RU2580043C1 - Способ определения глиссады для планирования эндодонтической обработки корневых каналов моляров верхней челюсти - Google Patents

Способ определения глиссады для планирования эндодонтической обработки корневых каналов моляров верхней челюсти Download PDF

Info

Publication number
RU2580043C1
RU2580043C1 RU2014149483/14A RU2014149483A RU2580043C1 RU 2580043 C1 RU2580043 C1 RU 2580043C1 RU 2014149483/14 A RU2014149483/14 A RU 2014149483/14A RU 2014149483 A RU2014149483 A RU 2014149483A RU 2580043 C1 RU2580043 C1 RU 2580043C1
Authority
RU
Russia
Prior art keywords
point
tooth
root canal
line
view
Prior art date
Application number
RU2014149483/14A
Other languages
English (en)
Inventor
Оксана Анатольевна Левенец
Василий Викторович Алямовский
Анатолий Александрович Левенец
Original Assignee
Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Красноярский Государственный Медицинский Университет Имени Профессора В.Ф. Войно-Ясенецкого Министерства Здравоохранения Российской Федерации"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Красноярский Государственный Медицинский Университет Имени Профессора В.Ф. Войно-Ясенецкого Министерства Здравоохранения Российской Федерации" filed Critical Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Красноярский Государственный Медицинский Университет Имени Профессора В.Ф. Войно-Ясенецкого Министерства Здравоохранения Российской Федерации"
Priority to RU2014149483/14A priority Critical patent/RU2580043C1/ru
Application granted granted Critical
Publication of RU2580043C1 publication Critical patent/RU2580043C1/ru

Links

Images

Landscapes

  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

Изобретение относится к медицине, а именно к терапевтической стоматологии, и предназначено для контроля эндодонтического лечения постоянных зубов. Исследование проводят на конусно-лучевом компьютерном томографе «Picasso Trio» с программой EzImplant. Компьютерный томограф обрабатывает изображение и передает его на компьютер. Далее исследование записывают на диск и передают лечащему врачу. При открытии диска программа Ezmplant запускается автоматически. В ней находятся четыре активных окна изображений объекта: зубы верхней и нижней челюстей во фронтальной - coronal view, сагиттальной - sagittal view, аксиальной - axial view проекциях и 3D-реконструкция объекта. Настраивают толщину среза тканей челюстно-лицевой области пациента в 1 мм для всех активных окон изображения. После чего выбирают для работы изображение исследуемого зуба в активном окне: в аксиальной проекции - axial view и настраивают вид изображения просвета корневого канала в сагиттальной проекции - sagittal view и/или фронтальной проекции - coronal view, используя активные оси плоскости в аксиальной проекции - axial view, пока не получают четкое изображение расположения корневого канала зуба в sagittal view и/или coronal view. Затем устанавливают курсор мыши в активном окне sagittal view и/или coronal view и нажатием кнопки «enter» клавиатуры убирают оси. Слева в меню программы в разделе Measure - измерение активизируют функцию Angle - измерение углов нажатием основной кнопки мыши, автоматически в меню программы активизируется раздел «Tool Options», в котором выбирают метод измерения угла «4-Point Click» - по 4-м точкам. Далее курсор мыши устанавливают над коронкой зуба, ориентируясь на точку фуркации корней зуба и нажатием на клавишу мыши получают первую точку первой линии (точка 1), проводят первую линию через фуркацию корней и выводят за пределы зуба, нажатием на клавишу мыши обозначают вторую точку первой линии (точка 2), получая линию №1-продольную ось зуба. Затем нажатием на клавишу мыши над коронкой зуба получают первую точку второй линии (точка 3) и проводят линию, ориентируясь на устье корневого канала через просвет корневого канала до точки наибольшего изгиба корневого канала, получают вторую точку второй линии (точка 4). Линии при этом неразрывны между собой. Выключают функцию Angle, активизируют все четыре точки угловой конструкции и уточняют их положение, получая конечную величину угла вхождения (глиссады) в корневой канал в градусах по отношению к продольной оси зуба, которую компьютерная программа рассчитывает автоматически. С учетом величины угла между продольной осью зуба и линией первого (коронального) отрезка корневого канала определяется направление вхождения эндодонтического инструмента и его положение в формируемом коническом (воронкообразном) входе в корневой канал, смещая его в сторону нависающих над устьем твердых тканей и препятствующих свободному скольжению инструмента вдоль стенок корневого канала. Способ, за счет измерения угла между продольной осью зуба и линией первого (коронального) отрезка корневого канала, позволяет создать доступ к коронковой части корневого канала с минимальной потерей твердых тканей коронковой части зуба для качественного эндодонтического лечения. 3 ил., 1 пр.

Description

Изобретение относится к медицине, а именно к терапевтической стоматологии, и может быть использовано для эндодонтического лечения постоянных зубов.
Успех эндодонтического лечения зависит от создания адекватного доступа к устью корневого канала в пульповой камере, обработки корневого канала и его обтурации. Сложность доступа к устью корневого канала для его эндодонтической обработки возрастает с увеличением наклона первого отрезка искривленного корневого канала относительно продольной оси зуба, необходимостью удаления нависающих краев дентина и расширением устья корневого канала.
Holderrieth Silke et al. [2] использовали для удаления нависающих краев дентина и расширения входа (устья) в корневые каналы гейте глиддены (корневые сверла, каналорасширители устьев корневых каналов, стоматологические боры) - gates glidden.
Недостатком метода, предложенного Holderrieth Silke et al. [2], является то, что авторы не дают никаких рекомендаций или технических алгоритмов при использовании gates glidden.
Berutti Elio et al. [3] предложили метод эндодонтического прохождения искривленных корневых каналов моляров с помощью обработки с WaveOne. Результаты формирования глиссады в двух группах с WaveOne и WaveOne + PathFile показали влияние глиссады на кривизну канала и изменения оси после инструментальной обработки. Глиссады оказались чрезвычайно существенными для сохранения радиусов кривизны корневых каналов в обеих сравниваемых группах при их инструментальной обработке.
Недостатком метода, предложенного Berutti Elio et al. [3], является то, что при эндодонтической обработке происходит значительное удаление твердых тканей зуба из-за отсутствия предварительного определения оптимального угла направления входа режущего инструмента в корневой канал и его продвижение по каналу в соответствии с углом наклона первого отрезка корневого канала относительно оси зуба.
Damiano Pasqualini et al. [4] предложили использовать метод микро-КТ исследования для сравнения глиссады, сформированной ручным и механическим способом. Исследование проведено на удаленных постоянных молярах верхней челюсти. Щечные корневые каналы каждого образца (n=16) были рандомизированно распределены (отнесены) к PathFile (Р) или к K-файлам (K) для выполнения глиссады. Затем образцы были отсканированы для последующей обработки и анализа.
Недостатком метода, предложенного Damiano Pasqualini et al. [4], является то, что исследование было выполнено, чтобы оценить значение инструментального фактора (K-файл инструмент и PathFile инструмент) и фактора кривизны канала, но в работе не было предложено технических рекомендаций для обеспечения доступа к устью корневого канала.
Наиболее близким к предлагаемому является работа Gorduysus М.О. et al. [1]. Авторы изучали местоположение и направление дополнительного корневого канала, обозначенного ими как МВ-2, в верхнечелюстных первых и вторых молярах.
По мнению Gorduysus М.О. et al., "оценка канала МВ-2 часто затруднена из-за выступа дентина, который закрывает его устье, мезиально-щечное отклонение его устья на дне пульпарной камеры и направление канала, который часто делает одно или два резких искривления в корональной части корня". Авторы предложили устранять эти преграды лоткообразованием ("troughing") или зенкованием ("countersinking") с помощью ультразвуковых наконечников мезиально и апикально. Ориентиром для введения инструмента авторы предложили линию, направленную вдоль мезиально-щечно-небного углубления ("mesiobuccal-palatal groove"). На рисунке в своей статье авторы представили схематическую ориентацию устья МВ-2 перед (А) и после (Б) процедуры зенкования входа в коронковую часть корневого канала в виде цилиндра. Удаление преград облегчило доступ в канал через вновь сформированное устье. Однако расширение устья корневого канала с углублением в виде цилиндра, на наш взгляд, привело к излишней потере интактных твердых тканей в корональной части корня зуба. Кроме того, зенкование устья корневого канала зуба в виде цилиндра создает искусственное препятствие для гладкого свободного введения инструментов вдоль стенок канала при его эндодонтической обработке.
Задача предлагаемого способа: создание доступа к коронковой части корневого канала за счет удаления нависающих краев твердых тканей зуба пульповой камеры над устьем корневого канала с минимальной потерей твердых тканей коронковой части зуба и формированием входа в корневой канал конической (воронкообразной) формы для качественного эндодонтического лечения зуба.
Поставленную задачу решают за счет того, что исследование проводят на конусно-лучевом компьютерном томографе «Picasso Trio» с программой EzImplant, компьютерный томограф обрабатывает изображение и передает его на компьютер, далее исследование записывают на диск и передают лечащему врачу, при открытии диска программа Ezmplant запускается автоматически, в ней находятся четыре активных окна изображений объекта: зубы верхней и нижней челюстей во фронтальной - coronal view, сагиттальной - sagittal view, аксиальной - axial view проекциях и 3D-реконструкция объекта, настраивают толщину среза тканей челюстно-лицевой области пациента в 1 мм для всех активных окон изображения, после чего выбирают для работы изображение исследуемого зуба в активном окне: в аксиальной проекции - axial view и настраивают вид изображения просвета корневого канала в сагиттальной проекции - sagittal view и/или фронтальной проекции - coronal view, используя активные оси плоскости в аксиальной проекции - axial view, пока не получают четкое изображение расположения корневого канала зуба в sagittal view и/или coronal view; затем устанавливают курсор мыши в активном окне sagittal view и/или coronal view и нажатием кнопки «enter» клавиатуры убирают оси, слева в меню программы в разделе Measure - измерение активизируют функцию Angle - измерение углов нажатием основной кнопки мыши, автоматически в меню программы активизируется раздел «Tool Options», в котором выбирают метод измерения угла «4-Point Click» - по 4-м точкам, далее курсор мыши устанавливают над коронкой зуба, ориентируясь на точку фуркации корней зуба и нажатием на клавишу мыши получают первую точку первой линии - точка 1, проводят первую линию через фуркацию корней и выводят за пределы зуба; нажатием на клавишу мыши обозначают вторую точку первой линии - точка 2, получая линию №1 - продольную ось зуба, затем нажатием на клавишу мыши над коронкой зуба получают первую точку второй линии - точка 3 и проводят линию, ориентируясь на устье корневого канала через просвет корневого канала до точки наибольшего изгиба корневого канала (первый отрезок корневого канала), получают вторую точку второй линии - точка 4, линии при этом неразрывны между собой, выключают функцию Angle, активизируют все четыре точки угловой конструкции и уточняют их положение, получая конечную величину угла вхождения - глиссады в корневой канал в градусах по отношению к продольной оси зуба, которую компьютерная программа рассчитывает автоматически.
С учетом величины угла между продольной осью зуба и линией первого - коронального отрезка корневого канала определяется направление вхождения эндодонтического инструмента и его положение в формируемом коническом - воронкообразном входе в корневой канал, смещая его в сторону нависающих над устьем твердых тканей и препятствующих свободному скольжению инструмента вдоль стенок корневого канала.
Способ осуществляют следующим образом. У пациента проводят конусно-лучевую компьютерную томографию с помощью аппарата Picasso Trio при следующих условиях: длительность экспозиции 24 секунды, сила тока 3,4-3,9 mA и напряжение 82-88 kVp в зависимости от вида исследования.
После проведения исследования конусно-лучевой компьютерный томограф обрабатывает изображение и передает его на компьютер, далее исследование записывают на диск и отдают пациенту для дальнейшей консультации с лечащим врачом.
После открытия диска программа Ezmplant запускается автоматически, в ней находятся четыре активных окна изображений объекта: зубы верхней и нижней челюстей во фронтальной - coronal view, сагиттальной - sagittal view, аксиальной - axial view проекциях и 3D-реконструкция объекта. Необходимо лишь сделать настройки для работы в зависимости от задач диагностики. Настройки, необходимые для проведения способа следующие: толщину среза тканей челюстно-лицевой области пациента устанавливают в 1 мм для всех активных окон изображения, после чего выбирают для работы изображение исследуемого зуба в активном окне: в аксиальной проекции - axial view и настраивают вид изображения просвета корневого канала в сагиттальной проекции - sagittal view и/или фронтальной проекции - coronal view, используя активные оси плоскости в аксиальной проекции - axial view, пока не получают четкое изображение расположения корневого канала зуба в sagittal view и/или coronal view.
Устанавливают курсор мыши в активном окне sagittal view и/или coronal view и нажатием кнопки «enter» клавиатуры убирают оси. Слева в меню программы в разделе Measure (измерение) активизируют функцию Angle (измерение углов) нажатием основной кнопки мыши, автоматически в меню программы активизируется раздел «Tool Options», в котором выбирают измерение угла «4-Point Click» - по 4-м точкам.
Курсор мыши устанавливают над коронкой зуба, ориентируясь на точку фуркации корней зуба и нажатием на клавишу мыши получают первую точку первой линии - точка 1, проводят первую линию через фуркацию корней и выводят за пределы зуба; нажатием на клавишу мыши обозначают вторую точку первой линии - точка 2, получая линию №1 - продольную ось зуба, затем нажатием на клавишу мыши над коронкой зуба получают первую точку второй линии - точка 3 и проводят линию, ориентируясь на устье корневого канала через просвет корневого канала до точки наибольшего изгиба корневого канала (первый отрезок корневого канала), получают вторую точку второй линии - точка 4, линии при этом неразрывны между собой, выключают функцию Angle, активизируют все четыре точки угловой конструкции и уточняют их положение, получая конечную величину угла вхождения - глиссады в корневой канал в градусах по отношению к продольной оси зуба, которую компьютерная программа рассчитывает автоматически.
С учетом величины угла между продольной осью зуба и линией первого - коронального отрезка корневого канала определяется направление вхождения эндодонтического инструмента и его положение в формируемом коническом - воронкообразном входе в корневой канал, смещая его в сторону нависающих над устьем твердых тканей и препятствующих свободному скольжению инструмента вдоль стенок корневого канала. Весь процесс определения величины угла между продольной осью зуба и линией первого - коронального отрезка корневого канала занимает 2-3 минуты. При необходимости возможно многократно активизировать точки угловой конструкции и, перемещая активизированные точки, уточнять положение линий и размеры угла.
Клинический пример №1. На рис. 1(A): представлена часть компьютерной томограммы с изображением 27 зуба - медиального щечного корня второго моляра левой верхней челюсти в сагиттальной проекции: больная А., пол: жен., 33 лет. После открытия диска в программе Ezmplant выбираем толщину среза тканей челюстно-лицевой области пациента в 1 мм для всех активных окон изображения, после чего выбираем для работы изображение исследуемого 27 зуба - медиального щечного корня второго моляра левой верхней челюсти, в активном окне, в сагиттальной проекции - sagittal view и настраиваем вид изображения просвета медиального щечного корневого канала в одной плоскости, используя активные оси плоскости в аксиальном окне - axial view, пока не получаем четкое изображение расположения медиального щечного корневого канала 27 зуба в сагиттальном окне, используя активные оси плоскости в окне axial view.
Измерение величины угла между продольной осью зуба и линией первого (коронального) отрезка медиального щечного корневого канала по двум линиям и 4-м конечным точкам этих линий проводим следующим образом: устанавливаем курсор мыши в активном окне sagittal view и нажатием кнопки «enter» клавиатуры убираем оси. Слева в меню программы в разделе Measure (измерение) активизируем функцию Angle (измерение углов) нажатием основной кнопки мыши, автоматически в меню программы активизируется раздел «Tool Options», в котором выбираем измерение угла «4-Point Click» - по 4-м точкам.
Далее курсор мыши устанавливаем над коронкой 27 зуба, ориентируясь на точку фуркации корней зуба и нажатием на клавишу мыши получаем первую точку первой линии (точка 1), проводим первую линию через фуркацию корней и выводим за пределы 27 зуба; нажатием на клавишу мыши обозначаем вторую точку первой линии (точка 2), получая линию №1 - продольную ось 27 зуба, затем нажатием на клавишу мыши над коронкой зуба получаем первую точку второй линии (точка 3) и проводим линию, ориентируясь на устье медиального щечного корневого канала через просвет корневого канала до точки наибольшего изгиба корневого канала, получаем вторую точку второй линии (точка 4), линии при этом неразрывны между собой, выключаем функцию Angle, активизируем все четыре точки угловой конструкции и уточняем их положение, получая конечную величину угла вхождения (глиссады) в медиальный щечный корневой канал (линия первого (коронального) отрезка корневого канала), в градусах равную 25,7° по отношению к продольной оси зуба и, которую компьютерная программа рассчитывает автоматически. С учетом величины продольной оси зуба и линии первого (коронального) отрезка корневого канала определяется направление вхождения эндодонтического инструмента и его положение в формируемом коническом (воронкообразном) входе в корневой канал, смещая его в сторону нависающих над устьем твердых тканей и препятствующих свободному скольжению инструмента вдоль стенок корневого канала. При необходимости возможно многократно активизировать точки угловой конструкции и, перемещая активизированные точки, уточнять положение линий и размеры угла.
На рис. 1(Б) представлена часть компьютерной томограммы с изображением 27 зуба - медиального щечного корня второго моляра левой верхней челюсти в корональной проекции: выбираем для работы изображение исследуемого 27 зуба в активном окне, в корональной проекции - coronal view и настраиваем вид изображения просвета медиального щечного корневого канала в одной плоскости, используя активные оси плоскости в аксиальном окне - axial view, пока не получаем четкое изображение расположения медиального щечного корневого канала 27 зуба во фронтальном окне, используя активные оси плоскости в окне axial view.
Измерение величины угла между продольной осью зуба и линией первого (коронального) отрезка медиального щечного корневого канала по двум линиям и 4-м конечным точкам этих линий проводим следующим образом: устанавливаем курсор мыши в активном окне coronal view и нажатием кнопки «enter» клавиатуры убираем оси. Слева в меню программы в разделе Measure (измерение) активизируем функцию Angle (измерение углов) нажатием основной кнопки мыши, автоматически в меню программы активизируется раздел «Tool Options», в котором выбираем измерение угла «4-Point Click» - по 4-м точкам.
Далее курсор мыши устанавливаем над коронкой 27 зуба, ориентируясь на точку фуркации корней зуба, и нажатием на клавишу мыши получаем первую точку первой линии (точка 1), проводим первую линию через фуркацию корней и выводим за пределы 27 зуба; нажатием на клавишу мыши обозначаем вторую точку первой линии (точка 2), получая линию №1 - продольную ось 27 зуба, затем нажатием на клавишу мыши над коронкой зуба получаем первую точку второй линии (точка 3) и проводим линию, ориентируясь на устье медиального щечного корневого канала через просвет корневого канала до точки наибольшего изгиба корневого канала, получаем вторую точку второй линии (точка 4), линии при этом неразрывны между собой, выключаем функцию Angle, активизируем все четыре точки угловой конструкции и уточняем их положение, получая конечную величину угла вхождения (глиссады) в медиальный щечный корневой канал (линия первого (коронального) отрезка корневого канала), в градусах равную 43,2° по отношению к продольной оси зуба и, которую компьютерная программа рассчитывает автоматически. С учетом величины угла между продольной осью зуба и линией первого (коронального) отрезка корневого канала определяется направление вхождения эндодонтического инструмента и его положение в формируемом коническом (воронкообразном) входе в корневой канал, смещая его в сторону нависающих над устьем твердых тканей и препятствующих свободному скольжению инструмента вдоль стенок корневого канала. При необходимости возможно многократно активизировать точки угловой конструкции и, перемещая активизированные точки, уточнять положение линий и размеры угла.
На рис. 2(А): представлена часть компьютерной томограммы с изображением 27 зуба - дистального щечного корня второго моляра левой верхней челюсти в сагиттальной проекции: больная А., пол: жен., 33 лет.
После открытия диска в программе Ezmplant выбираем толщину среза тканей челюстно-лицевой области пациента в 1 мм для всех активных окон изображения, после чего выбираем для работы изображение исследуемого 27 зуба - дистального щечного корня второго моляра левой верхней челюсти, в активном окне, в сагиттальной проекции - sagittal view и настраиваем вид изображения просвета дистального щечного корневого канала в одной плоскости, используя активные оси плоскости в аксиальном окне - axial view, пока не получаем четкое изображение расположения дистального щечного корневого канала 27 зуба в сагиттальном окне, используя активные оси плоскости в окне axial view.
Измерение величины угла между продольной осью зуба и линией первого (коронального) отрезка дистального щечного корневого канала по двум линиям и 4-м конечным точкам этих линий проводим следующим образом: устанавливаем курсор мыши в активном окне sagittal view и нажатием кнопки «enter» клавиатуры убираем оси. Слева в меню программы в разделе Measure (измерение) активизируем функцию Angle (измерение углов) нажатием основной кнопки мыши, автоматически в меню программы активизируется раздел «Tool Options», в котором выбираем измерение угла «4-Point Click» - по 4-м точкам.
Далее курсор мыши устанавливаем над коронкой 27 зуба, ориентируясь на точку фуркации корней зуба, и нажатием на клавишу мыши получаем первую точку первой линии (точка 1), проводим первую линию через фуркацию корней и выводим за пределы 27 зуба; нажатием на клавишу мыши обозначаем вторую точку первой линии (точка 2), получая линию №1 - продольную ось 27 зуба, затем нажатием на клавишу мыши над коронкой зуба получаем первую точку второй линии (точка 3) и проводим линию, ориентируясь на устье дистального щечного корневого канала через просвет корневого канала до точки наибольшего изгиба корневого канала, получаем вторую точку второй линии (точка 4), линии при этом неразрывны между собой, выключаем функцию Angle, активизируем все четыре точки угловой конструкции и уточняем их положение, получая конечную величину угла вхождения (глиссады) в дистальный щечный корневой канал (линия первого (коронального) отрезка корневого канала), в градусах равную 27,5° по отношению к продольной оси зуба и, которую компьютерная программа рассчитывает автоматически. С учетом величины продольной оси зуба и линии первого (коронального) отрезка дистального щечного корневого канала определяется направление вхождения эндодонтического инструмента и его положение в формируемом коническом (воронкообразном) входе в корневой канал, смещая его в сторону нависающих над устьем твердых тканей и препятствующих свободному скольжению инструмента вдоль стенок корневого канала. При необходимости возможно многократно активизировать точки угловой конструкции и, перемещая активизированные точки, уточнять положение линий и размеры угла.
На рис. 2(Б) представлена часть компьютерной томограммы с изображением 27 зуба - дистального щечного корня второго моляра левой верхней челюсти в корональной проекции: выбираем для работы изображение исследуемого 27 зуба в активном окне, в корональной проекции - coronal view и настраиваем вид изображения просвета дистального щечного корневого канала в одной плоскости, используя активные оси плоскости в аксиальном окне - axial view, пока не получаем четкое изображение расположения дистального щечного корневого канала 27 зуба во фронтальном окне, используя активные оси плоскости в окне axial view.
Измерение величины угла между продольной осью зуба и линией первого (коронального) отрезка дистального щечного корневого канала по двум линиям и 4-м конечным точкам этих линий проводим следующим образом: устанавливаем курсор мыши в активном окне coronal view и нажатием кнопки «enter» клавиатуры убираем оси. Слева в меню программы в разделе Measure (измерение) активизируем функцию Angle (измерение углов) нажатием основной кнопки мыши, автоматически в меню программы активизируется раздел «Tool Options», в котором выбираем измерение угла «4-Point Click» - по 4-м точкам.
Далее курсор мыши устанавливаем над коронкой 27 зуба, ориентируясь на точку фуркации корней зуба и нажатием на клавишу мыши получаем первую точку первой линии (точка 1), проводим первую линию через фуркацию корней и выводим за пределы 27 зуба; нажатием на клавишу мыши обозначают вторую точку первой линии (точка 2), получая линию №1 - продольную ось 27 зуба, затем нажатием на клавишу мыши над коронкой зуба получаем первую точку второй линии (точка 3) и проводим линию, ориентируясь на устье дистального щечного корневого канала через просвет корневого канала до точки наибольшего изгиба корневого канала, получаем вторую точку второй линии (точка 4), линии при этом неразрывны между собой, выключаем функцию Angle, активизируем все четыре точки угловой конструкции и уточняем их положение, получая конечную величину угла вхождения (глиссады) в дистальный щечный корневой канал (линия первого (коронального) отрезка корневого канала), в градусах равную 34,7° по отношению к продольной оси зуба и, которую компьютерная программа рассчитывает автоматически. С учетом величины угла между продольной осью зуба и линией первого (коронального) отрезка корневого канала определяется направление вхождения эндодонтического инструмента и его положение в формируемом коническом (воронкообразном) входе в корневой канал, смещая его в сторону нависающих над устьем твердых тканей и препятствующих свободному скольжению инструмента вдоль стенок корневого канала. При необходимости возможно многократно активизировать точки угловой конструкции и, перемещая активизированные точки, уточнять положение линий и размеры угла.
На рис. 3(А): представлена часть компьютерной томограммы с изображением 27 зуба - небного корня второго моляра левой верхней челюсти в сагиттальной проекции: больная А., пол: жен., 33 лет. После открытия диска в программе Ezmplant выбираем толщину среза тканей челюстно-лицевой области пациента в 1 мм для всех активных окон изображения, после чего выбираем для работы изображение исследуемого 27 зуба - небного корня второго моляра левой верхней челюсти, в активном окне, в сагиттальной проекции - sagittal view и настраиваем вид изображения просвета небного корневого канала в одной плоскости, используя активные оси плоскости в аксиальном окне - axial view, пока не получаем четкое изображение расположения небного корневого канала 27 зуба в сагиттальном окне, используя активные оси плоскости в окне axial view.
Измерение величины угла между продольной осью зуба и линией первого (коронального) отрезка небного корневого канала по двум линиям и 4-м конечным точкам этих линий проводим следующим образом: устанавливаем курсор мыши в активном окне sagittal view и нажатием кнопки «enter» клавиатуры убираем оси. Слева в меню программы в разделе Measure (измерение) активизируем функцию Angle (измерение углов) нажатием основной кнопки мыши, автоматически в меню программы активизируется раздел «Tool Options», в котором выбираем измерение угла «4-Point Click» - по 4-м точкам.
Далее курсор мыши устанавливаем над коронкой 27 зуба, ориентируясь на точку фуркации корней зуба и нажатием на клавишу мыши получаем первую точку первой линии (точка 1), проводим первую линию через фуркацию корней и выводим за пределы 27 зуба; нажатием на клавишу мыши обозначаем вторую точку первой линии (точка 2), получая линию №1 - продольную ось 27 зуба, затем нажатием на клавишу мыши над коронкой зуба получают первую точку второй линии (точка 3) и проводим линию, ориентируясь на устье небного корневого канала через просвет корневого канала до точки наибольшего изгиба корневого канала, получаем вторую точку второй линии (точка 4), линии при этом неразрывны между собой, выключаем функцию Angle, активизируем все четыре точки угловой конструкции и уточняем их положение, получая конечную величину угла вхождения (глиссады) в небный корневой канал (линия первого (коронального) отрезка корневого канала), в градусах равную 20,7° по отношению к продольной оси зуба и, которую компьютерная программа рассчитывает автоматически. С учетом величины угла между продольной осью зуба и линией первого (коронального) отрезка небного корневого канала определяется направление вхождения эндодонтического инструмента и его положение в формируемом коническом (воронкообразном) входе в корневой канал, смещая его в сторону нависающих над устьем твердых тканей и препятствующих свободному скольжению инструмента вдоль стенок корневого канала. При необходимости возможно многократно активизировать точки угловой конструкции и, перемещая активизированные точки, уточнять положение линий и размеры угла.
На рис. 3(Б): представлена часть компьютерной томограммы с изображением 27 зуба - небного корня второго моляра левой верхней челюсти в сагиттальной проекции: больная А., пол: жен., 33 лет. После открытия диска в программе Ezmplant выбирают толщину среза тканей челюстно-лицевой области пациента в 1 мм для всех активных окон изображения, после чего выбираем для работы изображение исследуемого 27 зуба - небного корня второго моляра левой верхней челюсти, в активном окне, в сагиттальной проекции - sagittal view и настраиваем вид изображения просвета небного корневого канала в одной плоскости, используя активные оси плоскости в аксиальном окне - axial view, пока не получаем четкое изображение расположения небного корневого канала 27 зуба во фронтальном окне, используя активные оси плоскости в окне axial view.
Измерение величины угла между продольной осью зуба и линией первого (коронального) отрезка небного корневого канала по двум линиям и 4-м конечным точкам этих линий проводим следующим образом: устанавливаем курсор мыши в активном окне sagittal view и нажатием кнопки «enter» клавиатуры убираем оси. Слева в меню программы в разделе Measure (измерение) активизируем функцию Angle (измерение углов) нажатием основной кнопки мыши, автоматически в меню программы активизируется раздел «Tool Options», в котором выбираем измерение угла «4-Point Click» - по 4-м точкам.
Затем в активном окне сагиттальной плоскости вращением колеса мыши перемещаемся на срез с изображением просвета первого (коронального) отрезка корневого канала небного корня, линии при этом неразрывны между собой, выключаем функцию Angle, активизируем все четыре точки угловой конструкции и уточняем их положение, получая конечную величину угла вхождения (глиссады) в небный корневой канал (линия первого (коронального) отрезка корневого канала), в градусах равную 20,7° по отношению к продольной оси зуба и, которую компьютерная программа рассчитывает автоматически. С учетом величины угла между продольной осью зуба и линией первого (коронального) отрезка небного корневого канала определяется направление вхождения эндодонтического инструмента и его положение в формируемом коническом (воронкообразном) входе в корневой канал, смещая его в сторону нависающих над устьем твердых тканей и препятствующих свободному скольжению инструмента вдоль стенок корневого канала. При необходимости возможно многократно активизировать точки угловой конструкции и, перемещая активизированные точки, уточнять положение линий и размеры угла.
На рис. 3(B) представлена часть компьютерной томограммы с изображением 27 зуба - небного корня второго моляра левой верхней челюсти в корональной проекции: выбираем для работы изображение исследуемого 27 зуба в активном окне, в корональной проекции - coronal view и настраиваем вид изображения просвета небного корневого канала в одной плоскости, используя активные оси плоскости в аксиальном окне - axial view, пока не получаем четкое изображение расположения небного корневого канала 27 зуба во фронтальном окне, используя активные оси плоскости в окне axial view.
Измерение величины угла между продольной осью зуба и линией первого (коронального) отрезка небного корневого канала по двум линиям и 4-м конечным точкам этих линий проводим следующим образом: устанавливаем курсор мыши в активном окне coronal view и нажатием кнопки «enter» клавиатуры убираем оси. Слева в меню программы в разделе Measure (измерение) активизируем функцию Angle (измерение углов) нажатием основной кнопки мыши, автоматически в меню программы активизируется раздел «Tool Options», в котором выбираем измерение угла «4-Point Click» - по 4-м точкам.
Далее курсор мыши устанавливаем над коронкой 27 зуба, ориентируясь на точку фуркации корней зуба и нажатием на клавишу мыши получаем первую точку первой линии (точка 1), проводим первую линию через фуркацию корней и выводим за пределы 27 зуба; нажатием на клавишу мыши обозначают вторую точку первой линии (точка 2), получая линию №1 - продольную ось 27 зуба, затем нажатием на клавишу мыши над коронкой зуба получаем первую точку второй линии (точка 3) и проводим линию, ориентируясь на устье небного корневого канала через просвет корневого канала до точки наибольшего изгиба корневого канала, получаем вторую точку второй линии (точка 4), линии при этом неразрывны между собой, выключаем функцию Angle, активизируем все четыре точки угловой конструкции и уточняем их положение, получая конечную величину угла вхождения (глиссады) в небный корневой канал (линия первого (коронального) отрезка корневого канала), в градусах равную 25,5° по отношению к продольной оси зуба и, которую компьютерная программа рассчитывает автоматически. С учетом величины продольной оси зуба и линии первого (коронального) отрезка корневого канала определяется направление вхождения эндодонтического инструмента и его положение в формируемом коническом (воронкообразном) входе в корневой канал, смещая его в сторону нависающих над устьем твердых тканей и препятствующих свободному скольжению инструмента вдоль стенок корневого канала. При необходимости возможно многократно активизировать точки угловой конструкции и, перемещая активизированные точки, уточнять положение линий и размеры угла.
Достоинства предлагаемого способа заключаются в точном измерении угла между продольной осью зуба и линией первого (коронального) отрезка корневого канала, который образуется за счет пересечения двух линий и рассчитывается программой Ezmplant автоматически в градусах. Точность измерения достигают за счет возможности многократной активизации всех элементов угловой конструкции и коррекции расположения точек и линий угловой конструкции при незначительных временных затратах (до 2-3 минуты) непосредственно на клиническом приеме пациента.
Литература
1. Gorduysus, М.О.; Gorduysus, М.; Friedman, S. Operating microscope improves negotiation of second mesiobuccal canals in maxillary molars / M.O. Gorduysus [et al.] // Journal of Endodontics. - 2001. - Vol. 27, № 11. - P. 683-686.
2. Holderrieth, S.; Gernhardt, C.R. Maxillary Molars With Morphologic Variations of the Palatal Root Canals: A Report of Four Cases / S. Holderrieth; C.R. Gernhardt // Journal of Endodontics. - 2009. - Vol. 35, № 7. - P. 1060-1065.
3. Berutti, E. Root Canal Anatomy Preservation of WaveOne Reciprocating Files with or without Glide Path / E. Berutti [et al.] // Journal of Endodontics. - 2012. - Vol. 38, № 1. - P. 101-104.
4. Pasqualini, D. Computed Micro-Tomographic Evaluation of Glide Path with Nickel-Titanium Rotary PathFile in Maxillary First Molars Curved Canals / D. Pasqualini [et al.] // Journal of Endodontics. - 2012. - Vol. 38, № 3. - P. 389-393.

Claims (1)

  1. Способ определения глиссады для планирования эндодонтической обработки корневых каналов зубов моляров верхней челюсти, включающий построение угла между продольной осью зуба и линией первого (коронального) отрезка корневого канала, отличающийся тем, что исследование проводят на конусно-лучевом компьютерном томографе «Picasso Trio» с программой EzImplant, компьютерный томограф обрабатывает изображение и передает его на компьютер, в программе находятся четыре активных окна изображений объекта: зубы верхней и нижней челюстей во фронтальной - coronal view, сагиттальной - sagittal view, аксиальной - axial view проекциях и 3D-реконструкция объекта, настраивают толщину среза тканей челюстно-лицевой области пациента в 1 мм для всех активных окон изображения, после чего выбирают для работы изображение исследуемого зуба в активном окне: в аксиальной проекции - axial view и настраивают вид изображения просвета корневого канала в сагиттальной проекции - sagittal view и/или фронтальной проекции - coronal view, используя активные оси плоскости в аксиальной проекции - axial view, пока не получают четкое изображение расположения корневого канала зуба в sagittal view и/или coronal view; затем устанавливают курсор мыши в активном окне sagittal view и/или coronal view и нажатием кнопки «enter» клавиатуры убирают оси, слева в меню программы в разделе Measure - измерение активизируют функцию Angle - измерение углов нажатием на клавишу мыши, автоматически в меню программы активизируется раздел «Tool Options», в котором выбирают метод измерения угла «4-Point Click» - по 4-м точкам, далее курсор мыши устанавливают над коронкой зуба, ориентируясь на точку фуркации корней зуба и нажатием на клавишу мыши получают первую точку первой линии - точка 1, проводят первую линию через фуркацию корней и выводят за пределы зуба; нажатием на клавишу мыши обозначают вторую точку первой линии - точка 2, получая линию №1 - продольную ось зуба, затем нажатием на клавишу мыши над коронкой зуба получают первую точку второй линии - точка 3 и проводят линию, ориентируясь на устье корневого канала через просвет корневого канала до точки наибольшего изгиба корневого канала, получают вторую точку второй линии - точка 4, линии при этом неразрывны между собой, выключают функцию Angle, активизируют все четыре точки угловой конструкции и уточняют их положение, получая конечную величину угла вхождения - глиссады в корневой канал в градусах по отношению к продольной оси зуба, которую компьютерная программа рассчитывает автоматически.
RU2014149483/14A 2014-12-08 2014-12-08 Способ определения глиссады для планирования эндодонтической обработки корневых каналов моляров верхней челюсти RU2580043C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014149483/14A RU2580043C1 (ru) 2014-12-08 2014-12-08 Способ определения глиссады для планирования эндодонтической обработки корневых каналов моляров верхней челюсти

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014149483/14A RU2580043C1 (ru) 2014-12-08 2014-12-08 Способ определения глиссады для планирования эндодонтической обработки корневых каналов моляров верхней челюсти

Publications (1)

Publication Number Publication Date
RU2580043C1 true RU2580043C1 (ru) 2016-04-10

Family

ID=55793853

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014149483/14A RU2580043C1 (ru) 2014-12-08 2014-12-08 Способ определения глиссады для планирования эндодонтической обработки корневых каналов моляров верхней челюсти

Country Status (1)

Country Link
RU (1) RU2580043C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2674244C1 (ru) * 2017-12-15 2018-12-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ обнаружения второго мезио-буккального канала в молярах верхней челюсти
RU2687829C1 (ru) * 2018-04-16 2019-05-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ставропольский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО СтГМУ Минздрава России) Способ топографического определения границ полости зуба

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101447A2 (en) * 2010-02-18 2011-08-25 Materialise Dental Nv 3d digital endodontics
WO2012155998A1 (en) * 2011-05-13 2012-11-22 Materialise Dental N.V. Method and system for establishing the shape of the occlusal access cavity in endodontic treatment
WO2013034462A2 (en) * 2011-09-05 2013-03-14 Materialise Dental N.V. A method and system for 3d root canal treatment planning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101447A2 (en) * 2010-02-18 2011-08-25 Materialise Dental Nv 3d digital endodontics
WO2012155998A1 (en) * 2011-05-13 2012-11-22 Materialise Dental N.V. Method and system for establishing the shape of the occlusal access cavity in endodontic treatment
WO2013034462A2 (en) * 2011-09-05 2013-03-14 Materialise Dental N.V. A method and system for 3d root canal treatment planning

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МОИСЕЕВА И.Л., Сравнительная характеристика программ-просмотрщиков конусно-лучевой компьютерной томографии, Журнал "X-ray Art", N1 (01), сентябрь, 2012, Москва, с. 46-51. GORDUYSUS М., Operating microscope improves negotiation of second mesiobuccal canals in maxillary molars, Journal of Endodontics, - 2001, - Vol. 27, N 11, - P. 683-686. АЛЯМОВСКИЙ В.В. и др., Морфологические основы и методические подходы к обработке корневых каналов моляров верхней челюсти, Сибирское медицинское обозрение, 2013, N6, с. 3-8. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2674244C1 (ru) * 2017-12-15 2018-12-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ обнаружения второго мезио-буккального канала в молярах верхней челюсти
RU2687829C1 (ru) * 2018-04-16 2019-05-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ставропольский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО СтГМУ Минздрава России) Способ топографического определения границ полости зуба

Similar Documents

Publication Publication Date Title
Connert et al. Guided endodontics versus conventional access cavity preparation: a comparative study on substance loss using 3-dimensional–printed teeth
Van Der Meer et al. 3D Computer aided treatment planning in endodontics
Connert et al. Microguided endodontics: accuracy of a miniaturized technique for apically extended access cavity preparation in anterior teeth
Ahn et al. Computer-aided design/computer-aided manufacturing–guided endodontic surgery: guided osteotomy and apex localization in a mandibular molar with a thick buccal bone plate
De-Deus et al. Micro–computed tomographic assessment on the effect of ProTaper Next and Twisted File Adaptive systems on dentinal cracks
Gambarini et al. Precision of dynamic navigation to perform endodontic ultraconservative access cavities: a preliminary in vitro analysis
A. Versiani et al. Critical appraisal of studies on dentinal radicular microcracks in endodontics: methodological issues, contemporary concepts, and future perspectives
Jain et al. Dynamically navigated versus freehand access cavity preparation: a comparative study on substance loss using simulated calcified canals
Mahran et al. Comparison of effects of ProTaper, HeroShaper, and Gates Glidden burs on cervical dentin thickness and root canal volume by using multislice computed tomography
Kim et al. A new minimally invasive guided endodontic microsurgery by cone beam computed tomography and 3-dimensional printing technology
Kau et al. A novel 3D classification system for canine impactions—the KPG index
Yang et al. CBCT‐aided microscopic and ultrasonic treatment for upper or middle thirds calcified root canals
Sakkir et al. Management of dilacerated and S-shaped root canals-an endodontist’s challenge
Fu et al. Endodontic microsurgery of posterior teeth with the assistance of dynamic navigation technology: a report of three cases
JP6042983B2 (ja) 歯周病検査装置及び歯周病検査装置に使用する画像処理プログラム
Bonsor The use of the operating microscope in general dental practice part 2: if you can see it, you can treat it!
Waly et al. Comparison of two pediatric rotary file systems and hand instrumentation in primary molar: an ex vivo cone-beam computed tomographic study
Bonfanti et al. Digital orthopantomography vs cone beam computed tomography-part 2: a CBCT analysis of factors influencing the prevalence of periapical lesions
JP5043145B2 (ja) 診断システム
Ünal et al. Comparative investigation of 2 rotary nickel-titanium instruments: protaper universal versus protaper
RU2580043C1 (ru) Способ определения глиссады для планирования эндодонтической обработки корневых каналов моляров верхней челюсти
Chen et al. Analysis of the accuracy of a dynamic navigation system in endodontic microsurgery: A prospective case series study
Gambarini et al. Clinical challenges and current trends in access cavity design and working length determination: First European Society of Endodontology (ESE) clinical meeting: ACTA, Amsterdam, The Netherlands, 27th October 2018
Behera Adimulapu Hima Sandeep. Dynamic Navigation System-A current Breakthrough in Dentistry
Bordone et al. Treatment of obliterated root canals using various guided endodontic techniques: a case series

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161209