RU2591922C1 - Способ производства горячекатаного листового проката из низколегированной стали - Google Patents

Способ производства горячекатаного листового проката из низколегированной стали Download PDF

Info

Publication number
RU2591922C1
RU2591922C1 RU2015130148/02A RU2015130148A RU2591922C1 RU 2591922 C1 RU2591922 C1 RU 2591922C1 RU 2015130148/02 A RU2015130148/02 A RU 2015130148/02A RU 2015130148 A RU2015130148 A RU 2015130148A RU 2591922 C1 RU2591922 C1 RU 2591922C1
Authority
RU
Russia
Prior art keywords
temperature
rolling
steel
completed
sheets
Prior art date
Application number
RU2015130148/02A
Other languages
English (en)
Inventor
Алексей Андреевич Огольцов
Сергей Иванович Новоселов
Сергей Анатольевич Кухтин
Сергей Александрович Рыбаков
Николай Владимирович Филатов
Original Assignee
Публичное акционерное общество "Северсталь" (ПАО "Северсталь")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Северсталь" (ПАО "Северсталь") filed Critical Публичное акционерное общество "Северсталь" (ПАО "Северсталь")
Priority to RU2015130148/02A priority Critical patent/RU2591922C1/ru
Application granted granted Critical
Publication of RU2591922C1 publication Critical patent/RU2591922C1/ru

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к области металлургии, а именно к низколегированным сталям повышенной теплоустойчивости, применяемым при производстве плавниковых труб, предназначенных для паровых котлов, труб пароперегревателей, трубопроводов и коллекторных установок высокого давления, деталей цилиндров газовых турбин, различных деталей, работающих при температуре до +480-500°C, воротниковых фланцев, штуцеров, колец, патрубков, тройников для энергооборудования и трубопроводов тепловых электростанций. Получают сляб из стали, имеющей химический состав, в мас.%: углерод 0,15-0,22, кремний 0,15-0,50, марганец 0,60-1,00, алюминий 0,01-0,06%, хром не более 0,3, никель не более 0,3, медь не более 0,3, молибден 0,20-0,50, сера не более 0,007, фосфор не более 0,020, азот не более 0,012, железо и неизбежные примеси - остальное. Осуществляют нагрев слябов под прокатку до температуры 1200-1250°C. Выполняют многопроходную реверсивную черновую и чистовую прокатку. Черновую прокатку завершают при температуре не более 1100°C, а чистовую прокатку ведут за 7-11 проходов и завершают в диапазоне температур от 880 до 910°C с относительным обжатием в последнем проходе от 10% до 15%. После прокатки и охлаждения листы подвергают термообработке при температуре 900-930°C с последующим охлаждением на воздухе. Обеспечивается высокий уровень теплоустойчивости и ударной вязкости. 3 табл.

Description

Изобретение относится к области металлургии, конкретнее к производству толстолистового проката на реверсивных станах, который используется для изготовления сварных металлоконструкций, эксплуатируемых при повышенных температурах и давлении.
Известен способ производства толстолистовой конструкционной стали с однородной ферритной структурой (Патент США №4662950, МПК C21D 8/02, 1987 г.). В соответствии с этим способом отливают слябы следующего химического состава, мас. %:
Углерод - не более 0,23
Марганец - не более 1,35
Сера - не более 0,05
Фосфор - не более 0,04
Кремний - не более 0,50
Ванадий - не более 0,10
Ниобий - 0,02-0,06
Алюминий - 0,02-0,06
Хром - не более 0,70
Никель - не более 0,50
Медь - не более 0,40
Железо - остальное.
Слябы нагревают до температуры 1120-1180°C, подвергают черновой прокатке с суммарным обжатием 40-60% и чистовой прокатке с суммарным обжатием 40-60%. Чистовую прокатку начинают при температуре не выше 980°C и завершают при температуре конца прокатки ниже 870°C.
Недостаток известного способа состоит в том, что прокатанные листы, в зависимости от толщины и конкретного содержания легирующих элементов стали, приобретают различные механические свойства. Это снижает их качество, прочностные характеристики, хладостойкость и теплоустойчивость.
Наиболее близким к описываемому изобретению по технической сущности и достигаемому результату является взятый за прототип способ производства горячекатаного листа из низколегированной стали (Патент РФ 2341564 C2, C21D 8/02 B21B 1/26, 2008 г.), включающий получение сляба, нагрев, последующую многопроходную реверсивную черновую и чистовую прокатку с регламентированной температурой конца прокатки, согласно изобретению чистовую прокатку начинают при температуре 970-1050°C и завершают при температуре конца прокатки от 940 до 990°C с относительным обжатием в последнем проходе от 7 до 15%, причем сляб получают из стали, содержащей следующий химический состав, мас. %.
Углерод 0,18-0,23
Кремний 0,15-0,40
Марганец 1,0-1,35
Ванадий 0,02-0,04
Алюминий 0,02-0,05
Хром не более 0,3
Никель не более 0,3
Медь не более 0,3
Сера не более 0,020
Фосфор не более 0,020
Азот не более 0,012
Железо остальное
Кроме того, при получении листа толщиной 6,0-16,0 мм температура прокатки равна 940°C, при получении листа толщиной 16,1-25,0 мм температура конца прокатки равна 950°C, при получении листа толщиной 25,1-40,0 мм температура конца прокатки равна 980°C, а при получении листа толщиной более 40,0 мм температура конца прокатки равна 990°C.
Недостатком известного способа является недостаточная теплоустойчивость и пониженная ударная вязкость при отрицательных температурах.
Техническая задача, решаемая изобретением, состоит в повышении теплоустойчивости стали и ударной вязкости при отрицательных температурах одновременно.
Поставленная техническая задача решается тем, что в способе производства горячекатаного листа из низколегированной стали, включающем получение сляба, нагрев, последующую многопроходную реверсивную черновую и чистовую прокатку и последующую термообработку с охлаждением на воздухе с регламентированной температурой конца прокатки, согласно изобретению сляб получают из стали, имеющей следующий химический состав, мас. %: углерод - 0,15-0,22%, кремний - 0,15-0,50%, марганец - 0,60-1,00%, алюминий - 0,01-0,06%, хром - не более 0,3%, никель - не более 0,3%, медь - не более 0,3%, молибден - 0,20-0,50%, сера - не более 0,007%, фосфор - не более 0,020%, азот - не более 0,012%, железо и неизбежные примеси - остальное, при этом нагрев под прокатку осуществляют до температуры 1200-1250°C, черновую прокатку заканчивают при температуре не более 1100°C, чистовую прокатку ведут за 7-11 проходов и завершают в диапазоне температур от 880 до 910°C с относительным обжатием в последнем проходе от 10% до 15%, после прокатки и охлаждения листы подвергают термообработке при температуре 900-930°C с последующим охлаждением на воздухе.
Сущность предлагаемого изобретения состоит в следующем. Обеспечение заданных механических свойств горячекатаных толстых листов достигается одновременно как оптимизацией химического состава стали, так и режимов их последующей деформационно-температурной и термической обработки. После прокатки в стали предложенного состава формируется феррито-перлитная микроструктура, а последующая термическая обработка позволяет получить заданные и равномерные свойства в диапазоне толщин 8,0-50,0 мм.
Углерод упрочняет сталь. При содержании углерода менее 0,15% не достигается требуемая прочность стали, а при его содержании более 0,22% ухудшается ударная вязкость стали.
Кремний раскисляет сталь, повышает ее прочностные характеристики. При концентрации кремния менее 0,15% прочность стали ниже допустимой, а при концентрации более 0,50% снижается пластичность.
Марганец раскисляет и упрочняет сталь, связывает серу. При содержании марганца менее 0,60% прочность стали недостаточна. Содержание свыше 1,00% приводит к перерасходу легирующих.
Хром, никель, медь обеспечивают увеличение прочности при повышенных температурах без потери пластичности. Увеличение содержания данных свыше 0,3% приводит к перерасходу легирующих и, как следствие, увеличению себестоимости стали.
Молибден повышает прочность при повышенных температурах и вязкость стали, измельчая зерно микроструктуры. При содержании молибдена менее 0,20% прочность стали при повышенных температурах ниже требуемого уровня, а увеличение его содержания более 0,50% ухудшает пластичность и приводит к перерасходу легирующих элементов.
Сера является вредной примесью, снижающей пластические и вязкостные свойства. При концентрации серы не более 0,007% ее вредное действие проявляется слабо и не приводит к заметному снижению механических свойств стали данного состава. В тоже время более глубокая десульфурация удорожает сталь, делает ее производство нерентабельным.
Фосфор в количестве не более 0,020% целиком растворяется в α-железе, что ведет к упрочнению металлической матрицы. Однако увеличение содержания фосфора более 0,020% вызывает охрупчивание стали и снижение работы удара при отрицательных температурах.
Азот является нитридообразующим элементом, упрочняющим сталь. Однако повышение концентрации азота сверх 0,012% приводит к снижению вязкостных свойств при отрицательных температурах.
Экспериментально установлено, что при температуре нагрева ниже 1200°C сляб в методической печи недостаточно прогревается, что приводит к повышенной неоднородности конечной микроструктуры и, как следствие, к неравномерности механических свойств в листе. Нагрев сляба до температур превышающих 1250°C приводит получению более крупного аустенитного зерна, которое наследуется конечной структурой проката, что в свою очередь приводит к неудовлетворительным значениям временного сопротивления и ударной вязкости.
При температуре конца черновой прокатки превышающей 1100°C в металле успевают пройти все процессы рекристаллизации, что приводит к росту аустенитного зерна перед чистовой прокаткой, которая не способствует получению структуры готового проката, гарантирующей весь комплекс свойств, включая теплоустойчивость и хладостойкость.
Чистовую прокатку ведут за 7-11 проходов, при таком количестве проходов обжатия при прокатке распределяются равномерно между проходами, что способствует получению равномерной микроструктуры и свойств в готовых листах. Увеличение количества проходов более 11 негативно сказывается на механических свойствах, за счет недостаточной проработки структуры. Уменьшение - менее 7 проходов приводит к росту прочности и снижению пластических характеристик.
При температуре конца прокатки выше 910°C в стали предложенного состава в процессе охлаждения наблюдается неравномерный рост аустенитных зерен, что приводит к неравномерности микроструктуры в готовых листах, снижению прочности и стабильности механических свойств. Снижение температуры конца прокатки менее 880°C ухудшает пластические и вязкостные свойства листов и увеличивает нагрузки на оборудование при прокатке.
При относительном обжатии от 10 до 15% в последнем проходе имеет место механическая проработка валками только поверхностных слоев толстых листов. Так как поверхность листов после прокатки охлаждается наиболее интенсивно, то результатом механической проработки поверхности является выравнивание механических свойств листов различной толщины и различного химического состава стали в заявленных пределах. Увеличение относительного обжатия более 15% приводит к росту прочности и неравномерности механических свойств листов толщиной 8,0-50,0 мм. Снижение обжатия в последнем проходе менее 10% не обеспечивает выравнивания механических свойств листов в диапазонах толщин 8,0-50,0 мм, что снижает качество листов и выход годного.
При температуре последующей термической обработки свыше 930°C образуется крупнозернистая аустенитная структура, что в свою очередь негативно влияет на ударную вязкость в готовом прокате. Уменьшение температуры нагрева под термическую обработку ниже 900°C не позволяет получить равномерный комплекс всех механических свойств в связи с неравномерностью прогрева листов по толщине.
Пример реализации
Сталь выплавляли в электродуговой печи, разливали в слябы. Слябы нагревали до температуры 1200-1250°C и прокатывали на толстолистовом реверсивном стане 2800 в листы до конечной толщины (8,0-50,0 мм) при температуре конца черновой прокатки не более 1100°C, температуре конца чистовой прокатки 880-910°C. Причем чистовую прокатку осуществляли за 7-11 проходов с относительным обжатием в последнем проходе 10-15%. После окончания процесса деформации листы охлаждали на воздухе до температуры окружающей среды. Затем листы подвергали нормализации с отдельного нагрева с последующим охлаждением на воздухе.
Из таблиц 1-3 следует, что предложенный способ (составы 2-3; варианты 2-4) имеет более высокие прочностные характеристики при повышенных температурах и ударную вязкость при температуре KCV -30°C. Кроме того, сталь характеризуется высоким уровнем пластических свойств.
При запредельных концентрациях элементов и превышении заявленных технологических параметров горячей прокатки (составы 1, 6-7; варианты 1, 7-8) прочностные характеристики при повышенных температурах и ударная вязкость стали ухудшаются. Также более низкие свойства по прочности и ударной вязкости имеет сталь по прототипу (составы 4, 5; варианты 5, 6).
Figure 00000001
Figure 00000002
Figure 00000003

Claims (1)

  1. Способ производства горячекатаного листового проката из низколегированной стали, включающий получение сляба, нагрев, последующую многопроходную реверсивную черновую и чистовую прокатку с регламентированной температурой конца прокатки, отличающийся тем, что сляб получают из стали, имеющей следующий химический состав, мас.%: углерод 0,15-0,22, кремний 0,15-0,50, марганец 0,60-1,00, алюминий 0,01-0,06, хром не более 0,3, никель не более 0,3, медь не более 0,3, молибден 0,20-0,50, сера не более 0,007, фосфор не более 0,020, азот не более 0,012, железо и неизбежные примеси остальное, нагрев под прокатку осуществляют до температуры 1200-1250°С, черновую прокатку заканчивают при температуре не более 1100°С, чистовую прокатку ведут за 7-11 проходов и завершают в диапазоне температур от 880 до 910°С с относительным обжатием в последнем проходе от 10% до 15%, а после прокатки и охлаждения листы подвергают термообработке при температуре 900-930°С с последующим охлаждением на воздухе.
RU2015130148/02A 2015-07-21 2015-07-21 Способ производства горячекатаного листового проката из низколегированной стали RU2591922C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015130148/02A RU2591922C1 (ru) 2015-07-21 2015-07-21 Способ производства горячекатаного листового проката из низколегированной стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015130148/02A RU2591922C1 (ru) 2015-07-21 2015-07-21 Способ производства горячекатаного листового проката из низколегированной стали

Publications (1)

Publication Number Publication Date
RU2591922C1 true RU2591922C1 (ru) 2016-07-20

Family

ID=56412758

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015130148/02A RU2591922C1 (ru) 2015-07-21 2015-07-21 Способ производства горячекатаного листового проката из низколегированной стали

Country Status (1)

Country Link
RU (1) RU2591922C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2679675C1 (ru) * 2018-05-23 2019-02-12 Публичное акционерное общество "Северсталь" Способ производства конструкционного проката из низколегированной стали

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143019A1 (en) * 1999-09-29 2001-10-10 Nkk Corporation Sheet steel and method for producing sheet steel
RU2312905C1 (ru) * 2006-03-13 2007-12-20 Открытое акционерное общество "Северсталь" Способ производства полос из низколегированной стали
RU2318027C1 (ru) * 2006-06-13 2008-02-27 Открытое акционерное общество "Северсталь" Способ производства толстолистового проката
EP1905851A1 (en) * 2005-06-29 2008-04-02 JFE Steel Corporation High-carbon hot-rolled steel sheet and process for producing the same
RU2341564C2 (ru) * 2006-11-16 2008-12-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства горячекатаного листового проката
RU2341565C2 (ru) * 2006-11-13 2008-12-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства штрипсов из низколегированной стали
RU2436848C1 (ru) * 2010-11-08 2011-12-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства штрипсов в рулонах
RU2539640C2 (ru) * 2011-12-28 2015-01-20 Джей Эф И Стил Корпорэйшн Высокопрочный стальной лист, полученный методом горячей прокатки, имеющий хорошую формуемость, и способ его изготовления

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143019A1 (en) * 1999-09-29 2001-10-10 Nkk Corporation Sheet steel and method for producing sheet steel
EP1905851A1 (en) * 2005-06-29 2008-04-02 JFE Steel Corporation High-carbon hot-rolled steel sheet and process for producing the same
RU2312905C1 (ru) * 2006-03-13 2007-12-20 Открытое акционерное общество "Северсталь" Способ производства полос из низколегированной стали
RU2318027C1 (ru) * 2006-06-13 2008-02-27 Открытое акционерное общество "Северсталь" Способ производства толстолистового проката
RU2341565C2 (ru) * 2006-11-13 2008-12-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства штрипсов из низколегированной стали
RU2341564C2 (ru) * 2006-11-16 2008-12-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства горячекатаного листового проката
RU2436848C1 (ru) * 2010-11-08 2011-12-20 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства штрипсов в рулонах
RU2539640C2 (ru) * 2011-12-28 2015-01-20 Джей Эф И Стил Корпорэйшн Высокопрочный стальной лист, полученный методом горячей прокатки, имеющий хорошую формуемость, и способ его изготовления

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2679675C1 (ru) * 2018-05-23 2019-02-12 Публичное акционерное общество "Северсталь" Способ производства конструкционного проката из низколегированной стали

Similar Documents

Publication Publication Date Title
JP5050433B2 (ja) 極軟質高炭素熱延鋼板の製造方法
JP5979338B1 (ja) 材質均一性に優れた厚肉高靭性高張力鋼板およびその製造方法
CN105143486B (zh) 高强度热轧钢板及其制造方法
CN107406940A (zh) 高强度电阻焊钢管及其制造方法
RU2393239C1 (ru) Способ производства толстолистового низколегированного штрипса
RU2463359C1 (ru) Способ производства толстолистового низколегированного штрипса
JP2007262469A (ja) 鋼管およびその製造方法
CN101622368A (zh) 热处理用电阻焊钢管及其制造方法
CN102822374B (zh) 高强度电阻焊钢管及其制造方法
US20200340073A1 (en) Steel section having a thickness of at least 100mm and method of manufacturing the same
WO2019218135A1 (zh) 屈服强度1000MPa级低屈强比超高强钢及其制备方法
RU2466193C1 (ru) Способ производства толстолистового низколегированного проката
CN112410668B (zh) 一种780MPa级汽车结构用钢及生产方法
TW202122601A (zh) 電焊鋼管及其製造方法、輸送管以及建築構造物
RU2547087C1 (ru) Способ производства горячекатаного проката повышенной прочности
JP2010229514A (ja) 冷延鋼板およびその製造方法
TW202045745A (zh) 方形鋼管及其製造方法,以及建築構造物
RU2743534C1 (ru) Способ изготовления железнодорожных рельсов повышенной износостойкости и контактной выносливости
CN105063511B (zh) 中厚板轧机轧制超低碳贝氏体类薄规格钢板及其生产方法
RU2463360C1 (ru) Способ производства толстолистового низколегированного штрипса
JP2010126808A (ja) 冷延鋼板およびその製造方法
JP5266804B2 (ja) 圧延非調質鋼材の製造方法
TWI754213B (zh) 方形鋼管及其製造方法以及建築構造物
RU2591922C1 (ru) Способ производства горячекатаного листового проката из низколегированной стали
RU2341564C2 (ru) Способ производства горячекатаного листового проката