RU2586415C2 - Способ быстрого подключения парогенератора - Google Patents

Способ быстрого подключения парогенератора Download PDF

Info

Publication number
RU2586415C2
RU2586415C2 RU2012152097/06A RU2012152097A RU2586415C2 RU 2586415 C2 RU2586415 C2 RU 2586415C2 RU 2012152097/06 A RU2012152097/06 A RU 2012152097/06A RU 2012152097 A RU2012152097 A RU 2012152097A RU 2586415 C2 RU2586415 C2 RU 2586415C2
Authority
RU
Russia
Prior art keywords
steam
steam generator
generator
opened
valves
Prior art date
Application number
RU2012152097/06A
Other languages
English (en)
Other versions
RU2012152097A (ru
Inventor
Маттиас МИГЛЬ
Эрих ШМИД
Георг ПЕТЕРС
Христиан ХЕРМСДОРФ
Михаель ШЁТТЛЕР
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2012152097A publication Critical patent/RU2012152097A/ru
Application granted granted Critical
Publication of RU2586415C2 publication Critical patent/RU2586415C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/24Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters with heating by separately-fired heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/006Auxiliaries or details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к энергетике. Способ подключения, по меньшей мере, одного второго парогенератора к первому парогенератору в энергетической установке, содержащей, по меньшей мере, два парогенератора и одну паровую турбину, заключается в том, что используемая для приведения в движение паровой турбины текучая среда направляется в один из содержащих некоторое количество систем пара контуров текучей среды, причем системы пара относятся к отдельным парогенераторам с возможностью их отделения друг от друга при помощи запорных арматур. Текучую среду, по меньшей мере, одного первого парогенератора переключают на паровую турбину. Прежде чем пар, по меньшей мере, одного второго парогенератора достигнет примерно одинаковых с первым парогенератором параметров пара, открывают запорную арматуру, по меньшей мере, одной первой системы пара, по меньшей мере, одного второго парогенератора, в результате чего пар может проходить во второй парогенератор. Изобретение позволяет сократить время подключения второго парогенератора к турбине. 3 н. и 16 з.п. ф-лы, 3 ил.

Description

Изобретение относится к способу быстрого подключения, по меньшей мере, одного дополнительного парогенератора к первому парогенератору в энергетической установке. Изобретение относится, кроме того, к осуществлению способа в газопаротурбинной установке и в паротурбинной электростанции.
В энергетической установке, в которой к паровой турбине подключены два или большее количество парогенераторов, при совместной эксплуатации или подключении второго или третьего парогенераторов необходимо приводить системы пара к почти одинаковым параметрам (давление и температура пара) для возможности соединения систем при открывании запорных арматур.
Для этого требуется определенное время и в большинстве случаев для этого необходимо поддерживать также постоянной мощность парогенератора, чтобы при соединении иметь наиболее постоянные и стабильные параметры. В противном случае вследствие изменения давления, температуры или изменений массы пара могут происходить нарушения внутри систем парогенератора (изменения уровня барабана) или эксплуатации паровых турбин (срабатывание предельных значений, отключение паровых турбин). Вследствие этого для подключения требуется определенное время, а мощность электростанции нельзя быстро увеличивать, хотя это и желательно. Кроме того, выработанный во время подключения пар перебрасывается через перепускные системы в конденсатор, а вследствие этого уменьшается КПД установки.
Известен способ, при котором системы пара приводят к примерно одинаковому давлению и температуре согласно определенной логической последовательности и в определенной последовательности соединяют их. Например, в паровых установках с простым промежуточным перегревом сначала на одинаковые параметры пара регулируют холодную систему промежуточного перегрева, а, открывая задвижки холодного промежуточного перегрева, соединяют с находящейся в эксплуатации с паровой турбиной системой промежуточного перегрева. Затем таким же способом соединяют систему пара высокого давления второго парогенератора с находящимся в эксплуатации первым парогенератором. Затем при выравнивании давления и температуры присоединяют также и горячую систему промежуточного перегрева, открывая паровую задвижку в горячей системе промежуточного перегрева. При этом перепускные системы при регулировании соответственно закрыты, а вследствие этого паровая турбина нагружается сильнее. Таким же способом после этих этапов соединяют систему пара низкого давления с системой пара низкого давления второго парогенератора. Недостатком является то, что при осуществлении этого способа требуется очень много времени.
Альтернативно к этому можно также открывать одновременно запорные арматуры различных систем давления после согласования различных уровней давления и температуры, а второй парогенератор соединять с первым и с уже находящимся в эксплуатации с паровой турбиной парогенератором. Также и в этом случае требуется выдерживать постоянной мощность парогенератора в газопаротурбинных установках, вместе с этим также и мощность газовой турбины, т.е. дальнейшая эксплуатация парогенератора с повышенной мощностью останавливается. Хотя этот способ осуществляется быстрее, однако существует опасность одновременного возникновения неполадок в нескольких системах и возможность их взаимного влияния. Вследствие этого становится существенно более вероятным самопроизвольное отключение паровой турбины или парогенератора из-за срабатывания предельных значений (высокий уровень барабана или низкий уровень барабана, слишком мало или слишком много пара в направлении паровой турбины).
Поэтому задача изобретения состоит в создании такого способа подключения второго парогенератора, посредством которого сокращается время подключения. Наблюдавшиеся ранее задержки при подключении второго или третьего парогенератора при сдерживании мощности парогенератора или при соединении самих паровых систем должны быть как можно меньшими или совсем устранены.
Эта задача решается признаками способа согласно пункту 1 формулы изобретения. Предпочтительные усовершенствованные варианты изобретения представлены в зависимых пунктах формулы изобретения.
Подключая, по меньшей мере, один дополнительный парогенератор к первому парогенератору в энергетической установке, содержащей, по меньшей мере, два парогенератора и паровую турбину, в которой используемая для приведения в движение паровой турбины текучая среда направляется в один содержащий несколько паровых систем контур текучей среды, причем паровые системы относятся к отдельным парогенераторам и имеют возможность отсоединения их друг от друга при помощи запорных арматур, а текучую среду, по меньшей мере, одного первого парогенератора переключают на паровую турбину, прежде чем пар, по меньшей мере, одного второго парогенератора не достигнет примерно одинаковых с первым парогенератором параметров пара, открывают запорную арматуру, по меньшей мере, одной первой паровой системы, по меньшей мере, одного второго парогенератора, поэтому пар может проходить в другой парогенератор, - можно осуществлять соединение паровых систем уже при использовании с полной мощностью второго парогенератора, не приостанавливая повышение мощности. Это позволяет не терять время на соединение и как можно быстрее закрывать перепускные системы.
Предпочтительно, если запорную арматуру, по меньшей мере, одной первой паровой системы открывают в холодном трубопроводе промежуточного перегрева. Частичное открытие арматуры в холодном промежуточном перегреве приводит к тому, что из находящейся в эксплуатации системы, содержащей паровую турбину и первый парогенератор, пар направляют в систему промежуточного перегрева второго парогенератора и наполняют ее практически до одинакового давления.
Целесообразно, продолжают повышать температуру и давление текучей среды, по меньшей мере, во второй паровой системе, по меньшей мере, второго парогенератора и пар второй паровой системы направляют в обход в первую паровую систему другого парогенератора, поэтому пар второго парогенератора протекает через открытую запорную арматуру в первый парогенератор. Частично открытая запорная арматура холодного промежуточного перегрева обеспечивает, что пар из паровой системы высокого давления второго парогенератора, еще не имеющий при эксплуатации с полной мощностью этого второго парогенератора параметры для возможности подключения к ступени высокого давления паровой турбины и поэтому направляемый через перепускную систему высокого давления в холодный трубопровод промежуточного перегрева и который нельзя отвести от перепускной системы среднего давления, направляют противотоком в находящуюся в эксплуатации холодную систему промежуточного перегрева первого парогенератора, а через его промежуточный перегрев он проходит к паровой турбине и вследствие этого уже приводит к повышению мощности паровой турбины.
Предпочтительно, если, по меньшей мере, во второй из паровых систем второго парогенератора открывают его запорную арматуру, в частности, в трубопровод высокого давления или трубопровод свежего пара и в трубопровод низкого давления. Это возможно, так как в системе высокого давления и низкого давления, как правило, имеется обратная арматура, предотвращающая противоток из находящейся в эксплуатации системы. При повышении мощности второго парогенератора (или газовой турбины в газопаротурбинных установках) продолжают повышаться температура и давление пара. Посредством модифицированного регулирования давления (например, при переходе на управляемое потоком регулирование перепускным клапаном высокого давления) достигают того, что происходит умеренное выравнивание давления с находящимся в эксплуатации первым парогенератором. При выравнивании давления открываются обратные арматуры системы пара высокого давления и системы пара низкого давления второго парогенератора и поток пара проходит в направлении паровой турбины. Если в этих паропроводах обратная арматура отсутствует, то одинакового эффекта можно достичь, открывая соответствующие запорные арматуры при измеренном выравнивании давления.
Для контроля измерения повышения температуры пара во втором парогенераторе или для возможности нормальной работы впрыскивающих охладителей, предпочтительно, если в системе промежуточного перегрева второго парогенератора создают небольшой поток, например, при небольшом открывании клапана в перепуске среднего давления или подогревательном трубопроводе, впадающем в горячий трубопровод промежуточного перегрева.
Целесообразно, если перепускной клапан закрывают после того, как соответствующие запорные арматуры открыты, поэтому полученный пар принимается паровой турбиной и больше не направляется в конденсатор.
Предпочтительно, если запорную арматуру в горячем трубопроводе промежуточного перегрева открывают как только температура пара второго парогенератора достигнет температуры пара первого парогенератора. Арматура холодного промежуточного перегрева регулирует в этом случае массу пара, почти соответствующую произведенной массе пара высокого давления, для предотвращения возможной несимметричной нагрузки в обоих парогенераторах.
Целесообразно, если запорную арматуру продолжают соответственно открывать в холодном промежуточном перегреве при увеличении потока в системе пара высокого давления второго парогенератора.
Целесообразно в газопаротурбинной установке открывать запорную арматуру при синхронизации относящейся к второму парогенератору газовой турбины.
Предпочтительно осуществлять способ в газопаротурбинной установке или в многоблочной паротурбинной электростанции.
Согласно изобретению подключение осуществляют не как прежде - при наиболее постоянных параметрах пара - а в процессе постоянно увеличивающегося давления и изменяющейся мощности и массы пара.
Система промежуточного перегрева второго парогенератора нагружается давлением посредством уже работающей системы промежуточного перегрева первого парогенератора и через нее протекает незначительное количество пара, хотя производство пара высокого давления другим парогенератором возможно совсем не началось. Если оно затем начинается, то режим эксплуатации системы пара высокого давления и системы промежуточного перегрева можно сделать относительно независимыми посредством целенаправленно допускаемого противотока в холодном трубопроводе промежуточного перегрева. Это уменьшает сложность регулировок, а пошаговое подключение паровых систем друг за другом является не обязательным и вследствие этого разъединено по времени.
Тем самым создаются существенные преимущества при пуске 2х1 или большего количества х1 конфигураций установок или при подключении второго или третьего парогенератора (или унифицированного блока парогенератора отработанного тепла/газовой турбины в газопаротурбинных установках), например, в основном, при более коротком времени подключения для второго или третьего парогенератора, что увеличивает экономичность и средний КПД электростанции. Кроме того, естественно укорачивается также пусковое время энергетической установки, если парогенераторы по определенным причинам должны запускаться со сдвигом по времени. Это приводит, в частности, при частых стартах (так называемых полупиковых установок или пиковых установок) к более высокому среднему КПД установок, если рассматривать время эксплуатации, а вместе с тем также - к меньшему количеству выбросов (безопасность для окружающей среды). Вследствие этого эти установки являются более экономичными, а также чаще востребованными распределителями нагрузки для сетевой эксплуатации.
Далее приводится более подробное разъяснение примера изобретения со ссылкой на чертежи. На них схематически и не в масштабе показаны:
Фигура 1. Упрощенный пароводяной контур 2х1 газопаротурбинной установки;
Фигура 2. Временная характеристика подключения парогенератора согласно уровню техники и
Фигура 3. Временная характеристика подключения парогенератора согласно изобретению.
На фиг.1 схематически и в качестве примера показана газопаротурбинная установка 1, содержащая два узла 2 газовая турбина/парогенератор отработанного тепла и паротурбинную установку 3, причем оба узла 2 газовая турбина/парогенератор отработанного тепла по существу могут быть одинаковыми. Из первого узла 2 газовая турбина/парогенератор отработанного тепла показаны только соединения от паротурбинной установки 3 и к ней. Однако альтернативно к показанной газопаротурбинной установке 1 соответствующий изобретению способ применим в многоблочной паротурбинной электростанции, в которой узлы 2 газовой турбины-парогенератора отработанного тепла нужно было бы заменить на отопительные узлы парогенератора.
Газотурбинная установка 4 оснащена газовой турбиной 5, компрессором 6, а также, по меньшей мере, одной включенной между компрессором 6 и газовой турбиной 5 камерой 7 сгорания. Посредством компрессора 6 свежий воздух всасывается, уплотняется и подводится по трубопроводу первичного воздуха 8 к одной или нескольким горелкам камеры 7 сгорания. Подведенный воздух смешивается с подводимым по топливопроводу 9 жидким или газообразным топливом, и смесь зажигается. Возникающие при этом отработавшие газы сгорания образуют рабочую среду газотурбинной установки 4, подводимую к газовой турбине 5, где она при расширении выполняет работу и приводит в движение соединенный с газовой турбиной 5 вал 10. Вал 10 соединен также, кроме газовой турбины 5, с компрессором 6, а также с генератором 11 для приведения его в движение. Расширенная рабочая среда отводится по трубопроводу 12 отработавшего газа в парогенератор 13 отработанного тепла, который может быть выполнен, в частности, как система с принудительной циркуляцией, и выходит из парогенератора 13 отработанного тепла со стороны выхода в направлении к не изображенной вытяжной трубе.
Паровая турбина 14 паротурбинной установки 3 имеет первую ступень 15 компрессии или ступень высокого давления и вторую ступень 16 компрессии или ступень среднего давления, а также третью ступень 17 компрессии или ступень низкого давления, которые через общий вал 18 приводят в движение генератор 19.
Парогенератор 13 отработанного тепла содержит в качестве поверхностей нагрева подогреватель 20 конденсата, питающийся со стороны входа конденсатом из конденсатора 23 через кондесатопровод 21, к которому подключен конденсатный насос 22. Подогреватель конденсата 20 подведен со стороны выхода к всасывающей стороне питательного насоса 24. Для требующегося обхода подогревателя 20 конденсата он перекрыт перепускным трубопроводом 25.
Питательный насос 24 выполнен согласно примеру выполнения как питательный насос высокого давления с отбором 26 среднего давления. Он доводит конденсат до подходящего уровня давления для ступени 15 высокого давления паровой турбины 14, соответствующего ступени высокого давления циркуляции аэрогидросреды. Проведенный через питательный насос 24 конденсат подводится со средним давлением к системе 27 пара среднего давления, содержащей подогреватель питательной воды, испаритель среднего давления и пароперегреватель, присоединенной со стороны выхода к холодному трубопроводу 29 промежуточного перегрева, соединяющему ступень 15 высокого давления со стороны выхода с промежуточным пароперегревателем 28. Промежуточный пароперегреватель 28 присоединяется в свою очередь со стороны выхода через паропровод 30 к ступени 16 среднего давления паровой турбины 14.
Со стороны высокого давления питательный насос 24 соединен с содержащей экономайзер высокого давления, испаритель высокого давления и пароперегреватель высокого давления системой 31 пара высокого давления, соединенной со стороны выхода через трубопровод 32 свежего пара со ступенью 15 высокого давления паровой турбины 14.
В ступени высокого давления паровой турбины перегретый пароперегревателем 28 пар приводит в движение турбину 14, прежде чем его направят через пароотвод 33 ступени 15 высокого давления к паровой турбине 14, а через холодный трубопровод 29 промежуточного перегрева 29 - к промежуточному пароперегревателю 28.
После перегрева в промежуточном пароперегревателе 28 пар направляется через паропровод 30 в ступень 16 среднего давления паровой турбины 14, где он приводит в движение турбину.
Пароотвод 34 ступени 16 среднего давления паровой турбины 14 соединен через перепускной трубопровод 35 со ступенью 17 низкого давления паровой турбины 14.
Со ступенью 17 низкого давления паровой турбины 14 также соединена питаемая от кондесатопровода 21 система 36 пара низкого давления, содержащая расположенный в парогенераторе 13 отработанного тепла парогенератор низкого давления и пароперегреватель низкого давления, подводящий пар по паропроводу 37 низкого давления к ступени 17 низкого давления паровой турбины 14.
После протекания пара по ступени 17 низкого давления и связанного с этим приведения в действие турбины 14 охлажденный и расширенный пар выводится через пароотвод 38 ступени 17 низкого давления паровой турбины 14 в конденсатор 23.
Наряду с уже указанными элементами пароводяного контура имеется, кроме того, перепускной трубопровод, так называемый перепуск 39 высокого давления, ответвляющийся от трубопровода 32 свежего пара, прежде чем пар достигнет ступени 15 высокого давления паровой турбины 14. Перепуск 39 высокого давления обходит ступень 15 высокого давления и впадает в холодный трубопровод 29 промежуточного перегрева между ступенью 15 высокого давления и промежуточным пароперегревателем 28.
Другой перепускной трубопровод, так называемый перепуск 40 среднего давления, ответвляется от паропровода 30, прежде чем он попадет в ступень 16 среднего давления паровой турбины 14. Перепуск 40 среднего давления обходит как ступень 16 среднего давления, так и ступень 17 низкого давления паровой турбины 14, и впадает в конденсатор 23.
Кроме того, система 36 пара низкого давления также имеет перепуск 41 низкого давления, обходящий ступень 17 низкого давления паровой турбины 14 и подводящий пар низкого давления непосредственно к конденсатору 23.
В трубопровод 32 свежего пара встроены запорные арматуры, например обратный клапан 42 и задвижка 43, посредством которых он может закрываться. В перепуске 39 высокого давления находится другая запорная арматура 44. В холодном трубопроводе 29 промежуточного перегрева предусмотрена запорная арматура 45, а другая запорная арматура 46 - в горячем трубопроводе 30 промежуточного перегрева. В перепуске 40 среднего давления также расположен клапан 47.
Соединяющий перепуск 40 среднего давления с горячим трубопроводом 30 промежуточного пароперегревателя подогревательный трубопровод 48 также имеет клапан 49.
В трубопроводе 37 низкого давления также установлены две запорные арматуры, в частности обратный клапан 50 и задвижка 51, посредством которых его можно закрывать. Запорный клапан 52 также находится в перепуске 41 низкого давления к конденсатору 23.
Перепускные трубопроводы 39, 40, 41 и запорные клапаны 42, 43, 44, 46, 47, 49, 50, 51, 52 служат для направления части пара во время пуска газопаротурбинной установки 1 в обход паровой турбины 14.
Соединения 53-56 с первым блоком парогенератора имеются в трубопроводе 32 свежего пара, в холодном трубопроводе 29 промежуточного перегрева, горячем трубопроводе 30 промежуточного перегрева и в паропроводе 37 низкого давления.
Далее приводится описание примера выполнения для соответствующего изобретению способа подключения второго парогенератора посредством фигуры 1.
В начале способа согласно изобретению паротурбинную установку 3 снабжают паром из первого парогенератора или первого блока газовая турбина/парогенератор отработанного тепла. Для подключения другого блока 2 газовая турбина/парогенератор отработанного тепла запускают газотурбинную установку 4, а выходящая из нее рабочая среда подводится к парогенератору 13 отработанного тепла. Расширенная рабочая среда проходит по парогенератору 13 отработанного тепла и выходит из него через выпуск по направлению к не изображенной на фиг.1 вытяжной трубе. Тепло при протекании по парогенератору 13 отработанного тепла передается от рабочей среды воде или, соответственно, пару в пароводяном контуре.
После старта газотурбинной установки 4 отработанное тепло рабочей среды направляется в парогенератор 13 отработанного тепла для начала получения пара в паровой системе.
Для соединения паровых систем во время эксплуатации с полной нагрузкой второго парогенератора 13 без сдерживания мощности уже относительно рано открывают задвижки 43, 45 и 51 в системе 31 пара высокого давления, в холодном трубопроводе 29 промежуточного перегрева системы 27 пара среднего давления и в системе 36 пара низкого давления, например, при синхронизировании следующей газотурбинной установки 4 или при повышении давления другого парогенератора 13 отработанного тепла. Это возможно, поскольку в системе 31 высокого давления и в системе 36 низкого давления, как правило, имеются обратные арматуры 42 и 50, предотвращающие обратное течение из находящейся в эксплуатации системы.
Частичное открытие запорной арматуры 45 в холодном трубопроводе 29 промежуточного перегрева приводит к тому, что эксплуатируемый пар системы протекает в другой промежуточный пароперегреватель 28 и нагружает его практически до одинакового давления. Кроме того, при создании незначительного потока в другой системе промежуточного перегрева, например при незначительном открывании клапана 47 в перепуске 40 среднего давления или клапана 49 в подогревательном трубопроводе 48, обеспечивается возможность контроля повышения температур пара или нормального режима работы впрыскивающего охладителя.
Кроме того, при частичном открывании запорной арматуры 45 в холодном трубопроводе 29 промежуточного перегрева обеспечивается, что пар высокого давления, который проникает через перепуск 39 высокого давления в холодный трубопровод 29 промежуточного перегрева и который случайно не может отводиться перепуском 40 среднего давления, направляется обратным течением в находящуюся в эксплуатации холодную систему промежуточного перегрева первого парогенератора, а через его промежуточный перегрев - к паровой турбине 14, и приводит вследствие этого уже к повышению мощности паровых турбин.
При повышении мощности второго парогенератора 13 (или газотурбинной установки в газопаротурбинных установках) продолжают повышаться температура и давление пара. При модифицированном регулировании напора (например, переключение на управляемое потоком регулирование перепускным клапаном высокого давления) происходит умеренное выравнивание давления с находящейся в эксплуатации первой паровой системой парогенератора. При выравнивании давления открываются обратные арматуры 42 и 50 системы 31 пара высокого давления 31 и системы 36 пара низкого давления второго парогенератора 13, а пар проходит в направлении к паровой турбине 14. Если в этих паропроводах 32 и 37 обратные арматуры 42 или 50 отсутствуют, то одинакового эффекта можно достичь при открывании соответствующих запорных арматур при измеренной тождественности давления. При увеличивающемся закрытии защитных клапанов 44, 47, 52 полученный пар принимается, наконец, паровой турбиной 14.
Запорная арматура 46 в горячем трубопроводе 30 промежуточного перегрева открывается как только температура пара второго парогенератора становится примерно одинаковой с находящимся в эксплуатации первым парогенератором. Холодная арматура 45 промежуточного перегрева регулирует затем массу пара, почти соответствующую произведенной массе пара высокого давления, для предотвращения возможной несимметричной нагрузки в обоих парогенераторах.
На фиг.2 схематически показана временная характеристика для подключения второго парогенератора 13 согласно уровню техники. Как уже указывалось, согласно уровню техники паровые системы приводятся с определенной последовательностью примерно к одинаковому давлению и одинаковой температуре и в определенной последовательности соединяются. Как правило, процесс начинается с холодного промежуточного перегрева 100. Если он полностью подключен, за ним следует горячий - промежуточный - перегрев 101, а после его полного подключения - система 102 высокого давления. Система низкого давления может быть подключена также уже вскоре после начала подключения холодного промежуточного перегрева. Таким образом, до тех пор, пока все перепускные клапаны будут закрыты, проходит примерно от 15 до 20 минут.
В противоположность к этому, как показано на фиг.3, при соответствующем изобретению способе отдельные системы включаются заблаговременно и большей частью почти одновременно, так что практически не задерживается эксплуатация с полной мощностью газовой турбины при подключении второй системы газовая турбина/парогенератор отработанного тепла. Закрытие перепускных клапанов зависит от того, как быстро паровая турбина принимает пар второго парогенератора отработанного тепла.

Claims (19)

1. Способ подключения, по меньшей мере, одного дополнительного парогенератора (13) к первому парогенератору в энергетической установке, содержащей, по меньшей мере, два парогенератора (13) и одну паровую турбину (14), при котором используемую для приведения в действие паровой турбины (14) текучую среду направляют в один из содержащих несколько паровых систем (27, 31, 36) контуров текучей среды, причем паровые системы (27, 31, 36) снабжают отдельным парогенератором (13) и устанавливают их с возможностью отделения друг от друга при помощи запорных арматур (42, 43, 44, 45, 46, 47, 50, 51, 52), причем текучую среду, по меньшей мере, первого парогенератора переключают на паровую турбину (14), отличающийся тем, что прежде чем пар, по меньшей мере, одного второго парогенератора (13) достигнет примерно одинаковых с первым парогенератором параметров пара, открывают запорную арматуру (45), по меньшей мере, одной первой системы пара, по меньшей мере, одного второго парогенератора (13), так что пар может проходить во второй парогенератор.
2. Способ по п.1, отличающийся тем, что запорную арматуру (45), по меньшей мере, одной первой паровой системы (27) открывают в холодном трубопроводе (29) промежуточного перегрева.
3. Способ по п.1 или 2, отличающийся тем, что продолжают повышать температуру и давление текучей среды, по меньшей мере, во второй паровой системе (31), по меньшей мере, второго парогенератора (13) и пар второй паровой системы (31) направляют в обход в первую паровую систему (27), так что пар второго парогенератора проходит через открытую запорную арматуру (45) в первый парогенератор.
4. Способ по п.1 или 2, отличающийся тем, что, по меньшей мере, во второй из паровых систем (31, 36) второго парогенератора (13) открывают его запорную арматуру (43, 51).
5. Способ по п.3, отличающийся тем, что, по меньшей мере, во второй из паровых систем (31, 36) второго парогенератора (13) открывают его запорную арматуру (43, 51).
6. Способ по п.4, отличающийся тем, что запорную арматуру (43) второй из систем (31) пара второго парогенератора (13) открывают в трубопровод (32) свежего пара.
7. Способ по п.5, отличающийся тем, что запорную арматуру (43) второй из систем (31) пара второго парогенератора (13) открывают в трубопровод (32) свежего пара.
8. Способ по п.4, отличающийся тем, что запорную арматуру (51) второй из систем (36) пара второго парогенератора (13) открывают в трубопровод (37) низкого давления.
9. Способ по п.5, отличающийся тем, что запорную арматуру (51) второй из систем (36) пара второго парогенератора (13) открывают в трубопровод (37) низкого давления.
10. Способ по п.1, отличающийся тем, что открывают клапан (47) в перепуске (40) среднего давления во втором парогенераторе (13).
11. Способ по п.1, отличающийся тем, что открывают подогревательный трубопровод (48) второго парогенератора (13), впадающий в горячий трубопровод (30) промежуточного перегрева.
12. Способ по п.1, отличающийся тем, что перепускные клапаны (44, 47, 52) закрывают после того, как соответствующие запорные арматуры открыты.
13. Способ по п.1, отличающийся тем, что запорную арматуру (46) в горячем трубопроводе (30) промежуточного перегрева открывают, как только температура пара второго парогенератора (13) станет, по существу, равной температуре пара первого парогенератора.
14. Способ по п.1 или 2, отличающийся тем, что запорную арматуру (45) открывают при увеличении потока в системе (31) высокого давления второго парогенератора (13).
15. Способ по п.3, отличающийся тем, что запорную арматуру (45) открывают при увеличении потока в системе (31) высокого давления второго парогенератора (13).
16. Способ по п.1 или 2, отличающийся тем, что открывают запорную арматуру (45) при синхронизации относящейся к второму парогенератору (13) газовой турбины (4).
17. Способ по п.3, отличающийся тем, что открывают запорную арматуру (45) при синхронизации относящейся к второму парогенератору (13) газовой турбины (4).
18. Применение способа по любому из пп.1-17 в газопаротурбинной установке (1).
19. Применение способа по любому из пп.1-11 в многоблочной паротурбинной электростанции.
RU2012152097/06A 2011-03-24 2012-03-07 Способ быстрого подключения парогенератора RU2586415C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11159511A EP2503112A1 (de) 2011-03-24 2011-03-24 Verfahren zum schnellen Zuschalten eines Dampferzeugers
EP11159511.2 2011-03-24
PCT/EP2012/053852 WO2012126727A1 (de) 2011-03-24 2012-03-07 Verfahren zum schnellen zuschalten eines dampferzeugers

Publications (2)

Publication Number Publication Date
RU2012152097A RU2012152097A (ru) 2014-06-10
RU2586415C2 true RU2586415C2 (ru) 2016-06-10

Family

ID=45841463

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012152097/06A RU2586415C2 (ru) 2011-03-24 2012-03-07 Способ быстрого подключения парогенератора

Country Status (7)

Country Link
US (1) US8813506B2 (ru)
EP (2) EP2503112A1 (ru)
KR (1) KR101411702B1 (ru)
CN (1) CN102933801B (ru)
PL (1) PL2556218T3 (ru)
RU (1) RU2586415C2 (ru)
WO (1) WO2012126727A1 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746656A1 (de) * 2012-12-19 2014-06-25 Siemens Aktiengesellschaft Entwässerung einer Kraftwerksanlage
DE102013202249A1 (de) * 2013-02-12 2014-08-14 Siemens Aktiengesellschaft Dampftemperatur-Regeleinrichtung für eine Gas- und Dampfturbinenanlage
EP2942493A1 (de) * 2014-05-06 2015-11-11 Siemens Aktiengesellschaft Wasserdampfkreislauf sowie ein Verfahren zum Betreiben eines Wasserdampfkreislaufes
US10975733B2 (en) * 2015-04-24 2021-04-13 Nuovo Pignone Srl Compressor driven by ORC waste heat recovery unit and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU485120B2 (en) * 1974-09-10 1976-03-18 The Babcock & Wilcox Company Control system fora two boiler, single turbine generator power producing unit
RU2124641C1 (ru) * 1997-12-19 1999-01-10 Закрытое акционерное общество "Агентство регионального развития" Способ эксплуатации паросиловой энергетической установки и установка для его осуществления
RU2248453C2 (ru) * 1998-08-31 2005-03-20 III Вильям Скотт Роллинс Электростанция и способ получения энергии с комбинированием циклов

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2384587A (en) * 1944-02-16 1945-09-11 Badenhausen John Phillips System for generating steam
CH569862A5 (ru) * 1973-10-02 1975-11-28 Sulzer Ag
DE2730415C2 (de) * 1977-07-06 1983-02-24 Saarbergwerke AG, 6600 Saarbrücken Verfahren zur pendelungsfreien Regelung eines Kraftwerksblocks im gesteuerten Gleitdruck
JP2669545B2 (ja) * 1988-10-14 1997-10-29 株式会社日立製作所 排熱回収ボイラシステムとその運転方法
JPH04298604A (ja) * 1990-11-20 1992-10-22 General Electric Co <Ge> 複合サイクル動力装置及び蒸気供給方法
US5727379A (en) * 1996-05-31 1998-03-17 Electric Power Research Institute Hybid solar and fuel fired electrical generating system
US5822974A (en) * 1997-02-11 1998-10-20 Electric Power Research Inst. Hybrid biomass and natural gas/oil power generation system
DE19749452C2 (de) 1997-11-10 2001-03-15 Siemens Ag Dampfkraftanlage
DE19837251C1 (de) 1998-08-17 2000-02-10 Siemens Ag Gas- und Dampfturbinenanlage
US7107774B2 (en) * 2003-08-12 2006-09-19 Washington Group International, Inc. Method and apparatus for combined cycle power plant operation
ES2376839T3 (es) * 2008-04-22 2012-03-20 Nem Energy B.V. Sistema de generación de vapor provisto de un generador principal y un generador auxiliar de vapor
US20100229523A1 (en) * 2009-03-16 2010-09-16 General Electric Company Continuous combined cycle operation power plant and method
US8171733B2 (en) * 2009-04-15 2012-05-08 General Electric Company Systems and methods involving combined cycle plants

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU485120B2 (en) * 1974-09-10 1976-03-18 The Babcock & Wilcox Company Control system fora two boiler, single turbine generator power producing unit
RU2124641C1 (ru) * 1997-12-19 1999-01-10 Закрытое акционерное общество "Агентство регионального развития" Способ эксплуатации паросиловой энергетической установки и установка для его осуществления
RU2248453C2 (ru) * 1998-08-31 2005-03-20 III Вильям Скотт Роллинс Электростанция и способ получения энергии с комбинированием циклов

Also Published As

Publication number Publication date
RU2012152097A (ru) 2014-06-10
US8813506B2 (en) 2014-08-26
KR101411702B1 (ko) 2014-06-25
PL2556218T3 (pl) 2016-06-30
EP2556218B1 (de) 2016-01-06
CN102933801A (zh) 2013-02-13
EP2503112A1 (de) 2012-09-26
CN102933801B (zh) 2015-04-29
KR20130025914A (ko) 2013-03-12
WO2012126727A1 (de) 2012-09-27
EP2556218A1 (de) 2013-02-13
US20140000259A1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
US7367192B2 (en) Combined cycle plant
JP5604074B2 (ja) 給水ポンプサイズを縮小するために燃料ガス加熱器の排水を使用する蒸気温度調節用装置
US9353650B2 (en) Steam turbine plant and driving method thereof, including superheater, reheater, high-pressure turbine, intermediate-pressure turbine, low-pressure turbine, condenser, high-pressure turbine bypass pipe, low-pressure turbine bypass pipe, and branch pipe
JP4540472B2 (ja) 廃熱式蒸気発生装置
RU2610976C2 (ru) Парогенератор с рекуперацией тепла (варианты) и система управления для парогенератора
US11415054B2 (en) Gas turbine combined cycle system equipped with control device and its control method
US8776521B2 (en) Systems and methods for prewarming heat recovery steam generator piping
KR101322359B1 (ko) 가스 및 증기 터빈 시스템의 시동 방법
RU2586415C2 (ru) Способ быстрого подключения парогенератора
JP2002309905A (ja) ガスタービンコンバインドプラント
US20160273406A1 (en) Combined cycle system
US9404395B2 (en) Selective pressure kettle boiler for rotor air cooling applications
CN108474268B (zh) 联合循环动力装置中的烟囱能量控制
US20220195896A1 (en) Steam turbine plant and operation method, combined cycle plant and operation method
CN106030054A (zh) 组合循环燃气轮机设备
EP3306044A1 (en) Fast frequency response systems with thermal storage for combined cycle power plants
KR20170075010A (ko) 복합 화력 발전 설비들의 저 부하 턴다운
JPH01313605A (ja) 複合発電装置
JPH06249405A (ja) 蒸気発生装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170308