RU2598920C2 - Инжектор для смешивания двух компонентов топлива, содержащий по меньшей мере инжекционный элемент с тремя коаксиальными каналами - Google Patents

Инжектор для смешивания двух компонентов топлива, содержащий по меньшей мере инжекционный элемент с тремя коаксиальными каналами Download PDF

Info

Publication number
RU2598920C2
RU2598920C2 RU2013142650/06A RU2013142650A RU2598920C2 RU 2598920 C2 RU2598920 C2 RU 2598920C2 RU 2013142650/06 A RU2013142650/06 A RU 2013142650/06A RU 2013142650 A RU2013142650 A RU 2013142650A RU 2598920 C2 RU2598920 C2 RU 2598920C2
Authority
RU
Russia
Prior art keywords
coaxial
section
injector according
coaxial channel
specified
Prior art date
Application number
RU2013142650/06A
Other languages
English (en)
Other versions
RU2013142650A (ru
Inventor
КРА Жан-Люк ЛЕ
Жан-Мари ЛОНШАР
Арно ФУРНЕ
Сирил ВЕРПЛАНКЕ
Оливье ДЕЛАЭ
Николя КЮККО
Original Assignee
Снекма
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1151817A external-priority patent/FR2972368B1/fr
Priority claimed from FR1151816A external-priority patent/FR2972498B1/fr
Application filed by Снекма filed Critical Снекма
Publication of RU2013142650A publication Critical patent/RU2013142650A/ru
Application granted granted Critical
Publication of RU2598920C2 publication Critical patent/RU2598920C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/44Feeding propellants
    • F02K9/52Injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M43/00Fuel-injection apparatus operating simultaneously on two or more fuels, or on a liquid fuel and another liquid, e.g. the other liquid being an anti-knock additive
    • F02M43/04Injectors peculiar thereto

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Nozzles (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Изобретение относится к камерам сгорания ракетного двигателя. Инжектор для смешивания двух компонентов топлива, расположенный по направлению потока перед камерой сгорания, содержащий по меньшей мере один инжекционный элемент (14) тройной коаксиальной конструкции, установленный между двумя панелями (12, 13), ограничивающими между собой пространство (65); из числа коаксиальных каналов внутренний коаксиальный канал (23) и наружный коаксиальный канал (24) снабжаются параллельно одним и тем же компонентом топлива, например, через пространство (65). Изобретение обеспечивает повышение качества смешения компонентов топлива. 17 з.п. ф-лы, 8 ил.

Description

Область техники
Настоящее изобретение относится к инжектору для смешивания двух компонентов топлива, расположенному по направлению потока перед камерой сгорания, например, камерой сгорания ракетного двигателя. Под инжектором имеется в виду узел, образованный одним или несколькими инжекционными элементами и конструкцией, образующей опору и содержащей средства подачи компонентов топлива к инжекционному элементу или элементам.
Уровень техники
В патентном документе US 6502385 описан инжектор упомянутого типа, то есть содержащий, по меньшей мере, один инжекционный элемент, установленный между двумя панелями, жестко укрепленными на расстоянии друг от друга. Образующий инжектор узел называется также «инжекционной головкой». Инжекционный элемент или каждый инжекционный элемент жестко соединен с двумя панелями и объединен с ними в узел. Согласно конкретному примеру выполнения, описанному в этом документе уровня техники, инжекционный элемент привинчен к верхней по направлению потока панели основания и приклепан к нижней панели, закрывающей камеру сгорания. Инжекционный элемент относится к тройному коаксиальному типу, то есть содержит средний кольцевой коаксиальный канал для первого компонента топлива и два коаксиальных канала для второго компонента топлива - соответственно внутренний кольцевой коаксиальный канал и наружный кольцевой коаксиальный канал. Нижние по направлению потока концы трех каналов открыты за пределами отверстия нижней панели, так что смесь двух компонентов топлива впрыскивается в камеру сгорания. Наружная трубчатая оболочка, ограничивающая наружный коаксиальный канал, приклепана к нижней панели. Инжекционный элемент или инжекционные элементы способствуют стабилизации положения нижней панели по отношению к верхней панели и препятствуют ее деформации.
При этом описанный инжекционный элемент имеет такую конструкцию, что внутренний коаксиальный канал и наружный коаксиальный канал (в которых циркулирует второй компонент топлива) сообщаются посредством проходов, выполненных радиальными и пересекающих средний коаксиальный канал, где циркулирует первый компонент топлива. Вследствие этого трудно калибровать соответствующие расходы второго компонента топлива во внутреннем и наружном коаксиальных каналах. Кроме того, из-за наличия этих проходов через средний коаксиальный канал смазка составных частей инжекционного элемента осуществляется довольно сложно и требует тонкой и дорогой технологии сборки.
Раскрытие изобретения
Настоящее изобретение позволяет решить указанные проблемы.
Более конкретно, изобретение относится к инжектору для смешивания двух компонентов топлива, содержащему, по меньшей мере, один инжекционный элемент тройной коаксиальной конструкции, который установлен между двумя панелями или аналогичными элементами, причем верхняя и нижняя по направлению потока панели ограничивают между собой пространство, и жестко прикреплен к этим двум панелям, при этом в инжекционном элементе определены три коаксиальных канала, а именно средний кольцевой коаксиальный канал для первого компонента топлива и два коаксиальных канала для второго компонента топлива, включающих соответственно внутренний коаксиальный канал и наружный кольцевой коаксиальный канал, отличающемуся тем, что внутренний коаксиальный канал и наружный коаксиальный канал снабжаются параллельно вторым компонентом топлива.
Согласно примеру выполнения пространство между двумя панелями, верхней и нижней по направлению потока, образует пространство для ввода второго компонента топлива, а инжекционный элемент или каждый инжекционный элемент снабжен независимыми и калиброванными проходами: по меньшей мере, одним первым проходом (отверстием), который непосредственно соединяет пространство ввода с внутренним коаксиальным каналом, и, по меньшей мере, одним вторым проходом (отверстием), который непосредственно соединяет пространство ввода с наружным коаксиальным каналом.
Согласно предпочтительному примеру выполнения инжекционный элемент или каждый инжекционный элемент содержит:
- первую секцию, которая прикреплена к верхней по направлению потока панели и в которой образован внутренний коаксиальный канал,
- вторую секцию, прикрепленную к первой секции и образующую с ней средний кольцевой коаксиальный канал, и
- третью секцию, прикрепленную ко второй секции и образующую с ней наружный кольцевой коаксиальный канал.
Простым образом первая секция содержит отверстия, проходящие между внутренним коаксиальным каналом и пространством, определенным между панелями. Эти отверстия могут быть выполнены под углом по отношению к радиальному направлению.
Подобным же образом третья секция предпочтительно содержит отверстия, проходящие между наружным коаксиальным каналом и пространством, определенным между панелями. Эти отверстия также могут быть выполнены под углом по отношению к радиальному направлению.
Согласно комбинации предпочтительных средств первая секция содержит центральный сердечник, вокруг которого образован внутренний кольцевой коаксиальный канал, так что в этом случае данный канал имеет кольцевую конфигурацию.
Краткий перечень чертежей
Далее изобретение и его другие преимущества будут пояснены на нескольких примерах выполнения инжекторов в соответствии с изобретательской концепцией, приведенных исключительно в качестве иллюстрации со ссылками на прилагаемые чертежи. На чертежах:
фиг.1 схематично изображает на виде сбоку в разрезе инжектор для смешивания из двух компонентов топлива;
фиг.2 изображает на виде, аналогичном виду по фиг.1, вариант выполнения инжектора;
фиг.3 изображает на виде, аналогичном виду по фиг.1, другой вариант выполнения инжектора;
фиг.4 изображает стенку трубчатого элемента, снабженную наклонными винтовыми ребрами;
фиг.5 схематично изображает в осевом разрезе оконечную часть инжекционного элемента по изобретению в первом примере выполнения;
фиг.6 изображает на виде, аналогичном виду по фиг.5, вариант выполнения инжекционного элемента;
фиг.7 изображает на виде, аналогичном виду по фиг.5, другой вариант выполнения инжекционного элемента;
фиг.8 изображает на виде, аналогичном виду по фиг.5, еще один вариант выполнения инжекционного элемента.
Осуществление изобретения
На фиг.1 показан инжектор 11 того типа, который содержит верхнюю по направлению потока панель 12 или аналогичный элемент, нижнюю по направлению потока панель13 или аналогичный элемент и, по меньшей мере, один инжекционный элемент 14, жестко соединенный с двумя панелями. Предпочтительно инжектор содержит множество инжекционных элементов 14, расположенных между двумя панелями в осесимметричной конфигурации (не показано). Узел из двух панелей и инжекционного элемента или элементов образует инжектор или инжекционную головку. Инжекционный элемент или элементы прикреплены, например, приварены, припаяны или привинчены вблизи своих соответствующих осевых концов к верхней и нижней по направлению потока панелям 12 и 13. Таким образом, с механической точки зрения каждый инжекционный элемент образует поперечину, ограничивающую деформацию панелей, а именно панели 13, которая подвергается воздействию значительного температурного градиента.
Каждый инжекционный элемент имеет перпендикулярную панелям 12 и 13 ось X симметрии и круглый контур вокруг этой оси.
Согласно описываемым примерам выполнения, не имеющим ограничительного характера, каждый инжекционный элемент тройной коаксиальной конструкции содержит три трубчатые секции 15, 17, 19, собранные в узел с образованием трех коаксиальных каналов 21, 23 и 24, в которых циркулируют два компонента топлива.
Так, например, на фиг.1 виден средний коаксиальный канал 21, внутренний коаксиальный канал 23 и наружный коаксиальный канал 24. Первый компонент топлива циркулирует в среднем коаксиальном канале 21, а второй компонент топлива циркулирует одновременно во внутреннем коаксиальном канале 23 и наружном коаксиальном канале 24, при этом два компонента топлива смешиваются на выходе трех коаксиальных каналов, ниже по направлению потока за панелью 13. Далее смесь вводится в камеру сгорания (не показана).
Три коаксиальные секции 15, 17, 19 собраны в узел посредством сварки, пайки или, в некоторых случаях, посредством винтового соединения.
Первая секция 15 определена в металлическом блоке 29 и прикреплена к верхней по направлению потока панели 12 герметичным образом. Она содержит первый участок 31, в котором образована верхняя по направлению потока чашеобразная полость 33, снабжаемая первым компонентом топлива. Он подается со стороны, расположенной выше по направлению потока относительно панели 12.
Чашеобразная полость 33 продолжена множеством протоков 35, здесь параллельных оси X симметрии инжекционного элемента 14 и выходящих на заплечике 37. Согласно непоказанному варианту, общему для всех трех примеров выполнения, протоки 35 могут проходить в наклонных направлениях, то есть не параллельно оси X, под таким углом, что первому компоненту топлива придается вращение на выходе протоков 35.
Заплечик 37 отделяет первый участок 31 от второго центрального участка 39 цилиндрической формы, который имеет меньший диаметр. На этом втором участке 39 в продолжение первого участка 31 внутренний коаксиальный канал 23 реализован глухим осевым отверстием 28. Его получают путем простого осевого сверления металлического блока 29. Отверстия 41 проходят между периферией первой секции 15 и внутренним коаксиальным каналом. Отверстия 41 выходят снаружи в пространство, определяемое между двумя панелями 12, 13. Они могут проходить под углом к радиальному направлению для сообщения движения вращения второму компоненту топлива во внутреннем коаксиальном канале 23.
Вторая трубчатая секция 17 содержит два участка разных диаметров. Участок 45 большего диаметра прикреплен (здесь приварен или припаян) на своем конце к периферии заплечика 37 первой секции 15. Участок 46 меньшего диаметра проходит напротив наружной стенки первой секции, чтобы определять вместе с ней средний коаксиальный канал 21.
Таким образом, кольцевая распределительная полость 48 определена между заплечиком 37 и кольцевой плоской стенкой 50 второй секции, соединяющей два ее участка 45, 46. Эта распределительная полость 48 сообщается со средним коаксиальным каналом 21. Протоки 35 выходят в распределительную полость 48.
Третья трубчатая секция 19 в целом сходна со второй секцией 17. Ее участок 51 большего диаметра прикреплен своим концом, здесь приварен или припаян, к периметру кольцевой плоской стенки второй секции 17. Участок 54 меньшего диаметра проходит напротив наружной поверхности участка 46 второй секции и определяет вместе с ней наружный коаксиальный канал 24. Участок 54 прикреплен герметичным образом к кромке сквозного отверстия 55 в панели 13, здесь посредством сварки или пайки.
Кольцевая распределительная полость 57 определена между плоской стенкой 50 второй секции 17 и кольцевой стенкой 59, соединяющей два участка 51, 54 третьей секции 19. Эта стенка 59 упирается во внутреннюю сторону панели 13.
Распределительная полость 57 сообщается с наружным кольцевым коаксиальным каналом 24. Радиальные отверстия 61 выполнены в участке 51 большого диаметра и выходят с одной стороны в распределительную полость 57 и с другой стороны в пространство 65.
Подача второго компонента топлива к инжекционному элементу или элементам 14 осуществляется через пространство 65.
Отверстия 61 могут быть расположены под углом к радиальному направлению для сообщения движения вращения второму компоненту топлива в распределительной полости 57 и наружном коаксиальном канале 24.
Таким образом, пространство 65 между панелями 12, 13 образует пространство ввода второго компонента топлива для инжекционного элемента или элементов, при этом описанная выше компоновка такова, что внутренний коаксиальный канал 23 и наружный коаксиальный канал 24 снабжаются параллельно вторым компонентом топлива соответственно через отверстия 41 и 61.
Эти отверстия образуют независимые и калиброванные проходы. По меньшей мере, один первый проход (отверстия 41) непосредственно связывает пространство 65 ввода с внутренним коаксиальным каналом 23 и, по меньшей мере, один второй проход (отверстия 61) непосредственно связывает пространство 65 ввода с наружным коаксиальным каналом 24. При этом облегчается регулирование расхода между внутренним и наружным коаксиальными каналами. Кроме того, конструкция каждого инжекционного элемента чрезвычайно проста и невысока по стоимости.
Пример выполнения по фиг.2 сходен с примером выполнения по фиг.1, за исключением конструкции первой секции, которая содержит центральный сердечник 27. Другие аналогичные элементы обозначены теми же позициями и подробно не описываются. Центральный сердечник придает внутреннему коаксиальному каналу 23 кольцевую конструкцию, которая позволяет лучше согласовывать требования по расходу и скорости различных потоков компонентов топлива непосредственно перед их смешиванием. Другими словами, первая секция содержит цилиндрический центральный сердечник, вокруг которого образован внутренний коаксиальный канал 23. В примере выполнения по фиг.2 центральный сердечник 27 и первая секция 15 образуют единый блок (металлический блок 29), а внутренний коаксиальный канал прорезан по кольцу в глубину блока для выделения центрального сердечника 27. Внутренний коаксиальный канал 23 может быть выполнен путем механической обработки на электроэрозионном сверлильном станке с помощью известной технологии.
Кроме того, предпочтительно отверстия 41 выполнены во втулках 42, введенных в толщу металлического блока 29. При этом проще калибровать отверстия 41. Этот вариант может использоваться во всех примерах выполнения.
В примере выполнения по фиг.3 центральный сердечник 27 вставлен в осевую выемку первой секции и проходит от чашеобразной полости 33 до нижнего по направлению потока конца инжекционного элемента. Другими словами, первая секция выполнена из двух приваренных друг к другу коаксиальных частей, причем наружная часть 129 имеет трубчатую форму, а центральная часть 27 образует центральный сердечник. Таким образом, она является элементом, который вставлен, приварен или припаян в осевом отверстии 140 инжекционного элемента. Этот вставленный элемент имеет здесь цилиндрическую форму, которая на верхнем по направлению потока конце заканчивается головкой 141 большего диаметра, приваренной или припаянной в кольцевом углублении, образующем заплечик 142 на соответствующем (верхнем по направлению потока) конце инжекционного элемента. После крепления пайкой центрального сердечника чашеобразная полость 33, в которую подается первый компонент топлива, принимает такой же вид, как и в предыдущих примерах выполнения. В данном примере выполнения центральный сердечник 27 содержит открытую выемку 30 на своем нижнем по направлению потока конце. Эта выемка определяет зону турбулентной рециркуляции на нижнем конце центрального сердечника. Она также снижает массу центрального сердечника. Эта выемка также позволяет снизить риск аэроупругой связи между потоком и собственными колебаниями первой колебательной моды центрального сердечника. Эта выемка не является обязательной и может использоваться в примере выполнения по фиг.2.
На фиг.4 показан имеющий преимущества вариант, в котором спиральные ребра 143 (или канавки) образованы на поверхности, по меньшей мере, стенки, ограничивающей коаксиальные каналы 21, 23, 24. На фиг.4 показана стенка секции 17, снабженной ребрами (или канавками) на внутренней стенке, так что они проходят внутри среднего коаксиального канала 21. При этом в канале 21 получают циркуляцию, называемую «закручиванием». Такое же выполнение может быть предусмотрено на стенках трубчатого элемента секции 15 или 19 и даже на наружной стенке центрального сердечника 27. В этом случае ребра 143 или канавки проходят во внутреннем и/или в наружном коаксиальном канале для создания такого же типа «закрученной» циркуляции.
Другие имеющие преимущества характеристики инжекционного элемента 14 будут описаны со ссылками на фиг.5-7. На этих чертежах показана оконечная часть инжекционного элемента 14 тройной концентричной конструкции для смешивания компонентов топлива. Инжекционный элемент имеет ось X симметрии. Здесь не представлено, каким образом различные составные части инжекционного элемента расположены относительно друг друга, как они удерживаются в своих относительных положениях и связаны с двумя контурами подачи компонентов топлива. Следует напомнить, что множество инжекционных элементов могут быть установлены параллельно друг другу в осесимметричной конфигурации для образования инжектора.
Как было описано выше, инжекционный элемент 14 содержит в своей оконечной части, где должны смешиваться два компонента топлива, несколько трубчатых секций 15, 17, 19, определяющих кольцевые коаксиальные каналы. Показан средний кольцевой коаксиальный канал 21, в котором циркулирует первый компонент Е1 топлива, и расположенные рядом с ним два коаксиальных канала 23, 24, в которых циркулирует второй компонент Е2 топлива. Видны соответственно внутренний кольцевой коаксиальный канал 23 и наружный кольцевой коаксиальный канал 24.
Инжекционный элемент содержит также внутренний центральный сердечник 27, расположенный вдоль оси X внутри внутреннего коаксиального канала 23, в котором циркулирует часть второго компонента Е2 топлива. Другими словами, внутренний центральный сердечник 27 придает кольцевую форму внутреннему коаксиальному каналу 23.
Согласно примеру выполнения по фиг.5 конец наружной стенки внутреннего коаксиального канала 23 имеет первый осевой отступ RI1 по отношению к концу центрального сердечника 27. Конец внутренней стенки наружного коаксиального канала 24 имеет второй осевой отступ RI2 по отношению к концу центрального сердечника 27.
Эти два отступа называются также «внутренними отступами». Понятно, что инжекционный элемент может содержать только один определенный выше внутренний отступ, если стенка другого канала находится в одной радиальной плоскости с концом центрального сердечника.
В примере выполнения по фиг.5 определены два внутренних отступа RI1 и RI2, но первый отступ RI1 больше второго отступа RI2. В отличие от этого в примере выполнения по фиг.6 первый отступ RI1 меньше второго отступа RI2.
И наконец, в примере выполнения по фиг.7 первый и второй отступы RI1, RI2 равны.
Кроме того, в примере выполнения по фиг.7 на нижнем конце центрального сердечника 27 имеется открытая выемка 30.
Все эти примеры выполнения представлены для того, чтобы показать совокупность дополнительных параметров, которые имеются в распоряжении для конструктивного влияния на качество смешивания двух компонентов топлива.
Диаметр или, в более общем плане, объем центрального сердечника 27 позволяет регулировать сечение теперь уже кольцевого внутреннего коаксиального канала 23 и вследствие этого регулировать скорость части второго компонента топлива, который циркулирует в этом канале, для получения желаемого внутреннего срезания первого компонента топлива, выходящего из среднего кольцевого коаксиального канала 21. Во-вторых, наличие открытой выемки 30 на конце центрального сердечника позволяет воздействовать на зону рециркуляции на выходе центрального сердечника. Форма и размеры этой выемки позволяют регулировать конфигурацию и размер этой зоны рециркуляции. И наконец, с помощью одного или двух внутренних отступов можно также воздействовать на турбулентность, создаваемую в зоне срезания, для оптимизации смешивания компонентов топлива.
В противоположность этому, если желательно уменьшить зону рециркуляции на выходе, можно обеспечить заостренное продолжение центрального сердечника вместо выполнения в нем указанной выше глухой выемки. Эта ситуация показана на фиг.8. В этом примере выполнения острие 27а проходит внутри пространства RE отступа, который называется внешним отступом и определен между наружной оболочкой (трубчатой секцией 19) и концом, по меньшей мере, одного из определенных выше коаксиальных каналов 21, 23, 24.

Claims (18)

1. Инжектор для смешивания двух компонентов топлива, содержащий множество инжекционных элементов (14) с тройной коаксиальной конструкцией, которые установлены между двумя панелями (12, 13) или аналогичными элементами, причем верхняя и нижняя по направлению потока панели ограничивают между собой пространство (65), при этом в каждом инжекционном элементе определены три коаксиальных канала, содержащих средний кольцевой коаксиальный канал (21) для первого компонента топлива и два коаксиальных канала для второго компонента топлива, включающих соответственно внутренний кольцевой коаксиальный канал (23) и наружный коаксиальный канал (24), отличающийся тем, что указанный внутренний коаксиальный канал (23) и указанный наружный коаксиальный канал (24) снабжаются параллельно вторым компонентом топлива, при этом каждый инжекционный элемент (14) жестко прикреплен к указанным двум панелям.
2. Инжектор по п. 1, отличающийся тем, что указанное пространство (65) между двумя панелями, верхней и нижней по направлению потока, образует пространство для ввода второго компонента топлива, а по меньшей мере один инжекционный элемент снабжен независимыми и калиброванными проходами, включающими по меньшей мере одно первое отверстие (41), которое непосредственно соединяет указанное пространство ввода с указанным внутренним коаксиальным каналом, и по меньшей мере одно второе отверстие (61), которое непосредственно соединяет указанное пространство ввода с указанным наружным коаксиальным каналом.
3. Инжектор по п. 1, отличающийся тем, что инжекционный элемент или каждый инжекционный элемент содержит:
- первую секцию (15), которая прикреплена к верхней по направлению потока панели и в которой образован указанный внутренний коаксиальный канал,
- вторую секцию (17), прикрепленную к указанной первой секции и образующую с ней указанный средний кольцевой коаксиальный канал, и
- третью секцию (19), прикрепленную к указанной второй секции и образующую с ней указанный наружный кольцевой коаксиальный канал.
4. Инжектор по п. 3, отличающийся тем, что указанная первая секция (15) содержит отверстия (41), проходящие между указанным внутренним коаксиальным каналом и указанным пространством, определенным между панелями.
5. Инжектор по п. 4, отличающийся тем, что отверстия указанной первой секции выполнены под углом по отношению к радиальному направлению.
6. Инжектор по п. 3, отличающийся тем, что указанная третья секция содержит отверстия (61), проходящие между указанным наружным коаксиальным каналом и указанным пространством, определенным между панелями.
7. Инжектор по п. 6, отличающийся тем, что отверстия указанной третьей секции выполнены под углом по отношению к радиальному направлению.
8. Инжектор по п. 3, отличающийся тем, что указанная первая секция содержит центральный сердечник (27), вокруг которого образован внутренний кольцевой коаксиальный канал.
9. Инжектор по п. 8, отличающийся тем, что указанный центральный сердечник (27) и первая секция (15) образуют единый блок, а указанный внутренний коаксиальный канал прорезан по кольцу на такую глубину, чтобы выделить указанный центральный сердечник.
10. Инжектор по п. 8, отличающийся тем, что центральный сердечник введен в осевую выемку первой секции (15).
11. Инжектор по п. 1, отличающийся тем, что спиральные ребра (143) или канавки выполнены на поверхности по меньшей мере одной стенки, ограничивающей один из коаксиальных каналов (21, 23, 24).
12. Инжектор по п. 1, отличающийся тем, что указанный инжекционный элемент (14) дополнительно содержит центральный сердечник (27), расположенный по оси внутри указанного внутреннего коаксиального канала (23) для придания ему кольцевой конфигурации, а конец наружной стенки указанного внутреннего коаксиального канала расположен с первым осевым отступом (RI1) по отношению к концу указанного центрального сердечника и/или конец внутренней стенки указанного наружного коаксиального канала расположен со вторым осевым отступом (RI2) по отношению к концу указанного центрального сердечника.
13. Инжектор по п. 12, отличающийся тем, что нижний по направлению потока конец указанного центрального сердечника содержит открытую выемку (30).
14. Инжектор по п. 12, отличающийся тем, что имеются указанный первый и указанный второй отступы и они равны.
15. Инжектор по п. 12, отличающийся тем, что имеются указанный первый и указанный второй отступы и они не равны.
16. Инжектор по п. 15, отличающийся тем, что указанный первый отступ больше указанного второго отступа.
17. Инжектор по п. 15, отличающийся тем, что указанный первый отступ меньше указанного второго отступа.
18. Инжектор по п. 12, отличающийся тем, что указанный центральный сердечник содержит острие (27а).
RU2013142650/06A 2011-03-07 2012-03-06 Инжектор для смешивания двух компонентов топлива, содержащий по меньшей мере инжекционный элемент с тремя коаксиальными каналами RU2598920C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR1151817A FR2972368B1 (fr) 2011-03-07 2011-03-07 Injecteur pour le melange de deux ergols, comprenant au moins un element d'injection a structure tricoaxiale
FR1151816 2011-03-07
FR1151816A FR2972498B1 (fr) 2011-03-07 2011-03-07 Element d'injection a structure tricoaxiale pour le melange de deux ergols
FR1151817 2011-03-07
PCT/FR2012/050458 WO2012120230A1 (fr) 2011-03-07 2012-03-06 Injecteur pour le mélange de deux ergols comprenant au moins un élément d'injection a structure tricoaxiale

Publications (2)

Publication Number Publication Date
RU2013142650A RU2013142650A (ru) 2015-04-20
RU2598920C2 true RU2598920C2 (ru) 2016-10-10

Family

ID=45930898

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013142650/06A RU2598920C2 (ru) 2011-03-07 2012-03-06 Инжектор для смешивания двух компонентов топлива, содержащий по меньшей мере инжекционный элемент с тремя коаксиальными каналами

Country Status (5)

Country Link
US (1) US9528479B2 (ru)
EP (1) EP2683930B1 (ru)
JP (1) JP6033800B2 (ru)
RU (1) RU2598920C2 (ru)
WO (1) WO2012120230A1 (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2977639B1 (fr) * 2011-07-07 2013-08-09 Snecma Element d'injection
RU2655888C2 (ru) * 2015-05-05 2018-05-29 Акционерное общество "НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МАШИНОСТРОЕНИЯ" (ФГУП "НИИМаш") Камера жидкостного ракетного двигателя малой тяги
CN108757222B (zh) * 2018-03-29 2020-06-09 北京航天动力研究所 一种三组元一体式喷嘴组件
US11378040B2 (en) 2018-11-15 2022-07-05 Stratolaunch, Llc Swirl preburner system and method
CN113294265B (zh) * 2021-07-21 2021-10-15 北京星际荣耀空间科技股份有限公司 一种液体火箭发动机用针栓喷注器
KR102603024B1 (ko) * 2021-11-05 2023-11-16 한국기계연구원 터보기계의 쉬라우드와 임펠러 사이의 간극 제어 방법
CN114607531B (zh) * 2022-03-31 2024-04-19 西安航天动力研究所 一种中心筒外圈开槽的小流量针栓式喷注器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2171427C2 (ru) * 1999-09-20 2001-07-27 Федеральное государственное унитарное предприятие Конструкторское бюро химавтоматики Соосно-струйная форсунка
RU2232916C2 (ru) * 2001-08-27 2004-07-20 Открытое акционерное общество "НПО Энергомаш им.акад. В.П.Глушко" Топливная форсунка жидкостного ракетного двигателя (варианты)
FR2871553A1 (fr) * 2004-06-09 2005-12-16 Deutsch Zentr Luft & Raumfahrt Tete d'injection pour la delivrance de fluides provoquant une combustion dans une chambre de combustion

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527056A (en) * 1967-11-20 1970-09-08 Trw Inc Flow positioned injector
US3980233A (en) * 1974-10-07 1976-09-14 Parker-Hannifin Corporation Air-atomizing fuel nozzle
JPH0192560A (ja) 1987-10-02 1989-04-11 Natl Aerospace Lab ロケット噴射器
FR2636376B1 (fr) 1988-09-14 1993-12-03 Propulsion Ste Europeenne Dispositif de prelevement de gaz chauds dans une chambre de combustion et tete d'injection equipee d'un dispositif de prelevement
US5172548A (en) 1988-09-14 1992-12-22 Societe Europeene De Propulsion Device for tapping off hot gases from a combustion chamber and injector head equipped with such a device
JPH06281115A (ja) 1993-03-26 1994-10-07 Ishima Riyuutai Kenkyusho:Kk 燃焼機用の燃料噴射方法および装置
FR2712030B1 (fr) 1993-11-03 1996-01-26 Europ Propulsion Système d'injection et éléments d'injection tricoaxiaux associés.
DE19749072C1 (de) 1997-11-06 1999-06-10 Herbert Huettlin Mehrstoffzerstäuberdüse
DE10015369C2 (de) 2000-03-28 2003-07-03 Astrium Gmbh Tri-Koaxiales Einspritzelement
RU2205289C2 (ru) 2000-11-13 2003-05-27 Федеральное государственное унитарное предприятие "Конструкторское бюро химавтоматики" Смесительная головка жидкостного ракетного двигателя
DE102008028208B4 (de) 2008-06-09 2012-03-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Brennkammervorrichtung und Verfahren zu deren Betrieb
FR2944062B1 (fr) * 2009-04-06 2011-06-03 Snecma Injecteur d'ergols

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2171427C2 (ru) * 1999-09-20 2001-07-27 Федеральное государственное унитарное предприятие Конструкторское бюро химавтоматики Соосно-струйная форсунка
RU2232916C2 (ru) * 2001-08-27 2004-07-20 Открытое акционерное общество "НПО Энергомаш им.акад. В.П.Глушко" Топливная форсунка жидкостного ракетного двигателя (варианты)
FR2871553A1 (fr) * 2004-06-09 2005-12-16 Deutsch Zentr Luft & Raumfahrt Tete d'injection pour la delivrance de fluides provoquant une combustion dans une chambre de combustion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FR 2712030 A1|, 12.05.1995. *

Also Published As

Publication number Publication date
JP6033800B2 (ja) 2016-11-30
US9528479B2 (en) 2016-12-27
EP2683930B1 (fr) 2018-12-12
RU2013142650A (ru) 2015-04-20
WO2012120230A1 (fr) 2012-09-13
JP2014507604A (ja) 2014-03-27
US20140048625A1 (en) 2014-02-20
EP2683930A1 (fr) 2014-01-15

Similar Documents

Publication Publication Date Title
RU2598920C2 (ru) Инжектор для смешивания двух компонентов топлива, содержащий по меньшей мере инжекционный элемент с тремя коаксиальными каналами
US5660039A (en) Injection system and an associated tricoaxial element
EP1706671B1 (en) Helical channel fuel distributor and method
JP5008401B2 (ja) 特にジェットエンジンの燃焼チャンバ用多モード燃料噴射器の冷却
EP1312866B1 (en) Combustor containing fuel nozzle
US8959772B2 (en) Multipoint injector for turbomachine
CN102012043B (zh) 整体燃料喷射器和相关制造方法
JP6271029B2 (ja) 燃焼器、ガスタービン
JP2008275308A (ja) 燃料ノズル及びその製造方法
JP2007183093A (ja) 特にジェットエンジンの燃焼チャンバ用の多モード燃料噴射器
JP2009041903A5 (ru)
WO2015056337A1 (ja) 燃料噴射器
JPH07509041A (ja) 同心スリットを有する噴射システムとその噴射素子
CN102878580A (zh) 一种燃气轮机贫预混燃烧室
CN202813443U (zh) 一种燃气轮机贫预混燃烧室
JP5230795B2 (ja) 液体燃料を噴霧するための渦巻噴霧ノズル、渦巻噴霧ノズルの製造方法、及び渦巻噴霧ノズルを備えたバーナ用ノズル組立体
JP6318443B2 (ja) 燃焼器、及び回転機械
CN203147823U (zh) 涡轮机组燃烧室的环形壁,涡轮机组的燃烧室及具有燃烧室的涡轮机组
JP2018089610A (ja) 微細気泡発生ノズル
JP2003035207A (ja) ロケットエンジンの噴射エレメント
CA2963956C (en) Method for reducing nox emission in a gas turbine, air fuel mixer, gas turbine and swirler
WO2016111149A1 (ja) 燃料噴射装置用ノズルプレート
CN105121961A (zh) 配备有亥姆霍兹共振器的燃气涡轮机燃烧器组件
CN110220196B (zh) 引射管及含其的灶具引射器
JP2022051696A (ja) 一体化されたバッフルを有する燃焼室部と、燃焼室部を製造する方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190307