RU2625501C2 - Способ получения нанокапсул сухого экстракта шиповника - Google Patents

Способ получения нанокапсул сухого экстракта шиповника Download PDF

Info

Publication number
RU2625501C2
RU2625501C2 RU2015131277A RU2015131277A RU2625501C2 RU 2625501 C2 RU2625501 C2 RU 2625501C2 RU 2015131277 A RU2015131277 A RU 2015131277A RU 2015131277 A RU2015131277 A RU 2015131277A RU 2625501 C2 RU2625501 C2 RU 2625501C2
Authority
RU
Russia
Prior art keywords
obtaining
rosehip extract
sodium alginate
rosehip
nanocapsules
Prior art date
Application number
RU2015131277A
Other languages
English (en)
Other versions
RU2015131277A (ru
Inventor
Александр Александрович Кролевец
Original Assignee
Александр Александрович Кролевец
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец filed Critical Александр Александрович Кролевец
Priority to RU2015131277A priority Critical patent/RU2625501C2/ru
Publication of RU2015131277A publication Critical patent/RU2015131277A/ru
Application granted granted Critical
Publication of RU2625501C2 publication Critical patent/RU2625501C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/07Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/73Rosaceae (Rose family), e.g. strawberry, chokeberry, blackberry, pear or firethorn
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Nanotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

Изобретение относится к способу получения нанокапсул сухого экстракта шиповника. Указанный способ характеризуется тем, что 1 г сухого экстракта шиповника диспергируют в суспензию альгината натрия в бензоле, содержащую 1 г или 3 г указанного полимера, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, затем приливают 5 мл ацетонитрила, выпавший осадок отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул экстракта шиповника, а также увеличение их выхода по массе. 1 ил., 4 пр.

Description

Изобретение относится к области нанотехнологии, в частности к методам инкапсуляции.
Ранее были известны способы получения микрокапсул.
В пат. 2173140 МПК A61K 009/50, A61K 009/127 Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.
В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом инкапсуляции экстракта шиповника, отличающимся тем, что в качестве оболочки микрокапсул используется альгинат натрия, а в качестве ядра - сухой экстракт шиповника при получении нанокапсул с применением ацетонитрила в качестве осадителя.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием ацетонитрила в качестве осадителя, а также использование альгината натрия в качестве оболочки частиц и сухого экстракта шиповника - в качестве ядра.
Результатом предлагаемого метода являются получение нанокапсул сухого экстракта шиповника в альгинате натрия.
ПРИМЕР 1
Получение нанокапсул сухого экстракта шиповника в альгинате натрия в соотношении ядро : оболочка 1:3
1 г сухого экстракта шиповника диспергируют в суспензию альгината натрия в бензоле, содержащий указанного 3 г полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 5 мл ацетонитрила. Выпавший осадок отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2
Получение нанокапсул сухого экстракта шиповника в альгинате натрия в соотношении ядро : оболочка 1:1
1 г сухого экстракта шиповника диспергируют в суспензию альгината натрия в бензоле, содержащий указанного 1 г полимера в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/мин. Далее приливают 5 мл ацетонитрила. Выпавший осадок отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3
Получение нанокапсул сухого экстракта шиповника в альгинате натрия в соотношении ядро : оболочка 5:1
5 г сухого экстракта шиповника диспергируют в суспензию альгината натрия в бензоле, содержащий указанного 1 г полимера в присутствии 0,01 г препарата Е472с при перемешивании 1300 об/мин. Далее приливают 10 мл ацетонитрила. Выпавший осадок отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 4
Определение размеров нанокапсул методом NTA.
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.
Полученные нанокапсулы сухого экстракта шиповника характеризуются простотой, высоким выходом и могут быть использованы в косметической, фармацевтической и пищевой промышленности.

Claims (1)

  1. Способ получения нанокапсул сухого экстракта шиповника, характеризующийся тем, что 1 г сухого экстракта шиповника диспергируют в суспензию альгината натрия в бензоле, содержащую 1 г или 3 г указанного полимера, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин, затем приливают 5 мл ацетонитрила, выпавший осадок отфильтровывают и сушат при комнатной температуре.
RU2015131277A 2015-07-27 2015-07-27 Способ получения нанокапсул сухого экстракта шиповника RU2625501C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015131277A RU2625501C2 (ru) 2015-07-27 2015-07-27 Способ получения нанокапсул сухого экстракта шиповника

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015131277A RU2625501C2 (ru) 2015-07-27 2015-07-27 Способ получения нанокапсул сухого экстракта шиповника

Publications (2)

Publication Number Publication Date
RU2015131277A RU2015131277A (ru) 2017-01-30
RU2625501C2 true RU2625501C2 (ru) 2017-07-14

Family

ID=58453719

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015131277A RU2625501C2 (ru) 2015-07-27 2015-07-27 Способ получения нанокапсул сухого экстракта шиповника

Country Status (1)

Country Link
RU (1) RU2625501C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680806C1 (ru) * 2018-03-02 2019-02-27 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта розмарина
RU2713422C2 (ru) * 2018-03-19 2020-02-05 Частное образовательное учреждение высшего образования "Региональный открытый социальный институт" ЧОУ ВО "РОСИ" Способ получения нанокапсул сухого экстракта прополиса

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491939C1 (ru) * 2012-05-10 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Курская государственная сельскохозяйственная академия имени профессора И.И. Иванова Министерства сельского хозяйства Российской Федерации Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в хлороформе
KR20140069469A (ko) * 2012-11-29 2014-06-10 인타글리오주식회사 천연 복합 추출물의 나노캡슐을 포함하는 아토피 피부염 개선용 화장료 조성물 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491939C1 (ru) * 2012-05-10 2013-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Курская государственная сельскохозяйственная академия имени профессора И.И. Иванова Министерства сельского хозяйства Российской Федерации Способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в хлороформе
KR20140069469A (ko) * 2012-11-29 2014-06-10 인타글리오주식회사 천연 복합 추출물의 나노캡슐을 포함하는 아토피 피부염 개선용 화장료 조성물 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAGAVARMA B. V. N. Different techniques for preparation of polymeric nanoparticles. Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23. СОЛОДОВНИК В. Д. Микрокапсулирование, 1980, стр.136-137. ЧУЕШОВ В. И. Промышленная технология лекарств в 2-х томах, том 2, 2002, стр.383. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680806C1 (ru) * 2018-03-02 2019-02-27 Александр Александрович Кролевец Способ получения нанокапсул сухого экстракта розмарина
RU2713422C2 (ru) * 2018-03-19 2020-02-05 Частное образовательное учреждение высшего образования "Региональный открытый социальный институт" ЧОУ ВО "РОСИ" Способ получения нанокапсул сухого экстракта прополиса

Also Published As

Publication number Publication date
RU2015131277A (ru) 2017-01-30

Similar Documents

Publication Publication Date Title
RU2557900C1 (ru) Способ получения нанокапсул витаминов
RU2626828C1 (ru) Способ получения нанокапсул резвератрола в каппа-каррагинане
RU2562561C1 (ru) Способ получения нанокапсул витаминов в каррагинане
RU2648816C2 (ru) Способ получения нанокапсул спирулина в альгинате натрия
RU2613883C1 (ru) Способ получения нанокапсул розмарина в альгинате натрия
RU2639091C2 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием
RU2624533C1 (ru) Способ получения нанокапсул семян чиа (Salvia hispanica) в каррагинане
RU2625501C2 (ru) Способ получения нанокапсул сухого экстракта шиповника
RU2642230C1 (ru) Способ получения нанокапсул кверцетина или дигидрокверцетина в каррагинане
RU2639092C2 (ru) Способ получения нанокапсул сухого экстракта шиповника
RU2633747C1 (ru) Способ получения нанокапсул семян чиа (Salvia hispanica) в геллановой камеди
RU2578411C1 (ru) Способ получения нанокапсул рибофлавина
RU2565392C1 (ru) Способ получения нанокапсул витаминов в ксантановой камеди
RU2569734C2 (ru) Способ получения нанокапсул резвератрола в альгинате натрия
RU2657748C1 (ru) Способ получения нанокапсул спирулина в конжаковой камеди
RU2624530C1 (ru) Способ получения нанокапсул унаби в геллановой камеди
RU2627585C1 (ru) Способ получения нанокапсул сухого экстракта шиповника в агар-агаре
RU2635763C2 (ru) Способ получения нанокапсул бетулина в каррагинане
RU2642054C2 (ru) Способ получения нанокапсул лекарственных растений, обладающих кардиотоническим действием
RU2613881C1 (ru) Способ получения нанокапсул сухого экстракта шиповника
RU2602168C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием в каррагинане
RU2609739C1 (ru) Способ получения нанокапсул резвератрола в геллановой камеди
RU2602166C1 (ru) Способ получения нанокапсул лекарственных растений, обладающих иммуностимулирующим действием, в агар-агаре
RU2616502C1 (ru) Способ получения нанокапсул унаби в конжаковой камеди
RU2591800C1 (ru) Способ получения нанокапсул экстракта зеленого чая