RU2590230C2 - Способ изготовления магнитно-индуктивного расходомера - Google Patents

Способ изготовления магнитно-индуктивного расходомера Download PDF

Info

Publication number
RU2590230C2
RU2590230C2 RU2013133686/28A RU2013133686A RU2590230C2 RU 2590230 C2 RU2590230 C2 RU 2590230C2 RU 2013133686/28 A RU2013133686/28 A RU 2013133686/28A RU 2013133686 A RU2013133686 A RU 2013133686A RU 2590230 C2 RU2590230 C2 RU 2590230C2
Authority
RU
Russia
Prior art keywords
measuring
measuring tube
penetration
electrodes
coating layer
Prior art date
Application number
RU2013133686/28A
Other languages
English (en)
Other versions
RU2013133686A (ru
Inventor
Жозеф НЕВЕН
Original Assignee
Кроне Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кроне Аг filed Critical Кроне Аг
Publication of RU2013133686A publication Critical patent/RU2013133686A/ru
Application granted granted Critical
Publication of RU2590230C2 publication Critical patent/RU2590230C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/588Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters combined constructions of electrodes, coils or magnetic circuits, accessories therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/584Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters constructions of electrodes, accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Изобретение относится к способу изготовления магнитно-индуктивного расходомера, содержащего по меньшей мере одну измерительную трубу для протекания электрически проводящей среды, по меньшей мере одно устройство для создания магнитного поля, проходящего, по меньшей мере, также перпендикулярно продольной оси измерительной трубы, и по меньшей мере два измерительных электрода. Измерительная труба (2) имеет металлическую основную часть, которая, по меньшей мере на внутренней стороне измерительной трубы, снабжена термопластичным покровным слоем, а виртуальная соединительная линия между двумя измерительными электродами проходит, по меньшей мере по существу, перпендикулярно направлению пронизывающего измерительную трубу перпендикулярно продольной оси измерительной трубы магнитного поля. Существенным отличием способа изготовления расходомера является то, что сначала в основной части (7) измерительной трубы (2) выполняют, предпочтительно посредством сверления, места (10) проникновения, служащие для ввода измерительных электродов (5, 6) в измерительную трубу (2). Затем основную часть (7) в области каждого из мест (10) проникновения снабжают термопластичным покровным слоем (8), после чего измерительные электроды (5, 6) посредством нагрева термопластичного покровного слоя (8) в области мест (10) проникновения непроницаемо для жидкости соединяют с измерительной трубой (2). Технический результат - упрощение способа изготовления магнитно-индуктивного расходомера, повышение его технологичности и снижение затрат энергии. 2 з.п. ф-лы, 5 ил.

Description

Изобретение относится к области измерительной техники, в частности к расходомерам.
Магнитно-индуктивные расходомеры широко известны из уровня техники на протяжении многих десятилетий. Для этого, в качестве примера, приводится ссылка на литературу «Technische Durchflussmessung», Prof. Dr.-Ing. K.W. Bonfig, 3 издание, издательство Vulkan Эссен, стр. 123-167, а также ссылка на литературу «Grundlagen Magnetisch-Induktive Durchflussmessung», Dipl.-Ing. Friedrich Hoffman, 3 издание 2003, печатное издание фирмы KROHNE Messtechnik & Co. KG.
Основополагающий принцип магнитно-индуктивного расходомера для измерения расхода протекающей среды восходит к Майклу Фарадею, который уже в 1832 году предложил применять принцип электромагнитной индукции для измерения скорости протекания электрически проводящей среды.
Согласно закону электромагнитной индукции в электрически проводящей среде, пронизанной магнитным полем, возникает напряженность электрического поля перпендикулярно направлению протекания среды и перпендикулярно магнитному полю. Закон электромагнитной индукции в магнитно-индуктивных расходомерах используется посредством того, что посредством устройства создания магнитного поля, которое имеет по меньшей мере одну катушку возбуждения, обычно две катушки возбуждения, во время процесса измерения создается изменяемое по времени магнитное поле, и магнитное поле, по меньшей мере, частично пронизывает протекающую через измерительную трубу электрически проводящую среду. При этом созданное магнитное поле имеет по меньшей мере одну составляющую перпендикулярно продольной оси измерительной трубы или же перпендикулярно направлению протекания среды.
Измерительная труба магнитно-индуктивного расходомера имеет металлическую основную часть, и основная часть, по меньшей мере, на внутренней стороне измерительной трубы снабжена термопластичным покровным слоем. Вместо такой измерительной трубы может также быть предусмотрена измерительная труба, которая вместо металлической основной части имеет неметаллическую основную часть, например керамическую основную часть. Также должны быть охвачены имеющиеся магнитно-индуктивные расходомеры, у которых измерительная труба полностью состоит из термопластичного материала. Но в последующем всегда исходят из того, что измерительная труба имеет металлическую основную часть и основная часть, по меньшей мере, на внутренней стороне измерительной трубы снабжена термопластичным покровным слоем. Формулировка «по меньшей мере, на внутренней стороне измерительной трубы», разумеется, содержит также форму осуществления, при которой основная часть на всех сторонах снабжена термопластичным покровным слоем.
Магнитно-индуктивный расходомер содержит по меньшей мере одно устройство создания магнитного поля для создания магнитного поля, проходящего, по меньшей мере, также перпендикулярно продольной оси измерительной трубы. Эта формулировка означает, что в предпочтительном случае магнитное поле проходит перпендикулярно продольной оси измерительной трубы или же перпендикулярно направлению протекания среды, но достаточным является то, что перпендикулярно продольной оси магнитного поля или же перпендикулярно направлению протекания среды проходит составляющая магнитного поля.
Магнитно-индуктивный расходомер также содержит по меньшей мере два измерительных электрода, причем виртуальная соединительная линия между двумя измерительными электродами проходит, по меньшей мере по существу, перпендикулярно пронизывающего измерительную трубу направлению магнитного поля. Предпочтительно, виртуальная соединительная линия между двумя измерительными электродами проходит фактически, более или менее, перпендикулярно направлению магнитного поля, пронизывающего магнитное поле.
Созданная посредством индукции в текущей электрически проводящей среде напряженность электрического поля может измеряться непосредственно, то есть гальванически находящимися в контакте со средой измерительными электродами, в качестве электрического напряжения или также опосредованно, то есть не гальванически с помощью находящихся в контакте со средой измерительных электродов, определяться емкостно. В данном случае речь идет о магнитно-индуктивных расходомерах, у которых созданная посредством индукции в протекающей электрически проводящей среде напряженность электрического поля измеряется непосредственно в качестве электрического напряжения, то есть гальванически находящимися в контакте со средой измерительными электродами.
Так как погрешности измерения у известных из уровня техники магнитно-индуктивных расходомеров на настоящий момент относительно малы, может быть реализован расходомер с погрешностью измерения менее чем 0,2%.
На известные магнитно-индуктивные расходомеры приводится ссылка, например на немецкие выложенные заявки 19708857, 102004063617, 102008057755 и 102008057756, а также на еще не опубликованную патентную заявку 102011119982.2. Объем раскрытия вышеназванных опубликованных публикациях и объем раскрытия вышеназванной еще неопубликованной патентной заявки здесь определенно становится объемом раскрытия данной патентной заявки.
Помимо этого выше было указано, что речь идет о магнитно-индуктивных расходомерах, у которых созданная посредством индукции в текущей электрически проводящей среде напряженность электрического поля измеряется в качестве электрического напряжения непосредственно, то есть находящимися в контакте со средой гальванически измерительными электродами.
Таким образом, задачей изобретения является разработка способа изготовления магнитно-индуктивного расходомера, с помощью которого простым образом непроницаемо для жидкости могут быть реализованы места проникновения измерительных электродов в измерительную трубу, то есть простым образом могут быть реализованы проникающие в измерительную трубу измерительные электроды.
Для решения поставленной задачи предложен способ изготовления магнитно-индуктивного расходомера, содержащего по меньшей мере одну измерительную трубу для протекания электрически проводящей среды, по меньшей мере одно устройство для создания магнитного поля, проходящего, по меньшей мере, также перпендикулярно продольной оси измерительной трубы, и по меньшей мере два измерительных электрода, причем измерительная труба имеет металлическую основную часть, которая, по меньшей мере на внутренней стороне измерительной трубы, снабжена термопластичным покровным слоем, а виртуальная соединительная линия между двумя измерительными электродами проходит, по меньшей мере по существу, перпендикулярно направлению пронизывающего измерительную трубу перпендикулярно продольной оси измерительной трубы магнитного поля. В соответствии с предлагаемым в изобретении способом сначала в основной части измерительной трубы выполняют, предпочтительно посредством сверления, места проникновения, служащие для ввода измерительных электродов в измерительную трубу, затем основную часть в области каждого из мест проникновения снабжают термопластичным покровным слоем, после чего измерительные электроды посредством нагрева термопластичного покровного слоя в области мест проникновения непроницаемо для жидкости соединяют с измерительной трубой.
При осуществлении изобретения достигаются следующие технические результаты:
- упрощение установки измерительных электродов в измерительной трубе, обеспечиваемое за счет местного нагрева покровного слоя в области мест проникновения с последующим схватыванием нагретых участков покровного слоя и фиксацией измерительных электродов;
- повышение технологичности способа за счет возможности выбора произвольного интервала времени между формированием покровного слоя и установкой измерительных электродов в измерительной трубе;
- снижение затрат энергии за счет местного нагрева покровного слоя, ограниченного областями мест проникновения.
В магнитно-индуктивном расходомере, изготавливаемом согласно изобретению, прежде всего, имеет значение то, что покровный слой, которым снабжена основная часть измерительной трубы, осуществлен также внутри мест проникновения. Также выше было указано, что основная часть, по меньшей мере, на внутренней стороне измерительной трубы снабжена термопластичным покровным слоем, это включает в себя то, что термопластичный покровный слой простирается из основной части к местам проникновения. Также необязательным является то, что термопластичный покровный слой осуществлен также на наружной стороне измерительной трубы основной части, даже если преимущественно и предпочтительно для измерительной трубы магнитно-индуктивного расходомера является действительным то, что основная часть на всех сторонах снабжена термопластичным покровным слоем, то есть этот термопластичный слой предусмотрен на внутренней стороне измерительной трубы основной части, на наружной стороне основной части и в области мест проникновения, то есть основная часть полностью окружена термопластичным покровным слоем, также в области мест проникновения.
Для того чтобы измерительные электроды могли относительно просто быть размещены в измерительной трубе, то есть могли быть введены в места проникновения, наружный диаметр измерительных электродов в области мест проникновения меньше, чем внутренний диаметр мест проникновения.
В остальном, предпочтительная форма осуществления магнитно-индуктивного расходомера согласно изобретению отличается тем, что измерительные электроды имеют прилегающий снаружи к измерительной трубе буртик, а измерительная труба в области мест проникновения имеет поверхности прилегания для буртика измерительных электродов. Эти поверхности прилегания, прежде всего, оказывают содействие при вводе измерительных электродов в места проникновения измерительной трубы. Они служат практически в качестве упора, так что благодаря этому измерительные электроды могут быть размещены правильно, что они вводятся настолько в места проникновения, что лежащий снаружи буртик вступает в контакт с поверхностью прилегания. Кроме того, в этой форме осуществления также между буртиком измерительных электродов и осуществленными на измерительной трубе в области мест проникновения поверхностями прилегания возникает непроницаемое для жидкости соединение, когда термопластичный покровный слой, как было предпочтительно представлено выше, полностью окружает основную часть, то есть предусмотрен не только в области мест проникновения, то также в области поверхностей прилегания.
Из того, что было указано выше и из того, что было выполнено со ссылкой на лежащую в основе данного изобретения задачу следует то, что предметом изобретения является не только вышеописанный магнитно-индуктивный расходомер, но что предметом изобретения также является способ изготовления такого магнитно-индуктивного расходомера. То, что особое значение может иметь изготовление магнитно-индуктивного расходомера, также вытекает из того, что было указано выше.
Если выше указано, что на второй стадии технологического процесса основную часть в любом случае в области мест проникновения снабжают термопластичным покровным слоем, тогда учитывается то, что, с одной стороны, термопластичный покровный слой является функционально необходимым только в области мест проникновения, с другой стороны, термопластичный покровный слой может быть также осуществлен на внутренней стороне измерительной трубы до ввода в основную часть измерительной трубы служащих для проникновения измерительных электродов в измерительную трубу мест проникновения. Однако предпочтительно, сначала не содержащую покровного слоя основную часть снабжают местами проникновения, а затем основную часть в целом снабжают термопластичным покровным слоем, то есть на внутренней стороне измерительной трубы, наружной стороне измерительной трубы и внутренней стороне, соединяющейся с наружной стороной в области мест проникновения.
Ранее, в качестве третьей стадии технологического процесса рассматривалось непроницаемое для жидкости соединение измерительных электродов с измерительной трубой, а именно посредством этапа нагрева согласно изобретению термопластичного покровного слоя в области мест проникновения.
Описанная последней стадия технологического процесса изготовления согласно изобретению магнитно-индуктивного расходомера может осуществляться различными способами. Одна возможность состоит в том, что измерительные электроды нагревают до необходимой для соединения измерительных электродов с покровным слоем измерительной трубы температуры, а затем вводят, предпочтительно с незначительной силой проникновения, в места проникновения. Другая возможность отличается тем, что измерительные электроды сначала вводят в места проникновения, а затем, если они введены в места проникновения, нагревают, предпочтительно посредством индуктивного нагрева, до необходимой для соединения измерительных электродов с покровным слоем измерительной трубы температуры. Последняя описанная возможность имеет преимущество перед возможностью, описанной первой, в отсутствие необходимости манипуляции горячими предметами, а именно ранее нагретыми измерительными электродами.
Существенным для магнитно-индуктивного расходомера согласно изобретению и существенным для способа согласно изобретению для изготовления магнитно-индуктивного расходомера согласно изобретению является покровный слой, который, по меньшей мере, частично, предпочтительно полностью, покрывает основную часть измерительной трубы, который при нагревании так приплавляется или наплавляется к поверхности, что с помощью введенных электродов возникает непроницаемое для жидкости соединение.
В качестве материала для термопластичного покровного слоя подходит, прежде всего, такой, который среди, всего прочего, продается под обозначением "Рилсан". Химическое обозначение для материала "Рилсан" - полиамид 11. Это порошкообразный, термопластичный синтетический материал, который изготавливается на основе цветочного касторового масла. При этом касторовое масло обрабатывается в мономер, из которого посредством полимеризации возникает полиамид 11.
Преимущества согласно изобретению, возникающие как у магнитно-индуктивного расходомера, так и у способа согласно изобретению для изготовления магнитно-индуктивного расходомера, прежде всего, можно увидеть в том, прежде всего, принимая во внимания то, что в случае с магнитно-индуктивными расходомерами согласно изобретению речь может идти о продуктах массового производства, что особо простым и недорогим образом достигается непроницаемое для жидкости соединение между введенными в измерительную трубу измерительными электродами и измерительной трубой. Для непроницаемого для жидкости соединения не требуется особого уплотняющего средства, то есть, например, никакого уплотнительного кольца, но также и никакого затратного ввинчивания измерительных электродов.
Прежде всего, теперь существуют различные возможности для формирования и усовершенствования магнитно-индуктивного расходомера и способа для изготовления такого расходомера. Для этого, с одной стороны, приводится ссылка на пункты формулы изобретения, зависимые от независимого пункта, с другой стороны, на описанный далее и изображенный схематично на чертеже пример осуществления магнитно-индуктивного расходомера согласно изобретению. На чертежах показано:
Фиг. 1 - схематичное изображение магнитно-индуктивного расходомера в его основном конструктивном размере.
Фиг. 2 - измерительная труба магнитно-индуктивного расходомера согласно фиг. 1 в схематичном изображении в разрезе,
Фиг. 3 - измерительная труба согласно фиг. 2 в другом виде сбоку, также снова в изображении в разрезе,
Фиг. 4 - схематичное изображение поперечного сечения измерительного участка измерительной трубы согласно фиг. 1-3 в области не изображенных измерительных электродов.
Фиг. 5 - увеличенное изображение по сравнению с фиг. 4, поперечное сечение измерительного участка измерительной трубы согласно фиг. 1-3 в области измерительных электродов с введенными в измерительную трубу измерительными электродами.
На фиг. 1 лишь схематично показан магнитно-индуктивный расходомер с измерительной трубой 2 для протекания электрически проводящей среды с устройством 3 создания магнитного поля для создания магнитного поля, протекающего, по меньшей мере, также перпендикулярно продольной оси 4 измерительной трубы 2 и с двумя измерительными электродами, причем измерительная труба 1, как показано на фиг. 5, имеет металлическую основную часть 7, и металлическая основная часть 7 на всех сторонах снабжена термопластичным покровным слоем 8, и причем виртуальная соединительная линия 9 обоих измерительных электродов 5, 6 проходит перпендикулярно направлению магнитного поля, пронизывающего измерительную трубу 2 перпендикулярно продольной оси 4 измерительной трубы 2.
Прежде всего, измерительная труба 2 имеет участок 2а втекания, прилегающий к участку 2а втекания, измерительный участок 2b, и прилегающий к измерительному участку 2b участок 2с вытекания.
Только на фиг. 1 указано, что к устройству 3 создания магнитного поля относятся две полые пластины 3а и две катушки 3b электромагнита.
Для изображенного на фигурах примера осуществления магнитно-индуктивного расходомера 1 согласно изобретению является действительным, как показано на фиг. 1 и фиг. 2, что измерительная труба 2 в начале участка 2а втекания и в конце участка 2с вытекания имеет кругообразное поперечное сечение. В противоположность этому, измерительная труба 2 в области измерительного участка 2b имеет более или менее прямоугольное поперечное сечение, что показывает сравнение фиг. 1 и фиг. 2, с одной стороны, и фиг. 3, с другой стороны, прежде всего фиг. 4 и 5.
В отношении того, что достигается благодаря геометрии показанной на фигурах измерительной трубы 2, приводится ссылка на еще не опубликованную патентную заявку 102011119982.2.
Как показано на фиг. 5, а именно как на фиг. 5А, так и на фиг. 5Б, на местах 10 проникновения - на местах, на которых измерительные электроды 5, 6 проникают в измерительную трубу 2, - в области измерительного участка 2b между термопластичным покровным слоем 8 измерительной трубы 2 и измерительными электродами 5 и 6 осуществляется возникающей вследствие нагрева покровного слоя 8, непроницаемое для жидкости соединение.
Невозможно распознать, что наружный диаметр измерительных электродов 5, 6 в области, в которой они находятся в области мест 10 проникновения незначительно меньше, чем внутренний диаметр мест 10 проникновения.
В остальном, на фиг. 5 показан предпочтительный пример осуществления магнитно-индуктивного расходомера 1, когда измерительные электроды 5, 6 имеют буртик 12, прилегающий снаружи к измерительной трубе 2 в области измерительного участка 2b, а измерительная труба 2 в области мест 10 проникновения имеет поверхности 13 прилегания для буртика 12 измерительных электродов 5, 6. В примере осуществления согласно фиг. 5А основная часть 7 имеет сплошную одинаковую толщину стенки, а покровный слой 8 для осуществления поверхностей прилегания имеет немного более крупную толщину стенки. В противоположность этому, для примера осуществления согласно фиг. 5Б является действительным то, что основная часть 7 для осуществления поверхностей 13 прилегания в соответствующей области имеет большую толщину стенки, тогда как покровный слой 8 имеет сплошную, остающуюся одинаковой, толщину стенки.
Для изготовления вышеописанного магнитно-индуктивного расходомера 1 согласно изобретению является действительным то, что сначала в основную часть 7 измерительной трубы 2, разумеется, в области измерительного участка 2b, вводятся, предпочтительно посредством сверления, служащие для проникновения измерительных электродов 5, 6 в измерительную трубу 2 места 10 проникновения, что затем основная часть 7 - в каждом случае в области мест 10 проникновения, но предпочтительно вместе - оснащается термопластичным слоем 8, и что в заключение измерительные электроды 5, 6 с помощью нагрева термопластичного слоя 8 в области мест 10 проникновения непроницаемо для жидкости соединяются с измерительной трубой 2.
Вышеописанная третья стадия способа - непроницаемое для жидкости соединение измерительных электродов 5, 6 с измерительной трубой 2 - может осуществляться различными способами. Одна возможность состоит в том, что измерительные электроды 5 и 6, а именно еще не введенные, нагреваются до необходимой для соединения измерительных электродов 5, 6 с покровным слоем 8 измерительной трубы 2 температуры, а затем, предпочтительно с помощью незначительной силы проникновения, нагретые измерительные электроды вводятся в места 10 проникновения. Другой, а именно предпочтительный, способ отличается тем, что измерительные электроды 5, 6 сначала вводятся в места 10 проникновения измерительной трубы 2, а затем, когда они введены в места 10 проникновения, нагреваются до необходимой для соединения измерительных электродов 5, 6 с покровным слоем измерительной трубы 2 температуры, что, предпочтительно, может происходить посредством индуктивного нагрева.

Claims (3)

1. Способ изготовления магнитно-индуктивного расходомера, содержащего по меньшей мере одну измерительную трубу для протекания электрически проводящей среды, по меньшей мере одно устройство для создания магнитного поля, проходящего, по меньшей мере, также перпендикулярно продольной оси измерительной трубы, и по меньшей мере два измерительных электрода, причем измерительная труба имеет металлическую основную часть, которая, по меньшей мере на внутренней стороне измерительной трубы, снабжена термопластичным покровным слоем, а виртуальная соединительная линия между двумя измерительными электродами проходит, по меньшей мере по существу, перпендикулярно направлению пронизывающего измерительную трубу перпендикулярно продольной оси измерительной трубы магнитного поля, отличающийся тем, что сначала в основной части (7) измерительной трубы (2) выполняют, предпочтительно посредством сверления, места (10) проникновения, служащие для ввода измерительных электродов (5, 6) в измерительную трубу (2), затем основную часть (7) в области каждого из мест (10) проникновения снабжают термопластичным покровным слоем (8), после чего измерительные электроды (5, 6) посредством нагрева термопластичного покровного слоя (8) в области мест (10) проникновения непроницаемо для жидкости соединяют с измерительной трубой (2).
2. Способ по п. 1, отличающийся тем, что измерительные электроды (5, 6) нагревают до температуры, необходимой для соединения измерительных электродов (5, 6) с покровным слоем (8) измерительной трубы (2), а затем, предпочтительно с помощью незначительной силы вдавливания, вводят в места (10) проникновения.
3. Способ по п. 1, отличающийся тем, что измерительные электроды (5, 6) сначала вводят в места (10) проникновения, а затем, когда они введены в места (10) проникновения, нагревают, предпочтительно посредством индуктивного нагрева, до необходимой температуры.
RU2013133686/28A 2012-08-21 2013-07-19 Способ изготовления магнитно-индуктивного расходомера RU2590230C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102012016407 2012-08-21
DE102012016407.6 2012-08-21
DE102012017904.9A DE102012017904A1 (de) 2012-08-21 2012-09-11 Magnetisch-induktives Durchflussmessgerät und Verfahren zu seiner Herstellung
DE102012017904.9 2012-09-11

Publications (2)

Publication Number Publication Date
RU2013133686A RU2013133686A (ru) 2015-01-27
RU2590230C2 true RU2590230C2 (ru) 2016-07-10

Family

ID=47891357

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013133686/28A RU2590230C2 (ru) 2012-08-21 2013-07-19 Способ изготовления магнитно-индуктивного расходомера

Country Status (7)

Country Link
US (2) US9121740B2 (ru)
EP (1) EP2700912B1 (ru)
JP (1) JP2014041114A (ru)
CN (1) CN103630173A (ru)
CA (1) CA2816709C (ru)
DE (1) DE102012017904A1 (ru)
RU (1) RU2590230C2 (ru)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012014266A1 (de) * 2012-07-19 2014-01-23 Krohne Ag Magnetisch-induktives Durchflussmessgerät
DE102012017904A1 (de) * 2012-08-21 2014-03-20 Krohne Ag Magnetisch-induktives Durchflussmessgerät und Verfahren zu seiner Herstellung
DE102013107895A1 (de) * 2013-07-24 2015-01-29 Endress + Hauser Flowtec Ag Durchflussmessgerät
DE102014001479B4 (de) 2014-02-06 2016-03-10 Krohne Ag Magenetisch-induktives Durchflussmessgerät
DE102014113408A1 (de) * 2014-09-17 2016-03-17 Endress + Hauser Flowtec Ag Verfahren zur Herstellung eines Magnetisch-induktives Durchfluss- messgeräts mit zum Teil reduziertem Querschnitt
DE102014113843A1 (de) 2014-09-24 2016-03-24 Endress+Hauser Flowtec Ag Messrohr für ein Durchflussmessgerät und ein magnetisch-induktives Durchflussmessgerät
DE102015116679A1 (de) * 2015-01-14 2016-07-14 Krohne Ag Magnetisch-induktives Durchflussmessgerät
DE102015116676A1 (de) 2015-01-20 2016-07-21 Krohne Ag Magnetisch-induktives Durchflussmessgerät und Verfahren zum Herstellen einer Messelektrode
EP3048431B1 (de) 2015-01-20 2020-07-29 Krohne AG Magnetisch-induktives durchflussmessgerät und verfahren zur herstellung einer messelektrode
DE102015107119A1 (de) * 2015-05-07 2016-11-10 Endress + Hauser Flowtec Ag Messrohr und Magnetisch-induktives Durchflussmessgerät
DE102018001977A1 (de) 2018-03-12 2019-09-12 Daimler Ag Verbrennungskraftmaschine, insbesondere für ein Kraftfahrzeug, sowie Verfahren zum Betreiben einer solchen Verbrennungskraftmaschine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008036962A1 (de) * 2008-08-08 2010-02-11 Endress + Hauser Flowtec Ag Magnetisch-induktives Durchflussmessgerät mit einer Elektrodenanordnung und Verfahren zu dessen Fertigung
EP2192390A2 (de) * 2008-11-26 2010-06-02 Krohne AG Magnetisch-induktives Durchflußmeßgerät

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116954A (en) * 1974-08-01 1976-02-10 Kureha Chemical Ind Co Ltd Netsukasoseijushide rainingusareta denkyokutsukikinzokuheki
US4390578A (en) * 1980-03-13 1983-06-28 Blacknell Buildings Limited Method of joining members
JPS56164917A (en) * 1980-05-23 1981-12-18 Yokogawa Hokushin Electric Corp Mounting method for electrode of electromagnetic flowmeter
JPS5817318A (ja) * 1981-07-23 1983-02-01 Yokogawa Hokushin Electric Corp 電磁流量計
JPS59168323A (ja) * 1983-03-16 1984-09-22 Yamatake Honeywell Co Ltd 電磁流量計
US4782709A (en) * 1985-08-19 1988-11-08 Yamatake-Honeywell Co., Ltd. Electromagnetic flowmeter
US4773275A (en) * 1986-05-27 1988-09-27 The Foxboro Company Seal for ceramic flow tube
JPS6351225U (ru) * 1986-09-24 1988-04-06
US5280727A (en) * 1987-09-11 1994-01-25 Endress+Hauser Flowtec Ag Electromagnetic flow measuring tube and method of making same
EP0306895B1 (de) * 1987-09-11 1994-12-07 Endress + Hauser Flowtec AG Verfahren zur Herstellung eines Messrohres für magnetisch-induktive Durchflussmessung
US5224394A (en) * 1991-03-27 1993-07-06 The Foxboro Company Electrode seal assembly for a ceramic flow tube
US5289725A (en) * 1991-07-31 1994-03-01 The Foxboro Company Monolithic flow tube with improved dielectric properties for use with a magnetic flowmeter
JP2545656B2 (ja) * 1991-10-09 1996-10-23 山武ハネウエル株式会社 電磁流量計用電極の製造方法
DE4302158C2 (de) * 1993-01-27 1996-07-11 Turbo Werk Messtechnik Gmbh Magnetisch-induktiver Durchflußmesser
DE4317366C2 (de) * 1993-05-25 1997-04-17 Ultrakust Electronic Gmbh Verfahren und Vorrichtung zur Bestimmung eines Volumenstromes
US5955681A (en) * 1995-10-18 1999-09-21 Hafner; Peter Galvanic electrode of an electromagnetic flow meter
DE19655107C2 (de) * 1996-04-17 2002-11-14 Krohne Messtechnik Kg Magnetisch-induktives Durchflußmeßgerät
DE19708857A1 (de) 1996-12-20 1998-07-02 Krohne Ag Magnetisch-induktives Durchflußmeßgerät für strömende Medien
DE102004063617A1 (de) 2004-12-02 2006-06-08 Krohne Ag Magnetisch-induktives Durchflußmeßgerät und Herstellungsverfahren für ein magnetisch-induktives Durchflußmeßgerät
DE102005030193A1 (de) * 2005-06-29 2007-01-04 Abb Patent Gmbh Verfahren zum Einsetzen von Messelektroden bei einem magnetisch-induktiven Durchflussmesser
DE102008057756A1 (de) 2008-11-17 2010-05-27 Krohne Ag Magnetisch-induktives Durchflußmeßgerät
DE102008057755B4 (de) 2008-11-17 2015-12-17 Krohne Ag Magnetisch-induktives Durchflußmeßgerät
DE102010056077A1 (de) * 2010-12-23 2012-06-28 Abb Technology Ag Magnetisch-induktiver Durchflussmesser mit einer innenwandseitig des Messrohres angeordneten Auskleidung
DE102011104799B4 (de) * 2011-06-06 2013-04-25 Krohne Messtechnik Gmbh Magnetisch-induktives Durchflussmessgerät und Verfahren zu dessen Betreiben
DE102011119982A1 (de) 2011-12-02 2013-06-06 Krohne Ag Magnetisch-induktives Durchflussmessgerät
DE102012006891B4 (de) * 2012-04-05 2019-05-23 Krohne Ag Magnetisch-induktives Durchflussmessgerät
DE102012017904A1 (de) * 2012-08-21 2014-03-20 Krohne Ag Magnetisch-induktives Durchflussmessgerät und Verfahren zu seiner Herstellung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008036962A1 (de) * 2008-08-08 2010-02-11 Endress + Hauser Flowtec Ag Magnetisch-induktives Durchflussmessgerät mit einer Elektrodenanordnung und Verfahren zu dessen Fertigung
EP2192390A2 (de) * 2008-11-26 2010-06-02 Krohne AG Magnetisch-induktives Durchflußmeßgerät

Also Published As

Publication number Publication date
US9829359B2 (en) 2017-11-28
CA2816709A1 (en) 2014-02-21
EP2700912A3 (de) 2014-07-02
CN103630173A (zh) 2014-03-12
EP2700912B1 (de) 2016-06-22
EP2700912A2 (de) 2014-02-26
CA2816709C (en) 2018-02-20
US20150300852A1 (en) 2015-10-22
RU2013133686A (ru) 2015-01-27
US9121740B2 (en) 2015-09-01
DE102012017904A1 (de) 2014-03-20
US20140053658A1 (en) 2014-02-27
JP2014041114A (ja) 2014-03-06

Similar Documents

Publication Publication Date Title
RU2590230C2 (ru) Способ изготовления магнитно-индуктивного расходомера
EP2583067B1 (de) Verfahren zur herstellung eines magnetisch-induktiven durchflussmessgeräts
JP5364254B2 (ja) 流量測定器
JP2010122215A (ja) 磁気誘導性の流量測定器
CN105157768A (zh) 用于水平井油气水多相流流量测量的电磁阵列相关传感器及***
EP3517900A1 (en) Electromagnetic flowmeter
EP3891476B1 (de) Magnetisch-induktives durchflussmessgerät
DE102010056279A1 (de) Vortex-Durchflussmessgerät mit optimierter Temperaturerfassung
RU2411454C2 (ru) Магнитно-индуктивный измерительный преобразователь
DE102005009675B3 (de) Durchflußmeßgerät
GB2068122A (en) Electromagnetic flowmeters
JP4063739B2 (ja) 磁気誘導式の流量測定装置
CN107636422A (zh) 测量管和磁感应流量测量装置
US11747179B2 (en) Magnetic inductive flow meter having an insulated electrode
DE102004053065B4 (de) Magnetisch induktiver Durchflussmesser
EP3870938B1 (de) Magnetisch-induktives durchflussmessgerät
CN104956190B (zh) 使得磁感应流量计工作的方法
US7770468B2 (en) Magnetic induction flowmeter having a plastic measuring tube
US20230417584A1 (en) Magnetic-inductive flowmeter
JPH01140022A (ja) 電磁流量計
JPH04198816A (ja) 電磁流量計
DE102022119143A1 (de) Edelstahlprodukt, Feldgerät und Verfahren zur Herstellung
WO2018229523A1 (en) An electromagnetic flowmeter assembly
JP2018189403A (ja) 電磁流量計
JP2001194194A (ja) 電磁流量計