофлавина
RU2565392C1 (ru) Способ получения нанокапсул витаминов в ксантановой камеди
RU2600441C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием в конжаковой камеди
RU2642054C2 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием
RU2605594C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием
RU2624530C1 (ru) Способ получения нанокапсул унаби в геллановой камеди
RU2602168C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием в каррагинане
RU2602165C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием, в агар-агаре
RU2609739C1 (ru) Способ получения нанокапсул резвератрола в геллановой камеди
RU2602166C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием, в агар-агаре
RU2613881C1 (ru) Способ получения нанокапсул сухого экстракта шиповника
RU2599842C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием в каррагинане
RU2596476C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих спазмолитическим действием
RU2599481C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием
RU2605847C2 (ru) Способ получения нанокапсул розувастатина в конжаковой камеди