RU2600236C1 - Kochetov low-noise structure for earthquake-resistant industrial buildings - Google Patents

Kochetov low-noise structure for earthquake-resistant industrial buildings Download PDF

Info

Publication number
RU2600236C1
RU2600236C1 RU2015148219/03A RU2015148219A RU2600236C1 RU 2600236 C1 RU2600236 C1 RU 2600236C1 RU 2015148219/03 A RU2015148219/03 A RU 2015148219/03A RU 2015148219 A RU2015148219 A RU 2015148219A RU 2600236 C1 RU2600236 C1 RU 2600236C1
Authority
RU
Russia
Prior art keywords
sound
base
vibration
building
absorbing
Prior art date
Application number
RU2015148219/03A
Other languages
Russian (ru)
Inventor
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2015148219/03A priority Critical patent/RU2600236C1/en
Application granted granted Critical
Publication of RU2600236C1 publication Critical patent/RU2600236C1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • F16F3/08Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of a material having high internal friction, e.g. rubber
    • F16F3/10Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of a material having high internal friction, e.g. rubber combined with springs made of steel or other material having low internal friction

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Abstract

FIELD: acoustics.
SUBSTANCE: invention relates to industrial acoustics. Low-noise structure for earthquake-resistant industrial buildings contains a building frame with base, bearing walls with enclosures of floor and ceiling, which are lined with sound-absorbing structures, window and door openings, as well as single sound dampers, containing a frame, wherein sound-absorbing material is placed, and arranged over noisy equipment, basic bearing ceiling slabs are equipped with a damping system at their attachment to the building bearing walls, consisting of horizontal vibration isolators, accepting vertical static and dynamic loads, as well as vertical vibration isolators accepting horizontal static and dynamic loads. At that, each vibration isolator installed between the metal plate and the reinforced concrete girder, located in the base of the building, is made in the form of symmetrical washer mesh vibration isolator, containing a base, that is located in the middle part of the vibration isolator and is made in the form of a plate with mounting holes, and mesh elastic elements, top with upper pressure washer and bottom, with lower pressure washer, are rigidly connected to the base by means of support rings, respectively. In the upper mesh elastic element, in the centre, the dry friction damper is located axisymmetrically, configured in the form of upper pressure washer, rigidly connected with the central placed ring, male, by coaxially placed ring, which is rigidly connected to the base. In the lower mesh elastic element in the centre, the dry friction damper is located axisymmetrically, configured in the form of lower pressure washer, rigidly connected with the central placed ring, male, by coaxially placed ring, rigidly connected to the base.
EFFECT: technical result consists in efficiency improvement of noise suppression and seismic stability of the building.
1 cl, 10 dwg

Description

Изобретение относится к промышленной акустике.The invention relates to industrial acoustics.

Наиболее близким техническим решением по технической сущности и достигаемому результату является акустическая конструкция по патенту РФ №2425196, кл. F01N 1/04 [прототип], содержащая каркас на перекрытии здания и стены со звукопоглощающей облицовкой.The closest technical solution to the technical nature and the achieved result is the acoustic design according to the patent of the Russian Federation No. 2425196, class. F01N 1/04 [prototype], comprising a frame on the ceiling of a building and a wall with sound-absorbing lining.

Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет сравнительно невысокого коэффициента вибродемпфирования межэтажного перекрытия, а также низкая сейсмостойкость здания.The disadvantage of the technical solution adopted as a prototype is the relatively low noise reduction due to the relatively low coefficient of vibration damping of the floor, as well as low seismic resistance of the building.

Технический результат - повышение эффективности шумоглушения и сейсмостойкости здания.The technical result is an increase in the efficiency of sound attenuation and earthquake resistance of the building.

Это достигается тем, что в малошумном сейсмостойком производственном здании, содержащем каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляцией, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером.This is achieved by the fact that in a low noise earthquake-resistant industrial building containing a building frame with a base, bearing walls with fences in the form of floor and ceiling, which are lined with sound-absorbing structures, window and door openings, as well as piece sound absorbers containing a frame in which sound-absorbing material is located , and installed above the noisy equipment, the basic load-bearing floor slabs are equipped at the places of their attachment to the load-bearing walls of the building with a spatial vibration isolation system consisting of horizontal vibrational isolators located perceiving vertical static and dynamic loads, as well as vertically located vibration isolators perceiving horizontal static and dynamic loads, while the floor in the premises is made on an elastic base and contains a mounting plate made of concrete reinforced with vibration damping material, which is installed on the base plate floors with cavities through layers of vibration damping material and waterproofing material with a gap relative to the bearing walls of the production room, and the cavity of the base plate is filled with vibration damping material, such as foamed polymer.

На фиг. 1 изображен общий вид малошумного сейсмостойкого производственного здания, на фиг. 2 - разрез междуэтажного перекрытия здания, на фиг. 3 - конструкция подвесного потолка, на фиг. 4 - схема виброизоляции железобетонной плиты в основании здания, на фиг. 5 - общий вид виброизолятора, на фиг. 6 - разрез А-А виброизолятора, на фиг. 7 - схема штучного сферического звукопоглотителя, на фиг. 8 - схема звукопоглощающей конструкции стен здания, на фиг. 9 - общий вид варианта виброизолятора, на фиг. 10 - разрез А-А варианта виброизолятора.In FIG. 1 shows a general view of a low noise earthquake-resistant industrial building; FIG. 2 is a section through a floor of a building, in FIG. 3 - design of a false ceiling, in FIG. 4 is a diagram of vibration isolation of a reinforced concrete slab at the base of a building; FIG. 5 is a general view of the vibration isolator, in FIG. 6 is a section AA of a vibration isolator, in FIG. 7 is a diagram of a piece spherical sound absorber, in FIG. 8 is a diagram of the sound-absorbing structure of the walls of a building; FIG. 9 is a general view of a variant of a vibration isolator; FIG. 10 is a section AA of a vibration isolator variant.

Малошумное сейсмостойкое производственное здание (фиг. 1) содержит каркас здания с основанием (фиг. 4), оконные 9 и дверные 10 проемы и несущие стены 1, 2, 3, 4 с ограждениями 5, 6 (пол и потолок), которые облицованы звукопоглощающими конструкциями, а также штучные звукопоглотители 7 и 8, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием 11.Low noise earthquake-resistant industrial building (Fig. 1) contains the building frame with the base (Fig. 4), window 9 and door 10 openings and load-bearing walls 1, 2, 3, 4 with fences 5, 6 (floor and ceiling), which are lined with sound-absorbing designs, as well as piece sound absorbers 7 and 8, containing a frame in which sound-absorbing material is located, and installed above the noisy equipment 11.

Конструкция пола на упругом основании (фиг. 2) содержит установочную плиту 12, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 15 межэтажного перекрытия с полостями 16 через слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 с зазором 17 относительно несущих стен 1, 2, 3, 4 производственного здания. Чтобы обеспечить эффективную виброизоляцию установочной плиты 12 по всем направлениям слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 1, 2, 3, 4 и базовой несущей плите 15 перекрытия.The floor structure on an elastic base (Fig. 2) contains a mounting plate 12 made of concrete reinforced with vibration damping material, which is installed on the base plate 15 of the floor with cavities 16 through layers of vibration damping material 14 and waterproofing material 13 with a gap 17 relative to the bearing walls 1, 2, 3, 4 of the industrial building. In order to ensure effective vibration isolation of the mounting plate 12 in all directions, the layers of the vibration damping material 14 and the waterproofing material 13 are made with a flange that is tightly adjacent to the supporting structures of the walls 1, 2, 3, 4 and the base supporting plate 15 of the floor.

Для повышения эффективности виброизоляции и сейсмостойкости здания базовые несущие плиты 15 перекрытия (на фиг. 2 показана плита 15 перекрытия только для одного этажа здания и с одной стороны несущих стен 1, 2, 3, 4) снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов 26 и 28, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов 27, воспринимающих горизонтальные статические и динамические нагрузки. Схема виброизоляторов, выполненных из эластомера, представлена на фиг. 5-6. Каждый из виброизоляторов 26, 27, 28 состоит из жестко связанных между собой резиновых плит: верхней 38 и нижней 39 (фиг. 5 и 6), в которых выполнены сквозные отверстия 40, расположенные по поверхности виброизолятора в шахматном порядке. По форме виброизоляторы выполнены квадратными или прямоугольными, а также их боковые грани могут быть выполнены в виде криволинейных поверхностей n-ого порядка, обеспечивающие равночастотность системы виброизоляции в целом. Отверстия 40 имеют в сечении форму, обеспечивающую равночастотность виброизолятора.To increase the vibration isolation and earthquake resistance of the building, the basic supporting slabs 15 of the floor (Fig. 2 shows the slab 15 of the floor for only one floor of the building and on one side of the supporting walls 1, 2, 3, 4) are equipped with a system in their places of attachment to the supporting walls of the building spatial vibration isolation, consisting of horizontally located vibration isolators 26 and 28, perceiving vertical static and dynamic loads, as well as vertically located vibration isolators 27, perceiving horizontal static and dynamo cal load. A diagram of vibration isolators made of elastomer is shown in FIG. 5-6. Each of the vibration isolators 26, 27, 28 consists of rubber plates rigidly interconnected: upper 38 and lower 39 (Figs. 5 and 6), in which through holes 40 are made, located on the surface of the vibration isolator in a checkerboard pattern. The shape of the vibration isolators is made square or rectangular, and their side faces can be made in the form of curved surfaces of the nth order, ensuring the uniform frequency of the vibration isolation system as a whole. The holes 40 have a cross-sectional shape that provides equal frequency vibration isolation.

Для повышения эффективности звукоизоляции и звукопоглощения в цехах, находящихся под межэтажным перекрытием, полости 16 заполнены вибродемпфирующим материалом, например вспененным полимером, например полиэтиленом или полипропиленом, а стены 1, 2, 3, 4 облицованы звукопоглощающими конструкциями. В качестве звукопоглощающего материала звукопоглощающих конструкций используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом (на чертеже не показано), например стеклотканью типа ЭЗ-100 или полимером типа «Повиден».To increase the efficiency of sound insulation and sound absorption in workshops located under the floor, the cavities 16 are filled with vibration damping material, for example, foamed polymer, for example polyethylene or polypropylene, and walls 1, 2, 3, 4 are lined with sound-absorbing structures. As sound-absorbing material of sound-absorbing structures, slabs made of rockwool basalt-based mineral wool or URSA-type mineral wool or P-75 basalt wool or glass-wool lining are used, and the sound-absorbing element is acoustically lined over its entire surface transparent material (not shown in the drawing), for example, fiberglass type EZ-100 or polymer type "Poviden."

В качестве звукопоглощающего материала может быть использован также жесткий пористый материал, например пеноалюминий или металлокерамика, или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%. В качестве звукопоглощающего материала может быть использован материал в виде крошки из твердых вибродемпфирующих материалов, например эластомера, или полиуретана, или пластиката, причем размер фракций крошки лежит в оптимальном интервале величин: 0,3÷2,5 мм (на чертеже не показано).As a sound-absorbing material, a rigid porous material can also be used, for example, foam aluminum or cermets, or a shell rock with a degree of porosity in the range of optimal values: 30–45%. As a sound-absorbing material, a material in the form of crumbs from solid vibration-damping materials, for example, elastomer, or polyurethane, or plastic compound can be used, moreover, the size of the fractions of the crumb lies in the optimal range of values: 0.3 ÷ 2.5 mm (not shown in the drawing).

Подвесной акустический потолок (фиг. 3) состоит из жесткого каркаса 19, выполненного по форме в виде прямоугольного параллелепипеда с размерами сторон в плане В × С, отношение которых лежит в оптимальном интервале величин B:C=1:1…2:1, подвешиваемого к потолку производственного здания с помощью подвесок 21, имеющих скобы 22 для прокладки проводов электропитания к светильникам 24, установленным в каркасе 19. Крепление каркаса к потолку осуществляется с помощью дюбель-винтов 23. К каркасу прикреплен перфорированный лист 20, на котором через слой акустического прозрачного материала 25 расположен слой звукопоглощающего материала 18. При монтаже акустического потолка должны соблюдаться оптимальные соотношения размеров: D - от точки подвеса каркаса до любой из его сторон и Е - толщины слоя звукопоглощающего материала, причем отношение этих размеров должно находиться в оптимальном интервале величин: E:D=0,1…0,5. Перфорированный лист 20 имеет следующие параметры перфорации: диаметр перфорации - 3…7 мм, процент перфорации 10%…15%, причем по форме перфорация может быть выполнена в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного сечения (на чертеже показаны квадратные отверстия). В случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.The suspended acoustic ceiling (Fig. 3) consists of a rigid frame 19 made in the form of a rectangular parallelepiped with side dimensions in the B × C plan, the ratio of which lies in the optimal range of values B: C = 1: 1 ... 2: 1, suspended to the ceiling of the industrial building using hangers 21 having brackets 22 for laying power wires to the fixtures 24 installed in the frame 19. The frame is fixed to the ceiling using dowels-screws 23. A perforated sheet 20 is attached to the frame, through which an acoustical layer of transparent transparent material 25, a layer of sound-absorbing material 18 is located. When installing an acoustic ceiling, the optimum size ratios must be observed: D - from the point of suspension of the frame to either side and E - thickness of the layer of sound-absorbing material, and the ratio of these sizes should be in the optimal range of values: E: D = 0.1 ... 0.5. The perforated sheet 20 has the following perforation parameters: the diameter of the perforation is 3 ... 7 mm, the percentage of perforation is 10% ... 15%, and the shape of the perforation can be made in the form of holes of round, triangular, square, rectangular or diamond-shaped cross-section (square holes are shown in the drawing ) In the case of non-circular holes, the maximum diameter of a circle inscribed in a polygon should be considered as a conditional diameter.

На фиг. 4 представлена схема виброизоляции железобетонной плиты, состоящей из связанных между собой железобетонных балок 29 в основании здания, которая является вариантом виброзащиты без домкратов и включает в себя, по крайней мере, четыре резиновых виброизолятора 33 (фиг. 5 и 6), устанавливаемых между металлической плитой 34 и железобетонной балкой 29, расположенной в основании 30 здания, выполненного заодно целое с, по крайней мере, восемью ленточными фундаментными блоками 31 и 32, являющимися своеобразными “ловушками”, а каждая из металлических плит 34 установлена на, по крайней мере, трех железобетонных столбах-упорах 35. Между каждыми ленточными фундаментными блоками 31 и 32 и каждой из железобетонных балок 29 устанавливаются песчаные подушки 37, а под резиновыми виброизоляторами 33 закреплены тензорезисторные датчики 36, контролирующие осадку виброизоляторов 33. Песчаные подушки 37 установлены в металлических разъемных обоймах.In FIG. 4 is a diagram of the vibration isolation of a reinforced concrete slab consisting of interconnected reinforced concrete beams 29 at the base of the building, which is a variant of vibration protection without jacks and includes at least four rubber vibration isolators 33 (Figs. 5 and 6) installed between the metal plate 34 and reinforced concrete beam 29, located at the base 30 of the building, made integral with at least eight strip foundation blocks 31 and 32, which are kind of “traps”, and each of the metal plates 3 4 is mounted on at least three reinforced concrete pillars-supports 35. Between each strip foundation blocks 31 and 32 and each of the reinforced concrete beams 29 sand cushions 37 are installed, and strain gauge sensors 36 are mounted under the rubber vibration isolators 33 to monitor the settlement of the vibration isolators 33. Sandy cushions 37 are mounted in detachable metal clips.

В процессе возведения сейсмостойкого здания опалубка железобетонной монолитной стены опирается на песчаные подушки 37, заключенные в разборную металлическую обойму. После отвердения бетона и снятия опалубки между выступами “ловушками” 31 и 32 устанавливается виброизолятор 33 в сборе. После того как бетон в балке 29 наберет достаточную прочность, металлическая обойма размыкается и песок из “подушки” извлекается, а балка 29 опирается на виброизолятор 33. В дальнейшем, по мере воздвижения здания, виброизолятор 33 сжимается. Демонтаж и замена виброизолятора 33 производятся с помощью домкратов (на чертеже не показано).During the construction of an earthquake-resistant building, the formwork of a reinforced concrete monolithic wall is based on sand cushions 37 enclosed in a collapsible metal cage. After hardening the concrete and removing the formwork between the protrusions of the "traps" 31 and 32, a vibration isolator 33 is assembled. After the concrete in the beam 29 has gained sufficient strength, the metal cage opens and the sand is removed from the “cushion”, and the beam 29 rests on the vibration isolator 33. Subsequently, as the building is raised, the vibration isolator 33 is compressed. The dismantling and replacement of the vibration isolator 33 is carried out using jacks (not shown in the drawing).

При монтаже системы виброзащиты здания указанным способом необходимо соблюдать следующие положения:When installing the building vibration protection system in this way, the following provisions must be observed:

- виброизоляторы 33 должны быть смонтированы уже в начальной стадии строительства, в связи с чем они должны быть заранее изготовлены и испытаны;- vibration isolators 33 must be mounted already in the initial stage of construction, in connection with which they must be prefabricated and tested;

- должна быть обеспечена сохранность виброизоляторов 33 и тензорезисторных датчиков 36 от воздействия неблагоприятных природных факторов в период строительства;- the vibration isolators 33 and the strain gauge sensors 36 should be protected from the effects of adverse natural factors during the construction period;

- высота песчаной подушки 37 назначается по расчету, исходя из осадки виброизоляторов 33 под нагрузкой и с течением времени.- the height of the sand cushion 37 is assigned by calculation, based on the precipitation of the vibration isolators 33 under load and over time.

- для регулировки зазора между железобетонной балкой 29 и “ловушкой” на последней устанавливаются, по крайней мере, две съемные металлические плиты толщиной по 1 см.- to adjust the gap between the reinforced concrete beam 29 and the "trap" on the last, at least two removable metal plates with a thickness of 1 cm are installed.

Каждый из виброизоляторов 33 (фиг. 5 и 6) состоит из жестко связанных между собой резиновых плит: верхней 38 и нижней 39, в которых выполнены сквозные отверстия 40, расположенные по поверхности виброизолятора в шахматном порядке. По форме виброизоляторы 33 выполнены квадратными или прямоугольными, а также их боковые грани могут быть выполнены в виде криволинейных поверхностей n-ого порядка, обеспечивающие равночастотность системы виброизоляции в целом. Отверстия 40 имеют в сечении форму, обеспечивающую равночастотность виброизолятора 33.Each of the vibration isolators 33 (Figs. 5 and 6) consists of rubber plates rigidly interconnected: upper 38 and lower 39, in which through holes 40 are made, located on the surface of the vibration isolator in a checkerboard pattern. The shape of the vibration isolators 33 is made square or rectangular, and their side faces can be made in the form of curved surfaces of the n-th order, ensuring the uniform frequency of the vibration isolation system as a whole. The holes 40 have a cross-sectional shape that provides equal frequency vibration isolator 33.

Возможен вариант выполнения виброизоляторов 33. Каждый из виброизоляторов 33 выполнен в виде виброизолятора симметричного шайбового сетчатого (фиг. 9 и 10), который содержит основание 57, которое расположено в средней части виброизолятора и выполнено в виде пластины с крепежными отверстиями 58, а сетчатые упругие элементы, верхний 63 с верхней нажимной шайбой 61 и нижний 64, с нижней нажимной шайбой 66, жестко соединены с основанием 57 посредством опорных колец соответственно 62 и 65, при этом в верхнем сетчатом упругом элементе 63, в центре, осесимметрично расположен демпфер сухого трения, выполненный в виде верхней нажимной шайбы 61, жестко соединенной с центрально расположенным кольцом 60, охватываемым, соосно расположенным кольцом 59, который жестко соединен с основанием 57.An embodiment of vibration isolators 33 is possible. Each of the vibration isolators 33 is made in the form of a symmetrical washer mesh vibration isolator (Figs. 9 and 10), which contains a base 57, which is located in the middle of the vibration isolator and made in the form of a plate with mounting holes 58, and mesh elastic elements , the upper 63 with the upper thrust washer 61 and the lower 64, with the lower thrust washer 66, are rigidly connected to the base 57 by means of the support rings 62 and 65, respectively, while in the upper mesh elastic element 63, in the center, axisymmetric the dry friction damper is located in the form of an upper thrust washer 61 rigidly connected to a centrally located ring 60, surrounded by a coaxially located ring 59, which is rigidly connected to the base 57.

В нижнем сетчатом упругом элементе, в центре осесимметрично расположен демпфер сухого трения, выполненный в виде нижней нажимной шайбы 66, жестко соединенной с центрально расположенным кольцом 67, охватываемым, соосно расположенным кольцом 68, жестко соединенным с основанием 57.In the lower mesh elastic element, in the center there is an axisymmetrically located dry friction damper, made in the form of a lower pressure washer 66, rigidly connected to a centrally located ring 67, covered by a coaxially located ring 68, rigidly connected to the base 57.

Сферический звукопоглотитель (фиг. 7) содержит звукопоглотители активного и реактивного типов, размещенные на жестком каркасе. Каркас выполнен из двух частей, при этом нижняя, реактивная, часть 47 выполнена в виде конструкции сферической формы с внутренней конгруэнтной сферической резонансной полостью 48, образованной жесткой сплошной сферической оболочкой 46, эквидистантной внешней перфорированной сферической оболочке 44, соединенной с верхней, активной, частью 41, которая выполнена в виде жесткой перфорированной цилиндрической обечайки 42 с перфорированной крышкой и сплошным основанием, причем полость цилиндрической обечайки заполнена звукопоглощающим материалом, а соединение верхней 41 и нижней 47 частей звукопоглотителя выполнено посредством упруго-демпфирующего элемента 45, позволяющего демпфировать высокочастотные колебания, при этом к перфорированной крышке перфорированной цилиндрической обечайки шарнирно закреплен элемент, при помощи которого каркас крепится к требуемому объекту, например потолку производственного помещения.The spherical sound absorber (Fig. 7) contains active and reactive sound absorbers located on a rigid frame. The frame is made of two parts, while the lower, reactive part 47 is made in the form of a spherical structure with an internal congruent spherical resonant cavity 48 formed by a rigid continuous spherical shell 46, an equidistant external perforated spherical shell 44 connected to the upper, active, part 41 , which is made in the form of a rigid perforated cylindrical shell 42 with a perforated lid and a solid base, and the cavity of the cylindrical shell is filled with sound-absorbing material ohm, and the compound of upper 41 and lower 47 parts of the absorber formed by elastically-damping element 45, allowing to dampen high frequency vibrations, wherein a perforated cover perforated cylindrical shell is hinged element, whereby the frame is attached to a desired object, such as a ceiling of industrial premises.

Сферическая резонансная полость 48 реактивной части 47 каркаса жестко соединена, по крайней мере, одной втулкой 49 с осевым отверстием, выполняющим функцию горловины резонатора Гельмгольца, с внешней перфорированной сферической оболочкой 44, а пространство между ними заполнено звукопоглотителем. Вокруг перфорированной цилиндрической обечайки 42 расположен, по крайней мере один, винтовой звукопоглощающий элемент 43, выполненный по форме в виде цилиндрической винтовой пружины, охватывающей обечайку 42.The spherical resonant cavity 48 of the reactive part 47 of the frame is rigidly connected by at least one sleeve 49 to the axial hole, which serves as the neck of the Helmholtz resonator, with an external perforated spherical shell 44, and the space between them is filled with a sound absorber. Around the perforated cylindrical shell 42 is located at least one screw sound-absorbing element 43, made in the form of a cylindrical helical spring, covering the shell 42.

Винтовой звукопоглощающий элемент 43 может быть выполнен в виде полого винтового звукопоглощающего элемента, образованного внешней и внутренней винтовыми поверхностями, образующими полость, при этом пространство, образованное внешней и внутренней винтовыми поверхностями заполнено звукопоглощающим материалом с плотностью, меньшей, чем у винтового звукопоглощающего элемента.The screw sound-absorbing element 43 can be made in the form of a hollow screw sound-absorbing element formed by the external and internal screw surfaces forming a cavity, while the space formed by the external and internal screw surfaces is filled with sound-absorbing material with a density lower than that of the screw sound-absorbing element.

Сферический звукопоглотитель работает следующим образом.Spherical sound absorber operates as follows.

Звуковые волны, распространяясь на промышленном или транспортном объектах, взаимодействуют со звукопоглощающим материалом, расположенным в полости, образованной жесткой сплошной сферической оболочкой 46, эквидистантной внешней перфорированной сферической оболочке 44, соединенной с верхней, активной, частью 41, а также в перфорированной цилиндрической обечайке 42 и винтовом звукопоглощающем элементе 43 верхней 41 части, подавляющем шумы на низких, средних и высоких частотах соответственно. Соединение верхней 41 и нижней 47 частей каркаса посредством упруго-демпфирующего элемента 45 позволяет демпфировать высокочастотные колебания, которые могут излучаться жестким каркасом, что позволяет его использовать для снижения шума на транспортных объектах. Звукопоглощение на средних и высоких частотах происходит за счет акустического эффекта, построенного по принципу резонатора Гельмгольца, образованного воздушной сферической полостью 48 и горловиной резонатора 49, диаметр которой для гашения шума в заданной полосе частот подбирают в требуемом звуковом диапазоне частот, как правило так: большие объемы для подавления шума в низкочастотном диапазоне, а малые - в области средних и высоких частот. Взаимодействие звуковых волн с винтовым звукопоглощающим элементом 43 приводит к шумоглушению в высокочастотном диапазоне, а выполнение звукопоглотителя из негорючих материалов делает конструкцию пожаробезопасной.Sound waves propagating on an industrial or transport facility interact with a sound-absorbing material located in a cavity formed by a rigid continuous spherical shell 46, an equidistant external perforated spherical shell 44 connected to the upper, active, part 41, as well as in the perforated cylindrical shell 42 and screw sound-absorbing element 43 of the upper 41 parts, suppressing noise at low, medium and high frequencies, respectively. The connection of the upper 41 and lower 47 parts of the frame by means of an elastic damping element 45 allows you to damp high-frequency vibrations that can be emitted by a rigid frame, which allows it to be used to reduce noise on transport objects. Sound absorption at medium and high frequencies occurs due to the acoustic effect, built on the principle of the Helmholtz resonator, formed by an air spherical cavity 48 and the neck of the resonator 49, the diameter of which is selected in the required sound frequency range to suppress noise in a given frequency band, as a rule: large volumes to suppress noise in the low frequency range, and small - in the medium and high frequencies. The interaction of sound waves with a screw sound-absorbing element 43 leads to noise attenuation in the high frequency range, and the implementation of a sound absorber from non-combustible materials makes the design fireproof.

Малошумное сейсмостойкое производственное здание работает следующим образом.Low noise earthquake-resistant industrial building operates as follows.

Звуковая энергия от оборудования 11, находящегося в помещении, попадает на слои звукопоглощающего материала звукопоглощающих конструкций, которыми облицованы несущие стены 1, 2, 3, 4 с ограждениями 5, 6 (пол 6 и потолок 5), а также штучные звукопоглотители 7 и 8, содержащие каркас, в котором расположен звукопоглощающий материал и которые установлены над шумным оборудованием 11. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов “Гельмгольца”, где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Коэффициент перфорации перфорированной стенки принимается равным или более 0,25. Для предотвращения высыпания мягкого звукопоглотителя предусмотрена стеклоткань, например типа ЭЗ-100, расположенная между звукопоглотителем и перфорированной стенкой.Sound energy from the equipment 11 located in the room falls on the layers of sound-absorbing material of sound-absorbing structures, which are lined with load-bearing walls 1, 2, 3, 4 with fences 5, 6 (floor 6 and ceiling 5), as well as piece sound absorbers 7 and 8, containing a frame in which sound-absorbing material is located and which are installed above noisy equipment 11. The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of the sound absorber, which are a model of Helmholtz resonators, where When energy occur due to friction with the driving frequency of the oscillating mass of air located in the neck of the resonator neck wall itself, has the form of branched networks pore absorber. The perforation coefficient of the perforated wall is taken to be equal to or more than 0.25. To prevent the eruption of a soft sound absorber, a fiberglass fabric, for example, type EZ-100, is located between the sound absorber and the perforated wall.

Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями.Sound waves propagating in the production room interact with cavities filled with sound absorber.

Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения, и, как следствие, повышается коэффициент звукопоглощения.The interaction of sound waves with active cavities filled with a non-combustible sound absorber leads to sound attenuation in the high-frequency range, and due to the presence of cavities, the sound absorption surface increases, and, as a result, the sound absorption coefficient increases.

При установке виброактивного оборудования на плиту 12 происходит двухкаскадная виброзащита, за счет вибродемпфирующих вкраплений в саму массу плиты 12, а также за счет слоя вибродемпфирующего материала 14, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например, пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.When installing vibroactive equipment on the plate 12, two-stage vibration protection occurs, due to vibration damping inclusions in the mass of the plate 12, as well as due to the layer of vibration damping material 14, which can be used as: needle-punched mats of the type “Vibrosil” based on silica or aluminosilicate fiber, material from solid vibration-damping materials, for example, plastic, from soundproof plates based on glass staple fibers of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 .

Подвесной акустический потолок работает следующим образом.False acoustic ceiling works as follows.

Подвешивание подвесного акустического потолка осуществляют на подвесках 21, которые крепятся к потолку с помощью дюбель-винтов 23, а другим концом закреплены на каркасе 19. Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями.Suspension of a suspended acoustic ceiling is carried out on suspensions 21, which are attached to the ceiling using dowels-screws 23, and the other end is fixed to the frame 19. Sound waves propagating in the production room interact with the cavities filled with the sound absorber.

Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения, и, как следствие, повышается коэффициент звукопоглощения.The interaction of sound waves with active cavities filled with a non-combustible sound absorber leads to sound attenuation in the high-frequency range, and due to the presence of cavities, the sound absorption surface increases, and, as a result, the sound absorption coefficient increases.

Звукопоглощающая конструкция (фиг. 8) выполнена в виде гладкой, жесткой стенки 50 и перфорированной стенки 56, между которыми расположен многослойный звукопоглощающий элемент, выполненный в виде пяти слоев, два из которых, прилегающих к стенкам 50 и 56, являются звукопоглощающими слоями 51 и 55 из материалов разной плотности, а три центральных слоя 52, 53, 54 являются комбинированными, причем осевой слой 53 выполнен звукопоглощающим, а два симметрично расположенных и прилегающих к нему слоя 52 и 54 выполнены из звукоотражающего материала, сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны. Перфорированная стенка 56 имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.The sound-absorbing structure (Fig. 8) is made in the form of a smooth, rigid wall 50 and a perforated wall 56, between which there is a multilayer sound-absorbing element made in the form of five layers, two of which adjacent to the walls 50 and 56, are sound-absorbing layers 51 and 55 of materials of different densities, and the three central layers 52, 53, 54 are combined, and the axial layer 53 is made sound-absorbing, and two symmetrically located and adjacent layers 52 and 54 are made of sound-reflecting material, complex A consisting of uniformly distributed hollow tetrahedrons, permitting the reflection of falling in all directions the sound waves. The perforated wall 56 has the following perforation parameters: diameter of the holes is 3 ÷ 7 mm, the percentage of perforation is 10% ÷ 15%, and the shape of the holes can be made in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes as the conditional diameter should be considered the maximum diameter of the circle inscribed in the polygon.

Каждая из стенок 50 и 56 может быть выполнена из конструкционных материалов, с нанесенным на их поверхности с одной или двух сторон слоем мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5).Each of the walls 50 and 56 can be made of structural materials, with a layer of soft vibration-damping material, for example, VD-17 mastic or “Gerlen-D” type material applied on one or both sides of the surface, and the ratio between the thicknesses of the material and vibration-damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5).

Каждая из стенок 50 и 56 может быть выполнена из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Коэффициент перфорации перфорированных листов принимается равным или более 0,25.Each of the walls 50 and 56 can be made of stainless steel or galvanized sheet with a thickness of 0.7 mm with a protective and decorative polymer coating of the type “Pural” 50 μm thick or “Polyester” 25 μm thick, or an aluminum sheet 1.0 mm thick and coating thickness 25 microns. The perforation coefficient of perforated sheets is taken to be equal to or more than 0.25.

Каждая из стенок 50 и 56 может быть выполнена из твердых, декоративных вибродемпфирующих материалов, например пластиката типа «Агат», «Антивибрит», «Швим», причем внутренняя поверхность перфорированной поверхности, обращенная в сторону звукопоглощающей конструкция, облицована акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или неткаными материалами, например «лутрасилом».Each of the walls 50 and 56 can be made of solid, decorative vibration damping materials, such as plastic compounds such as Agate, Anti-Vibrate, Shvim, and the inner surface of the perforated surface facing the sound-absorbing structure is lined with an acoustically transparent material, such as fiberglass type EZ-100 or a polymer of the “poviden” type, or nonwoven materials, for example, “lutrasil”.

В качестве материала звукоотражающих слоев 52 и 54 может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 Мпа, например пеноалюминия, или применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.As the material of the sound-reflecting layers 52 and 54, a material based on aluminum-containing alloys can be used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength in the range of 10 ... 20 MPa, for example foam aluminum, or soundproofing boards based on glass staple fiber of the Shumostop type with a material density of 60 ÷ 80 kg / m 3 were used .

В качестве звукопоглощающего материала слоев 51, 53 и 55 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. Причем звукопоглощающий материал по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», или поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Т), или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом. Кроме того, в качестве звукопоглощающего материала слоев 51 и 53 может быть использован пористый шумопоглощающий материала, например пеноалюминий или металлокерамика или камень-ракушечник со степенью пористости, находящейся в диапазоне оптимальных величин: 30-45%, или металлопоролон, или материал в виде спрессованной крошки из твердых вибродемпфирующих материалов, например эластомера, полиуретана, или пластиката типа «Агат», «Антивибрит», «Швим», причем размер фракций крошки лежит в оптимальном интервале величин: 0,3…2,5 мм, а также могут быть использованы пористые минеральные штучные материалы, например пемза, вермикулит, каолин, шлаки с цементом или другим вяжущим, или синтетические волокна, при этом поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух, например типа Acutex T, или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.As the sound-absorbing material of the layers 51, 53 and 55, rockwool-type mineral wool or URSA-type mineral wool, or P-75-type basalt wool, or glass wool lined with glass wool, or foamed polymer, for example, can be used. polyethylene or polypropylene. Moreover, the sound-absorbing material is lined with an acoustically transparent material over its entire surface, for example, EZ-100 fiberglass or a “visible” polymer, or the surface of the fibrous sound absorbers is treated with special porous paints that allow air to pass through (for example, Acutex T), or coated with breathable fabrics or non-woven materials e.g. Lutrasil. In addition, as the sound-absorbing material of the layers 51 and 53, a porous sound-absorbing material can be used, for example, foam aluminum or cermet or a shell rock with a degree of porosity in the range of optimal values: 30-45%, or metal foam, or a material in the form of pressed chips from solid vibration-damping materials, for example, elastomer, polyurethane, or plastic compound such as “Agate”, “Anti-Vibrate”, “Shvim”, moreover, the size of the fractions of crumbs lies in the optimal range of values: 0.3 ... 2.5 mm, and can also be used porous mineral piece materials were used, for example pumice, vermiculite, kaolin, slag with cement or other binder, or synthetic fibers, while the surface of the fibrous absorbers is treated with special porous paints that allow air to pass through, such as Acutex T, or covered with breathable fabrics or non-woven materials e.g. Lutrasil.

Звукопоглощающая конструкция работает следующим образом.Sound-absorbing design works as follows.

Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через перфорированную стенку 56, попадает на слой 55 из мягкого звукопоглощающего материала, а затем встречает на своем пути соответственно слои 54, 53 и 52 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, но часть звуковой энергии проходит через слои 52 и 54 из звукоотражающего материала, и взаимодействует с осевым слоем 4 из звукопоглощающего материала, где происходит окончательное рассеивание звуковой энергии.Sound energy from equipment located in the room, or another object that emits intense noise, passing through the perforated wall 56, enters the layer 55 of soft sound-absorbing material, and then meets in its way layers 54, 53 and 52 of complex sound-reflecting material profile, consisting of evenly distributed hollow tetrahedra, allowing to reflect sound waves incident in all directions, but part of the sound energy passes through layers 52 and 54 of sound-reflecting material, and the interaction exists with the axial layer of sound absorbing material 4, where the final dissipation of the sound energy.

Преимуществом предлагаемого изобретения является его универсальность применения для различных производственных помещений, имеющих самые разнообразные шумовые характеристики. При этом следует отметить относительную легкость настройки характеристик на требуемый частотный диапазон шумоподавления за счет изменения длины подвеса и его экономически обоснованную эффективность (имеется в виду снижение шума до санитарно-гигиенических норм). Кроме того, выполнение звукопоглотителя из негорючих материалов делает конструкцию пожаробезопасной.An advantage of the invention is its versatility of application for various production facilities having a wide variety of noise characteristics. In this case, it should be noted the relative ease of tuning the characteristics to the required frequency range of noise reduction by changing the length of the suspension and its economically feasible efficiency (meaning reducing noise to sanitary standards). In addition, the implementation of the sound absorber of non-combustible materials makes the design fireproof.

Claims (1)

Малошумная конструкция для сейсмостойких производственных зданий, содержащая каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером, упругое основание пола выполнено из жесткого пористого вибропоглощающего материала, например эластомера, или полиуретана со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или из иглопробивных матов типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, или из твердых вибродемпфирующих материалов, например, пластиката, или из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3, потолок выполнен акустическим подвесным, состоящим из жесткого каркаса, подвешиваемого к потолку производственного здания с расположенным внутри каркаса звукопоглощающим материалом, обернутым акустически прозрачным материалом, а к каркасу прикреплен перфорированный лист, причем каркас выполнен по форме в виде прямоугольного параллелепипеда с размерами сторон в плане В×С, отношение которых лежит в оптимальном интервале величин В:С=1:1…2:1, причем также должны соблюдаться оптимальные соотношения размеров: D - от точки подвеса каркаса до любой из его сторон и Ε - толщины слоя звукопоглощающего материала, причем отношение этих размеров должно находиться в оптимальном интервале величин: E:D=0,1…0,5, а в каркасе установлены светильники, при этом перфорированный лист подвесного потолка имеет следующие параметры перфорации: диаметр перфорации - 3…7 мм, процент перфорации 10%…15%, основание каркаса здания выполнено с виброизоляцией железобетонной плиты, состоящей из связанных между собой железобетонных балок в основании здания, которая включает в себя, по крайней мере, четыре виброизолятора, устанавливаемых между металлической плитой и железобетонной балкой, расположенной в основании здания, выполненного заодно целое с, по крайней мере, восемью ленточными фундаментными блоками, являющимися своеобразными "ловушками", а каждая из металлических плит установлена на, по крайней мере, трех железобетонных столбах-упорах, а между каждыми ленточными фундаментными блоками и каждой из железобетонных балок устанавливаются песчаные подушки, а под виброизоляторами закреплены тензорезисторные датчики, контролирующие осадку виброизоляторов, при этом песчаные подушки установлены в металлических разъемных обоймах, каждый из виброизоляторов состоит из жестко связанных между собой резиновых плит: верхней и нижней, в которых выполнены сквозные отверстия, расположенные по поверхности виброизолятора в шахматном порядке, а по форме виброизоляторы выполнены квадратными или прямоугольными, а их боковые грани выполнены в виде криволинейных поверхностей n-ого порядка, обеспечивающие равночастотность системы виброизоляции в целом, при этом отверстия имеют в сечении форму, обеспечивающую равночастотность виброизолятора, при этом штучный звукопоглотитель выполнен в виде сферического звукопоглотителя, содержащего звукопоглотители активного и реактивного типов, размещенные на жестком каркасе, который выполнен из двух частей, при этом нижняя, реактивная, часть выполнена в виде конструкции сферической формы с внутренней конгруэнтной сферической резонансной полостью, образованной жесткой сплошной сферической оболочкой, эквидистантной внешней перфорированной сферической оболочке, соединенной с верхней, активной, частью, которая выполнена в виде жесткой перфорированной цилиндрической обечайки с перфорированной крышкой и сплошным основанием, причем полость цилиндрической обечайки заполнена звукопоглощающим материалом, а соединение верхней и нижней частей звукопоглотителя выполнено посредством упруго-демпфирующего элемента, позволяющего демпфировать высокочастотные колебания, при этом к перфорированной крышке перфорированной цилиндрической обечайки шарнирно закреплен элемент, при помощи которого каркас крепится к требуемому объекту, например потолку производственного помещения, а сферическая резонансная полость реактивной части каркаса жестко соединена, по крайней мере, одной втулкой с осевым отверстием, выполняющим функцию горловины резонатора Гельмгольца, с внешней перфорированной сферической оболочкой, а пространство между ними заполнено звукопоглотителем, при этом вокруг перфорированной цилиндрической обечайки расположен, по крайней мере один, винтовой звукопоглощающий элемент, выполненный по форме в виде цилиндрической винтовой пружины, охватывающей обечайку, при этом несущие стены облицованы звукопоглощающими конструкциями, выполненными в виде жесткой и перфорированной стенок, между которыми расположен многослойный звукопоглощающий элемент, выполненный в виде пяти слоев, два из которых, прилегающих к стенкам являются звукопоглощающими слоями из материалов разной плотности, а три центральных слоя являются комбинированными, причем осевой слой выполнен звукопоглощающим, а два симметрично расположенных, прилегающих к нему слоя выполнены из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, каждая из перфорированных стенок имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некрупных отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, а в качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», отличающаяся тем, что каждый из виброизоляторов, устанавливаемых между металлической плитой и железобетонной балкой, расположенной в основании здания, выполнен в виде симметричного шайбового сетчатого виброизолятора, содержащего основание, которое расположено в средней части виброизолятора и выполнено в виде пластины с крепежными отверстиями, а сетчатые упругие элементы, верхний с верхней нажимной шайбой и нижний, с нижней нажимной шайбой, жестко соединены с основанием посредством опорных колец соответственно, при этом в верхнем сетчатом упругом элементе, в центре, осесимметрично расположен демпфер сухого трения, выполненный в виде верхней нажимной шайбы, жестко соединенной с центрально расположенным кольцом, охватываемым, соосно расположенным кольцом, который жестко соединен с основанием, а также в нижнем сетчатом упругом элементе, в центре осесимметрично расположен демпфер сухого трения, выполненный в виде нижней нажимной шайбы, жестко соединенной с центрально расположенным кольцом, охватываемым, соосно расположенным кольцом, жестко соединенным с основанием. Low-noise design for earthquake-resistant industrial buildings, comprising a building frame with a base, bearing walls with fences in the form of floor and ceiling, which are lined with sound-absorbing structures, window and door openings, as well as piece sound absorbers containing a frame in which sound-absorbing material is located and installed above noisy equipment, the base bearing slabs are equipped in places of their attachment to the bearing walls of the building with a spatial vibration isolation system consisting of horizontally vibration isolators, perceiving vertical static and dynamic loads, as well as vertically located vibration isolators, perceiving horizontal static and dynamic loads, while the floor in the rooms is made on an elastic base and contains a mounting plate made of concrete reinforced with vibration-damping material, which is installed on the base plate of the interfloor overlapping with cavities through layers of vibration damping material and waterproofing material with a relative gap but the bearing walls of the production room, and the cavities of the base plate are filled with vibration damping material, such as foamed polymer, the elastic floor base is made of a rigid porous vibration-absorbing material, such as elastomer, or polyurethane with a degree of porosity that is in the range of optimal values: 30 ÷ 45%, or needle-punched mats of the type “Vibrosil” based on silica or aluminoborosilicate fiber, or from solid vibration-damping materials, such as plastic compound, or from soundproof plates based on a glass staple fiber of type "Shumostop" with material density of 60 ÷ 80 kg / m 3, the ceiling is realized acoustic outboard consisting of a rigid frame, suspended from a ceiling of an industrial building with the arranged sound-absorbing material inside the carcass wrapped acoustically transparent material, and a perforated sheet is attached to the frame, and the frame is made in the form of a rectangular parallelepiped with side dimensions in the plan B × C, the ratio of which lies in the optimal range of values B: C = 1: 1 ... 2: 1, and the optimal size ratios must also be observed: D - from the suspension point of the frame to any of its sides and Ε - the thickness of the layer of sound-absorbing material, and the ratio of these sizes should be in the optimal range of values: E: D = 0.1 ... 0, 5, and fixtures are installed in the frame, while the perforated sheet of the suspended ceiling has the following perforation parameters: perforation diameter - 3 ... 7 mm, perforation percentage 10% ... 15%, the base of the building frame is made with vibration isolation of a reinforced concrete slab consisting of interconnected reinforced concrete beams at the base of the building, which includes at least four vibration isolators installed between a metal plate and a reinforced concrete beam located at the base of the building, which is integral with at least eight tape foundation blocks, which are peculiar “traps” ", and each of the metal plates is installed on at least three reinforced concrete pillars, emphasis, and sand is installed between each strip foundation blocks and each of the reinforced concrete beams cushions, and strain gauge sensors are fixed under the vibration isolators, which monitor the sediment of the vibration isolators, while the sand cushions are installed in detachable metal clips, each of the vibration isolators consists of rubber plates rigidly interconnected: upper and lower, through holes made on the surface of the vibration isolator in a checkerboard pattern, and in shape the vibration isolators are made square or rectangular, and their side faces are made in the form of curved surfaces of the nth order, about the vibration isolation systems providing equal frequency as a whole, while the openings in the cross section are shaped to provide equal frequency vibration isolation, while the piece sound absorber is made in the form of a spherical sound absorber containing active and reactive sound absorbers placed on a rigid frame, which is made of two parts, while the bottom , reactive, the part is made in the form of a spherical structure with an internal congruent spherical resonant cavity formed by a rigid continuous spherical a female shell, an equidistant external perforated spherical shell connected to the upper active part, which is made in the form of a rigid perforated cylindrical shell with a perforated cover and a solid base, the cavity of the cylindrical shell is filled with sound-absorbing material, and the connection of the upper and lower parts of the sound absorber is made by means of elastic - a damping element that allows damping high-frequency vibrations, while to the perforated cover of the perforated cylinder an element of the shell, the frame is pivotally fixed to the desired object, for example, the ceiling of the production room, and the spherical resonant cavity of the reactive part of the frame is rigidly connected by at least one sleeve with an axial hole that serves as the neck of the Helmholtz resonator with an external perforated spherical shell, and the space between them is filled with a sound absorber, while at least one screw is located around the perforated cylindrical shell a sound-absorbing element made in the form of a cylindrical coil spring spanning the shell, while the bearing walls are lined with sound-absorbing structures made in the form of rigid and perforated walls, between which there is a multilayer sound-absorbing element made in the form of five layers, two of which are adjacent to the walls are sound-absorbing layers of materials of different densities, and the three central layers are combined, and the axial layer is made sound-absorbing, and two with The metrically arranged adjacent layers are made of a sound-reflecting material of a complex profile, consisting of evenly distributed hollow tetrahedra, which allow reflecting sound waves incident in all directions, each of the perforated walls has the following perforation parameters: hole diameter - 3 ÷ 7 mm, perforation percentage 10 % ÷ 15%, moreover, the shape of the hole can be made in the form of holes of a round, triangular, square, rectangular or diamond-shaped profile, while in the case of small holes the maximum diameter of the circle inscribed in the polygon should be considered as the conditional diameter, and slabs made of rockwool mineral wool or “URSA” type mineral wool, or P-75 type basalt wool or glass wool are used as sound-absorbing material. with fiberglass lining, and the sound-absorbing element over its entire surface is lined with an acoustically transparent material, such as fiberglass type EZ-100 or polymer type "poviden", characterized in that each of the vibration isolation tori, installed between a metal plate and a reinforced concrete beam located at the base of the building, is made in the form of a symmetrical washer mesh vibration isolator containing a base, which is located in the middle of the vibration isolator and made in the form of a plate with mounting holes, and the mesh elastic elements, the upper one with the upper push the washer and the lower, with the lower pressure washer, are rigidly connected to the base by means of support rings, respectively, while in the upper mesh elastic element, in the center, it is axisymmetric Dry friction damper is arranged in the form of an upper thrust washer rigidly connected to a centrally located ring, surrounded by a coaxially disposed ring, which is rigidly connected to the base, and also in the lower mesh elastic element; in the center, a dry friction damper made in in the form of a lower pressure washer rigidly connected to a centrally located ring, covered by a coaxially located ring rigidly connected to the base.
RU2015148219/03A 2015-11-10 2015-11-10 Kochetov low-noise structure for earthquake-resistant industrial buildings RU2600236C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015148219/03A RU2600236C1 (en) 2015-11-10 2015-11-10 Kochetov low-noise structure for earthquake-resistant industrial buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015148219/03A RU2600236C1 (en) 2015-11-10 2015-11-10 Kochetov low-noise structure for earthquake-resistant industrial buildings

Publications (1)

Publication Number Publication Date
RU2600236C1 true RU2600236C1 (en) 2016-10-20

Family

ID=57138510

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015148219/03A RU2600236C1 (en) 2015-11-10 2015-11-10 Kochetov low-noise structure for earthquake-resistant industrial buildings

Country Status (1)

Country Link
RU (1) RU2600236C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2665720C1 (en) * 2017-10-03 2018-09-04 Олег Савельевич Кочетов Low noise design for earth-quake proof industrial buildings

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101319556A (en) * 2008-07-21 2008-12-10 天津市润达塑料包装有限公司 Novel floating build floor and its construction method
RU2425196C1 (en) * 2010-08-20 2011-07-27 Олег Савельевич Кочетов Low noise shop
RU148123U1 (en) * 2014-04-09 2014-11-27 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) SEISMIC RESISTANT QUIET PRODUCTION BUILDING
RU2551574C1 (en) * 2014-04-01 2015-05-27 Олег Савельевич Кочетов Kochetov's beaded mesh vibration isolator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101319556A (en) * 2008-07-21 2008-12-10 天津市润达塑料包装有限公司 Novel floating build floor and its construction method
RU2425196C1 (en) * 2010-08-20 2011-07-27 Олег Савельевич Кочетов Low noise shop
RU2551574C1 (en) * 2014-04-01 2015-05-27 Олег Савельевич Кочетов Kochetov's beaded mesh vibration isolator
RU148123U1 (en) * 2014-04-09 2014-11-27 Федеральное государственное бюджетное учреждение "Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России" (федеральный центр науки и высоких технологий) SEISMIC RESISTANT QUIET PRODUCTION BUILDING

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2665720C1 (en) * 2017-10-03 2018-09-04 Олег Савельевич Кочетов Low noise design for earth-quake proof industrial buildings

Similar Documents

Publication Publication Date Title
RU129125U1 (en) LOW SEISMIC-RESISTANT PRODUCTION BUILDING
RU2425196C1 (en) Low noise shop
RU138068U1 (en) LOW SEISMIC-RESISTANT PRODUCTION BUILDING
RU2544182C2 (en) Earthquake-resistant building structure
RU2611650C1 (en) Low noise seismic resistance industrial building
RU2600236C1 (en) Kochetov low-noise structure for earthquake-resistant industrial buildings
RU2665720C1 (en) Low noise design for earth-quake proof industrial buildings
RU148123U1 (en) SEISMIC RESISTANT QUIET PRODUCTION BUILDING
RU2610013C1 (en) Kochetov low-noise manufacturing building
RU2583436C1 (en) Low-noise earthquake-resistant manufacturing building
RU2606887C1 (en) Kochetov low-noise aseismic production building
RU2573882C1 (en) Kochetov(s low-noise aseismic production building
RU2656425C2 (en) Low-noise earthquake-resistant industrial building
RU2643225C2 (en) Vibrizolated foundation of industrial building
RU2578220C1 (en) Earthquake-resistant building structure
RU2555986C2 (en) Low-noise earthquake-resistant manufacturing building
RU2655710C2 (en) Low-noise earthquake-resistant industrial building
RU2651559C1 (en) Low-noise production building
RU2576258C1 (en) Low noise seismic stable buildings
RU2655667C2 (en) Low-noise earthquake-resistant industrial building
RU2576697C1 (en) Low-noise earthquake-resistant manufacturing building
RU2565281C1 (en) Kochetov's shop acoustic structure
RU2582686C1 (en) Kochetov low-noise building
RU2579025C1 (en) Earthquake-resistant building structure
RU2656432C2 (en) Kochetov low-noise aseismic production building