RU2566207C2 - Система утилизации отходящего тепла с частичной рекуперацией - Google Patents

Система утилизации отходящего тепла с частичной рекуперацией Download PDF

Info

Publication number
RU2566207C2
RU2566207C2 RU2013106154/06A RU2013106154A RU2566207C2 RU 2566207 C2 RU2566207 C2 RU 2566207C2 RU 2013106154/06 A RU2013106154/06 A RU 2013106154/06A RU 2013106154 A RU2013106154 A RU 2013106154A RU 2566207 C2 RU2566207 C2 RU 2566207C2
Authority
RU
Russia
Prior art keywords
working fluid
heating line
heating
circuit
thermal energy
Prior art date
Application number
RU2013106154/06A
Other languages
English (en)
Other versions
RU2013106154A (ru
Inventor
Джон ДЖИББЛ
Арне АНДЕРССОН
Original Assignee
Мак Тракс, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мак Тракс, Инк. filed Critical Мак Тракс, Инк.
Publication of RU2013106154A publication Critical patent/RU2013106154A/ru
Application granted granted Critical
Publication of RU2566207C2 publication Critical patent/RU2566207C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Изобретение может быть использовано в системах утилизации отходящего тепла двигателей внутреннего сгорания. Система (10) утилизации отходящего тепла для использования с двигателем (100) внутреннего сгорания содержит контур (12) рабочей текучей среды, расширительное устройство (14), конденсатор (20), первую линию (30) нагрева в контуре (12) рабочей текучей среды и вторую линию (32) нагрева в контуре (12) рабочей текучей среды. Расширительное устройство (14) включено в контур (12) рабочей текучей среды с возможностью подачи в него рабочей текучей среды. Конденсатор (20) включен в контур (12) рабочей текучей среды с возможностью подачи в него рабочей текучей среды из расширительного устройства (14). Первая линия (30) нагрева в контуре (12) рабочей текучей среды включает первый теплообменник (36), подсоединенный для передачи рабочей текучей среде тепловой энергии от потока отработавших газов двигателя (100) внутреннего сгорания. Вторая линия (32) нагрева в контуре (12) рабочей текучей среды включена параллельно первой линии (30) нагрева и имеет второй теплообменник (112), подсоединенный для передачи рабочей текучей среде тепловой энергии от устройства охлаждения системы рециркуляции отработавших газов двигателя (100) внутреннего сгорания. Первая линия (30) нагрева и вторая линия (32) нагрева содержат узел разветвления, расположенный по потоку выше первого и второго теплообменников (36) и (112), и узел соединения, расположенный по потоку ниже первого и второго теплообменников (36) и (112). Раскрыт вариант выполнения системы утилизации отходящего тепла. Технический результат заключается в улучшении утилизации тепла отработавших газов двигателя внутреннего сгорания. 2 н. и 7 з.п. ф-лы, 2 ил.

Description

Область техники
Настоящее изобретение относится к системам утилизации отходящего тепла для двигателей внутреннего сгорания и, более конкретно, к устройствам и способам, улучшающим утилизацию тепловой энергии рабочей текучей среды таких систем.
Уровень техники
Системы утилизации отходящего тепла могут обеспечивать использование энергии, содержащейся в отработавших газах, которая в противном случае была бы потеряна. Использование таких систем в транспортных средствах с двигателями внутреннего сгорания обладает рядом достоинств. Например, система утилизации отходящего тепла может быть выполнена с возможностью использования тепла системы рециркуляции отработавших газов (РОГ), в результате чего будет снижаться нагрузка на систему охлаждения двигателя.
Кроме того, система утилизации отходящего тепла может извлекать полезную энергию из отработавших газов, выходящих из выхлопной трубы выпускного тракта, то есть энергию, которая иначе была бы выброшена в окружающую среду.
Раскрытие изобретения
В изобретении предлагается система и способ, обеспечивающие улучшение утилизации отходящего тепла отработавших газов двигателя внутреннего сгорания. Утилизация этой тепловой энергии повышает КПД в целом всей системы.
Кроме того, в соответствии с одним из вариантов повышается эффективность работы самой системы утилизации отходящего тепла, например, за счет снижения требований к охлаждающей способности конденсатора такой системы.
Кроме того, за счет предварительного нагрева рабочей текучей среды перед ее подачей в теплообменник отработавших газов поддерживается их более высокая температура, в результате чего предотвращается конденсация в тракте выпуска отработавших газов.
Система утилизации отходящего тепла для двигателя внутреннего сгорания может включать контур рабочей текучей среды, к которому подсоединено расширительное устройство (expander) для преобразования тепловой энергии в механическую или в электрическую энергию, конденсатор, насос для перемещения рабочей текучей среды по контуру, и первый теплообменник для передачи тепла рабочей текучей среде от отработавших газов двигателя внутреннего сгорания.
В соответствии с изобретением контур рабочей текучей среды включает первую линию нагрева и вторую линию нагрева, параллельную первой линии нагрева. В первой линии нагрева установлен первый теплообменник (нагреватель), который функционально соединен с трубопроводом отработавших газов, через который отработавшие газы передаются в выхлопную трубу.
Во второй линии нагрева установлен второй теплообменник путем подсоединения контура рабочей текучей среды к охлаждающему устройству системы РОГ для передачи тепла рабочей текучей среде от отработавших газов, возвращаемых в коллектор всасывания двигателя.
Управление потоком рабочей текучей среды и распределение его между первой и второй линиями нагрева осуществляет клапан, расположенный по потоку ниже насоса и реагирующий на потребность в энтальпии системы утилизации отходящего тепла.
В другом варианте в каждой из линий нагрева может быть установлен насос, причем оба насоса установлены по потоку ниже узла, в котором контур рабочей текучей среды разветвляется на две линии нагрева, и управление каждым насосом осуществляется в соответствии с потребностью системы в энтальпии для подачи потока рабочей текучей среды в каждую из линий нагрева. Эти насосы могут быть насосами переменной производительности или насосами с переменной частотой вращения. В другом варианте каждая из линий нагрева может содержать перепускное средство, включающее перепускную линию и клапан для отвода части или всей рабочей текучей среды, подаваемой насосом, и возвращения ее в конденсатор, на вход насоса или в резервуар с рабочей текучей средой.
При определении потребности в энтальпии учитывается потребность в энергии, производимой системой утилизации отходящего тепла, количество тепловой энергии, содержащейся в отработавших газах двигателя, и внутренние ограничения системы, такие как предельная температура рабочей текучей среды, нагрузка на конденсатор по отводу тепла, а также другие факторы, как это известно специалистам в данной области техники.
В другом варианте для передачи тепла от рабочей текучей среды на соединении выпускного отверстия расширительного устройства и впускного отверстия конденсатора (зона с повышенной температурой и пониженным давлением) используется рекуперативный теплообменник, подсоединенный функционально к первой линии нагрева по потоку выше первого теплообменника (зона с пониженной температурой и повышенным давлением).
Рекуперативный теплообменник обеспечивает полезное использование тепла, которое в противном случае будет выбрасываться через конденсатор в форме отходящего тепла, и, соответственно, действие рекуперативного теплообменника заключается в повышении общей эффективности преобразования энергии.
Кроме того, рекуперативный теплообменник извлекает из рабочей текучей среды тепловую энергию, которую в противном случае необходимо было бы извлекать в конденсаторе, то есть снижаются требования к охлаждающей способности конденсатора.
В нижеприведенном описании изобретения предлагаемая система и способ описаны в отношении системы утилизации отходящего тепла, работающей по циклу Ренкина, однако следует понимать, что изобретение применимо и к другим типам устройств утилизации или рекуперации отходящего тепла.
Краткое описание чертежей
Изобретение можно будет лучше понять из нижеприведенного подробного описания со ссылками на прилагаемые чертежи, на которых показано:
на фиг. 1 - блок-схема первого варианта системы утилизации отходящего тепла по настоящему изобретению для двигателя внутреннего сгорания;
на фиг. 2 - блок-схема второго варианта системы утилизации отходящего тепла по настоящему изобретению.
Осуществление изобретения
На фиг. 1 приведен пример применения изобретения, а именно, схема системы 10 утилизации отходящего тепла, работающей по циклу Ренкина, для двигателя 100 внутреннего сгорания. Изобретение описывается в отношении системы утилизации отходящего тепла, работающей по циклу Ренкина. Однако следует иметь в виду, что нижеописанный вариант осуществления изобретения является иллюстративным и никоим образом не ограничивает его объем, то есть для целей изобретения могут использоваться и другие циклы и системы утилизации отходящего тепла, например, термоэлектрические, Эрикссона и другие циклы получения энергии с использованием отходящего тепла.
Двигатель 100 внутреннего сгорания содержит впускной коллектор 102 и выпускной коллектор 104. Часть отработавших газов возвращается во впускной коллектор 102 системой РОГ, содержащей клапан 110, охлаждающее устройство 112 и обратную линию 114, соединенную с впускным коллектором. Свежий воздух подается во впускной коллектор по впускной линии 106, например, с использованием турбокомпрессора (не показан), как это известно специалистам в данной области техники.
Клапан 110 системы РОГ также осуществляет управление потоком отработавших газов, поступающим в выпускную линию 16, например, в выхлопную трубу, из которой отработавшие газы выходят в окружающий воздух.
Двигатель 100 внутреннего сгорания может быть также снабжен вышеупомянутым турбокомпрессором, приводимым отработавшими газами. Могут использоваться и другие устройства, например, компаунд-турбина, приводимая отработавшими газами для получения электрической энергии. Двигатель 100 внутреннего сгорания может быть также снабжен системой 118 последующей обработки отработавших газов, например, для преобразования NOx и извлечения сажевых частиц или несгоревших углеводородов из отработавших газов перед их выпуском в окружающую среду.
Система 10 утилизации отходящего тепла, как показано в рассматриваемом варианте, представляет собой систему с замкнутым контуром, в которой рабочая текучая среда сжимается, нагревается отработавшими газами и расширяется для утилизации тепловой энергии.
Система 10 утилизации отходящего тепла, как показано в рассматриваемом варианте, содержит замкнутый контур 12, по которому циркулирует рабочая текучая среда. К контуру 12 рабочей текучей среды подсоединено расширительное устройство 14, приводимое в работу рабочей текучей средой для преобразования ее тепловой энергии в механическую энергию. Выходной вал 16 расширительного устройства может использоваться для привода электрического генератора или для обеспечения вращающего момента, передаваемого в двигатель. Расширительное устройство 14 может быть турбиной, как в рассматриваемом варианте, или спиральным расширительным устройством, термоэлектрическим преобразователем или другим устройством, способным преобразовывать тепловую энергию рабочей текучей среды.
К контуру 12 рабочей текучей среды подсоединен конденсатор 20, в который поступает рабочая текучая среда, выходящая из расширительного устройства 14. Конденсатор 20 охлаждает и конденсирует рабочую текучую среду. Охлаждающий контур 22 конденсатора обеспечивает отвод тепла, передаваемого охлаждающей текучей среде от рабочей текучей среды. Охлаждающий контур 22 конденсатора может быть подсоединен к системе охлаждения транспортного средства, например, к радиатору, или к другой системе охлаждения.
Сконденсированная рабочая текучая среда поступает из конденсатора 20 в насос 24, который перекачивает ее на сторону нагрева контура 12 рабочей текучей среды, где она нагревается.
Сторона нагрева контура 12 рабочей текучей среды включает первую линию 30 нагрева и вторую линию 32 нагрева, соединенные параллельно. Первая линия 30 нагрева и вторая линия 32 нагрева разветвляются на разделительном узле, к которому подсоединен клапан 34, осуществляющий управление потоками рабочей текучей среды, подаваемыми в линии нагрева. Клапан 34 может направлять поток выборочно в одну из линий нагрева или может разделять поток по обеим линиям 30, 32 в соответствии с потребностями системы и ограничениями, которые подробно рассмотрены в следующей части описания. Линии 30, 32 нагрева снова соединяются в соединительном узле 18, из которого выходит одна линия 13, подсоединенная к впускному отверстию расширительного устройства 14.
На фигуре 2 иллюстрируется альтернативный вариант системы утилизации отходящего тепла, в которой не используется клапан 34, и каждая из линий нагрева содержит насос для управления потоком и перекачивания рабочей текучей среды по этой линии. В первой линии 30 нагрева установлен первый насос 26, и во второй линии 32 нагрева установлен второй насос 28. Контур 12 рабочей текучей среды разделяется в первом разделительном узле 29 на первую линию 30 нагрева и вторую линию 32 нагрева по потоку выше насосов 26 и 28. Насосы 26, 28 могут быть насосами переменной производительности или насосами с переменной частотой вращения, обеспечивающими управление потоками рабочей текучей среды в линиях 30, 32 нагрева. Насосами 26, 28 можно управлять выборочно для направления текучей среды в одну линию нагрева или разделения потока между двумя линиями 30, 32 нагрева. В другом варианте управление потоком рабочей текучей среды может осуществляться с использованием перепускных средств, включающих перепускную линию и клапан в каждой из линий 30, 32 нагрева. Следует понимать, что два насоса, используемые во втором варианте, представленном на фиг. 2, могут использоваться и в первом варианте, представленном на фиг. 1, и клапан 34, указанный на фиг. 1, может также использоваться и во втором варианте.
Первая линия 30 нагрева соединена функционально с нагревателем (теплообменником) 36, передающим тепло от отработавших газов двигателя, которые должны выбрасываться в окружающую среду. Отработавшие газы передаются в нагревательное устройство 36 по контуру 38, управление которым осуществляет клапан 40 в выпускном трубопроводе 116.
Вторая линия 32 нагрева, соединенная параллельно с первой линией 30 нагрева, ответвляется на клапане 34 и соединяется функционально с охлаждающим устройством 112 системы РОГ. Охлаждающее устройство 112 системы РОГ действует в качестве нагревателя для рабочей текучей среды во второй линии 32 нагрева. Рабочая текучая среда, протекающая в первой линии 30 нагрева и во второй линии 32 нагрева и нагреваемая, соответственно, нагревателем 36 и охлаждающим устройством 112 системы РОГ, объединяется в соединительном узле, из которого выходит одна линия 13, подсоединенная к расширительному устройству 14.
Благодаря использованию отдельных линий нагрева рабочая текучая среда, используемая для утилизации тепловой энергии из охлаждающего устройства 112 системы РОГ, которое охлаждает газы в системе РОГ, имеет температуру на входе в охлаждающее устройство системы РОГ, которая ниже температуры, которую рабочая текучая среда имела бы, если бы она нагревалась отработавшими газами в нагревателе 36 перед их поступлением в охлаждающее устройство системы РОГ. В этом случае обеспечивается более эффективная работа охлаждающего устройства 112 системы РОГ.
Рабочая текучая среда, выходящая из расширительного устройства 14, имеет температуру, которая значительно превышает температуру конденсации рабочей текучей среды, например, в рассматриваемой системе утилизации отходящего тепла она может быть примерно на 100°C выше температуры конденсации. Эта тепловая энергия должна быть отведена от рабочей текучей среды, и в системе, блок-схема которой представлена на фиг. 1, тепло, содержащееся в рабочей текучей среде, передается в теплообменник 22 конденсатора, и рекуперация энергии в этом случае не происходит.
На фиг. 2 представлен альтернативный вариант осуществления изобретения, в котором утилизируется некоторая часть тепловой энергии, содержащейся в рабочей текучей среде после расширения в расширительном устройстве 14. На фиг. 2 также представлена альтернативная схема разделения потока рабочей текучей среды для направления в первую линию 30 нагрева и во вторую линию 32 нагрева, как это уже было описано. Блок-схема фиг. 2 также включает все другие компоненты двигателя 100 и системы 10 утилизации отходящего тепла, как это уже было описано, и здесь их описание не повторяется.
В соответствии с вариантом, блок-схема которого представлена на фиг. 2, к контуру 12 рабочей текучей среды подсоединен функционально блок 50 рекуперативной теплопередачи по потоку ниже выпускного отверстия расширительного устройства 14 и выше впускного отверстия конденсатора 20 для утилизации тепла, содержащегося в рабочей текучей среде, перед пропусканием рабочей текучей среды через конденсатор. Рекуператор 50 может быть выполнен в форме теплообменника или любого другого устройства, которое может передавать тепло от одного потока среды к другому. Рекуператор 50 подсоединен таким образом, чтобы тепловая энергия от расширившейся рабочей среды передавалась рабочей текучей среде по потоку ниже конденсатора 20 и в первую линию 30 нагрева. В рассматриваемом варианте первая линия 30 нагрева подсоединяется к рекуператору 50 перед подсоединением к теплообменнику 36 отработавших газов.
Использование передачи тепла рекуператором 50 снижает требования к охлаждающей способности конденсатора 20. Кроме того, рабочая текучая среда в первой линии 30 нагрева предварительно нагревается перед подачей в нагреватель 36, в результате чего улучшается качество энергии рабочей текучей среды в первой линии 30 нагрева и утилизация тепла из трубопровода 116 отработавших газов. Более высокая температура рабочей текучей среды, поступающей в нагреватель 36, также является достоинством, которое заключается в том, что отработавшие газы, выходящие из трубопровода 116, скорее всего не будут охлаждены до температуры конденсации.
Поскольку дополнительно нагретую рабочую текучую среду добавляют только в первую линию нагрева и не добавляют во вторую линию нагрева, содержащую охлаждающее устройство системы РОГ, то рабочая текучая среда не перегревается в охлаждающем устройстве системы РОГ, которое сможет легче охлаждать газ в системе РОГ до необходимой или заданной температуры для использования в двигателе.
Изобретение описано в заявке на примере предпочтительных вариантов и используемых компонентов, однако специалистам в данной области техники будет понятно, что могут быть сделаны некоторые замены без выхода за пределы объема изобретения, определяемого прилагаемой формулой.

Claims (9)

1. Система утилизации отходящего тепла для использования с двигателем внутреннего сгорания, содержащая:
контур рабочей текучей среды;
расширительное устройство, включенное в контур рабочей текучей среды с возможностью подачи в него рабочей текучей среды;
конденсатор, включенный в контур рабочей текучей среды с возможностью подачи в него рабочей текучей среды из расширительного устройства;
первую линию нагрева в контуре рабочей текучей среды, включающую первый теплообменник, функционально подсоединенный для передачи рабочей текучей среде тепловой энергии от потока отработавших газов двигателя внутреннего сгорания;
вторую линию нагрева в контуре рабочей текучей среды, включенную параллельно первой линии нагрева и имеющую второй теплообменник, функционально подсоединенный для передачи рабочей текучей среде тепловой энергии от устройства охлаждения системы рециркуляции отработавших газов двигателя внутреннего сгорания;
причем первая линия нагрева и вторая линия нагрева содержат узел разветвления, расположенный по потоку выше первого и второго теплообменников, и узел соединения, расположенный по потоку ниже первого и второго теплообменников.
2. Система по п. 1, содержащая клапан, подсоединенный в узле разветвления для регулируемого направления потока рабочей текучей среды выборочно в по меньшей мере одну из первой и второй линий нагрева.
3. Система по п. 1, содержащая первый насос, подсоединенный в первой линии нагрева, и второй насос, подсоединенный во второй линии нагрева, для регулируемого направления потока рабочей текучей среды выборочно в по меньшей мере одну из первой и второй линий нагрева.
4. Система по п. 1, в которой расширительное устройство имеет выпускное отверстие, из которого выходит рабочая текучая среда, и которая дополнительно содержит рекуператор, функционально присоединенный для передачи тепловой энергии от рабочей текучей среды, выходящей из расширительного устройства, рабочей текучей среде в первой линии нагрева.
5. Система по п. 4, в которой рекуператор функционально присоединен для получения тепловой энергии от рабочей текучей среды в контуре рабочей текучей среды между конденсатором и расширительным устройством и функционально присоединен для передачи тепловой энергии рабочей текучей среде в первой линии нагрева по потоку выше первого теплообменника.
6. Система утилизации отходящего тепла для использования с двигателем внутреннего сгорания, содержащая:
контур рабочей текучей среды, включающий первую линию нагрева и вторую линию нагрева, параллельную первой линии нагрева;
расширительное устройство, включенное в контур рабочей текучей среды с возможностью подачи в него рабочей текучей среды;
конденсатор, включенный в контур рабочей текучей среды с возможностью получения рабочей текучей среды из расширительного устройства, причем контур рабочей текучей среды разветвляется в первом узле на первую линию нагрева и вторую линию нагрева по потоку ниже конденсатора;
первый теплообменник в первой линии нагрева, функционально подсоединенный для передачи тепловой энергии рабочей текучей среде от потока отработавших газов двигателя внутреннего сгорания;
второй теплообменник во второй линии нагрева, функционально подсоединенный для передачи тепловой энергии рабочей текучей среде от потока рециркулируемых отработавших газов двигателя внутреннего сгорания;
причем первая линия нагрева и вторая линия нагрева объединяются во втором узле по потоку ниже первого и второго теплообменников; и
рекуператор, функционально подсоединенный для передачи тепловой энергии рабочей текучей среде в первой линии нагрева от рабочей текучей среды, выходящей из расширительного устройства.
7. Система по п. 6, содержащая клапан, подсоединенный в первом узле для регулируемого направления потока рабочей текучей среды выборочно в по меньшей мере одну из первой и второй линий нагрева.
8. Система по п. 6, содержащая первый насос, установленный в первой линии нагрева, и второй насос, установленный во второй линии нагрева, для регулируемого направления потока рабочей текучей среды выборочно в по меньшей мере одну из первой и второй линий нагрева.
9. Система по п. 6, в которой рекуператор функционально присоединен для получения тепловой энергии от рабочей текучей среды в контуре рабочей текучей среды между конденсатором и расширительным устройством и функционально присоединен для передачи тепловой энергии рабочей текучей среде в первой линии нагрева по потоку выше первого теплообменника.
RU2013106154/06A 2010-07-14 2011-07-14 Система утилизации отходящего тепла с частичной рекуперацией RU2566207C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US36420110P 2010-07-14 2010-07-14
US61/364,201 2010-07-14
PCT/US2011/043994 WO2012009526A1 (en) 2010-07-14 2011-07-14 Waste heat recovery system with partial recuperation

Publications (2)

Publication Number Publication Date
RU2013106154A RU2013106154A (ru) 2014-08-20
RU2566207C2 true RU2566207C2 (ru) 2015-10-20

Family

ID=45469798

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013106154/06A RU2566207C2 (ru) 2010-07-14 2011-07-14 Система утилизации отходящего тепла с частичной рекуперацией

Country Status (7)

Country Link
US (1) US8919123B2 (ru)
EP (1) EP2593645B1 (ru)
JP (1) JP5976644B2 (ru)
CN (1) CN103109046B (ru)
BR (1) BR112013000862B1 (ru)
RU (1) RU2566207C2 (ru)
WO (1) WO2012009526A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697246C2 (ru) * 2016-05-23 2019-08-13 Форд Глобал Текнолоджиз, Ллк Способ и система (варианты) для управления потоками воздуха в двигателе
RU2736445C1 (ru) * 2019-02-08 2020-11-17 Фольксваген Акциенгезельшафт Приводной блок для автомобиля с комбинированным расположением циклического устройства и термоэлектрического генератора

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013000862B1 (pt) * 2010-07-14 2021-07-13 Mack Trucks, Inc. Sistema de recuperação de calor desperdiçado com recuperação parcial
US9175600B2 (en) * 2011-08-23 2015-11-03 International Engine Intellectual Property Company, Llc System and method for protecting an engine from condensation at intake
US9874130B2 (en) * 2012-05-10 2018-01-23 Volvo Truck Corporation Vehicle internal combustion engine arrangement comprising a waste heat recovery system for compressing exhaust gases
AT512921B1 (de) * 2012-07-31 2013-12-15 Man Truck & Bus Oesterreich Ag Verfahren zur Regelung eines Wärme-Rückgewinnungs-Systems in einem Kraftfahrzeug
DE102012216453A1 (de) * 2012-09-14 2014-03-20 Eberspächer Exhaust Technology GmbH & Co. KG Wärmeübertrager
DE102012216452A1 (de) * 2012-09-14 2014-03-20 Eberspächer Exhaust Technology GmbH & Co. KG Wärmeübertrager
KR101886080B1 (ko) * 2012-10-30 2018-08-07 현대자동차 주식회사 차량의 폐열 회수시스템
DE102013201465A1 (de) * 2013-01-30 2014-07-31 Eberspächer Exhaust Technology GmbH & Co. KG Wärmetauscher einer Brennkraftmaschine
SE538889C2 (sv) * 2013-03-27 2017-01-31 Scania Cv Ab Arrangemang för återvinning av värmeenergi ur avgaser från en överladdad förbränningsmotor
EP3022408B1 (en) 2013-07-15 2020-08-19 Volvo Truck Corporation Internal combustion engine arrangement comprising a waste heat recovery system and process for controlling said system
DE102014004322B4 (de) 2014-03-25 2020-08-27 Modine Manufacturing Company Wärmerückgewinnungssystem und Plattenwärmetauscher
JP2016014339A (ja) * 2014-07-01 2016-01-28 いすゞ自動車株式会社 廃熱回生システム
CN104533555B (zh) * 2014-10-29 2016-01-20 清华大学 可变热源有机朗肯循环***
JP6265171B2 (ja) * 2015-06-09 2018-01-24 トヨタ自動車株式会社 車両の熱交換装置
AT517911B1 (de) 2015-07-10 2018-03-15 Avl List Gmbh Verfahren und steuerung eines abwärmenutzungssystems für eine brennkraftmaschine
KR101755808B1 (ko) 2015-07-13 2017-07-07 현대자동차주식회사 폐열회수시스템
KR101684148B1 (ko) * 2015-07-13 2016-12-07 현대자동차주식회사 랭킨사이클 폐열회수시스템의 작동유체 수거장치
CN109196206A (zh) * 2016-06-14 2019-01-11 博格华纳公司 具有平行蒸发器的余热回收***及操作方法
JP6630651B2 (ja) * 2016-10-03 2020-01-15 本田技研工業株式会社 内燃機関の吸排気装置
SE540641C2 (en) 2016-11-25 2018-10-09 Scania Cv Ab A WHR system for a vehicle and a vehicle comprising such a system
CN106499550A (zh) * 2016-11-28 2017-03-15 哈尔滨工程大学 一种船舶低速柴油机egr冷却器s‑co2循环余热利用***
JP6771665B2 (ja) 2016-12-22 2020-10-21 シーメンス アクティエンゲゼルシャフト ガスタービン吸気システムを有するパワープラント
KR101816021B1 (ko) * 2017-06-09 2018-01-08 한국전력공사 복합 발전장치
WO2019069142A2 (en) * 2017-10-03 2019-04-11 Claudio Filippone SHOCK ABSORBER ENCLOSURE FOR LOST HEAT RECOVERY SYSTEM AND ASSOCIATED METHODS
US10920658B2 (en) * 2017-11-03 2021-02-16 Borgwarner Inc. Waste heat powered exhaust pump
KR102303947B1 (ko) * 2019-11-08 2021-09-27 한국생산기술연구원 유량분배기가 구비된 랭킨사이클을 포함하는 전기자동차
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11236735B1 (en) 2021-04-02 2022-02-01 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11480074B1 (en) * 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11359576B1 (en) 2021-04-02 2022-06-14 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334409A (en) * 1979-02-22 1982-06-15 Societe D'etudes De Machines Thermiques S.E.M.T. Device for recovering heat energy in a supercharged internal-combustion engine
US6598396B2 (en) * 2001-11-16 2003-07-29 Caterpillar Inc Internal combustion engine EGR system utilizing stationary regenerators in a piston pumped boost cooled arrangement
RU2232912C2 (ru) * 2001-12-06 2004-07-20 Открытое акционерное общество "Заволжский моторный завод" Способ работы и устройство поршневого двигателя внутреннего сгорания с комплексной системой глубокой утилизации теплоты и снижения вредных выбросов в атмосферу

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901531A (en) 1988-01-29 1990-02-20 Cummins Engine Company, Inc. Rankine-diesel integrated system
US5440882A (en) 1993-11-03 1995-08-15 Exergy, Inc. Method and apparatus for converting heat from geothermal liquid and geothermal steam to electric power
JPH0868318A (ja) * 1994-08-26 1996-03-12 Komatsu Ltd 排気ガス浄化装置付き内燃機関の排気ガス熱回収装置およびその制御方法
US6470683B1 (en) 1999-08-30 2002-10-29 Science Applications International Corporation Controlled direct drive engine system
JP2001248409A (ja) * 2000-03-06 2001-09-14 Osaka Gas Co Ltd 排熱回収システム
AT414156B (de) * 2002-10-11 2006-09-15 Dirk Peter Dipl Ing Claassen Verfahren und einrichtung zur rückgewinnung von energie
JP2006046763A (ja) 2004-08-03 2006-02-16 Denso Corp 廃熱利用装置を備える冷凍装置
CN1807848B (zh) * 2005-01-20 2012-08-29 陈祖茂 双流体蒸汽式双发电装置
EP1902198A2 (en) * 2005-06-16 2008-03-26 UTC Power Corporation Organic rankine cycle mechanically and thermally coupled to an engine driving a common load
JP2007255278A (ja) * 2006-03-23 2007-10-04 Hino Motors Ltd エンジンのランキンサイクルシステム
US8438849B2 (en) * 2007-04-17 2013-05-14 Ormat Technologies, Inc. Multi-level organic rankine cycle power system
JP2008038916A (ja) * 2007-09-28 2008-02-21 Denso Corp ランキンサイクル
DE102007052117A1 (de) * 2007-10-30 2009-05-07 Voith Patent Gmbh Antriebsstrang, insbesondere für Lkw und Schienenfahrzeuge
DE102007062598A1 (de) 2007-12-22 2009-06-25 Daimler Ag Nutzung einer Verlustwärme einer Verbrennungskraftmaschine
JP2009167994A (ja) 2008-01-21 2009-07-30 Sanden Corp 内燃機関の廃熱利用装置
JP2009167995A (ja) * 2008-01-21 2009-07-30 Sanden Corp 内燃機関の廃熱利用装置
JP5130083B2 (ja) * 2008-03-04 2013-01-30 サンデン株式会社 内燃機関の廃熱利用装置
US7997076B2 (en) * 2008-03-31 2011-08-16 Cummins, Inc. Rankine cycle load limiting through use of a recuperator bypass
DE102008019320A1 (de) 2008-04-16 2009-10-22 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere Abgasverdampfer eines Kraftfahrzeuges
US7866157B2 (en) 2008-05-12 2011-01-11 Cummins Inc. Waste heat recovery system with constant power output
AT507096B1 (de) * 2008-12-10 2010-02-15 Man Nutzfahrzeuge Oesterreich Antriebseinheit mit kühlkreislauf und separatem wärmerückgewinnungskreislauf
US8544274B2 (en) 2009-07-23 2013-10-01 Cummins Intellectual Properties, Inc. Energy recovery system using an organic rankine cycle
CN101614139A (zh) * 2009-07-31 2009-12-30 王世英 多循环发电热力***
DE102009028469A1 (de) * 2009-08-12 2011-02-17 Robert Bosch Gmbh Vorrichtung zur Unterstützung einer Aufladeeinrichtung
US8479489B2 (en) 2009-08-27 2013-07-09 General Electric Company Turbine exhaust recirculation
US8627663B2 (en) 2009-09-02 2014-01-14 Cummins Intellectual Properties, Inc. Energy recovery system and method using an organic rankine cycle with condenser pressure regulation
DE102009044913A1 (de) * 2009-09-23 2011-04-07 Robert Bosch Gmbh Brennkraftmaschine
SE535877C2 (sv) * 2010-05-25 2013-01-29 Scania Cv Ab Kylarrangemang hos ett fordon som drivs av en överladdad förbränningsmotor
BR112013000862B1 (pt) * 2010-07-14 2021-07-13 Mack Trucks, Inc. Sistema de recuperação de calor desperdiçado com recuperação parcial
JP5481737B2 (ja) * 2010-09-30 2014-04-23 サンデン株式会社 内燃機関の廃熱利用装置
WO2012061812A2 (en) * 2010-11-05 2012-05-10 Mack Trucks, Inc. Thermoelectric recovery and peltier heating of engine fluids
US8302399B1 (en) * 2011-05-13 2012-11-06 General Electric Company Organic rankine cycle systems using waste heat from charge air cooling
US8893495B2 (en) * 2012-07-16 2014-11-25 Cummins Intellectual Property, Inc. Reversible waste heat recovery system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334409A (en) * 1979-02-22 1982-06-15 Societe D'etudes De Machines Thermiques S.E.M.T. Device for recovering heat energy in a supercharged internal-combustion engine
US6598396B2 (en) * 2001-11-16 2003-07-29 Caterpillar Inc Internal combustion engine EGR system utilizing stationary regenerators in a piston pumped boost cooled arrangement
RU2232912C2 (ru) * 2001-12-06 2004-07-20 Открытое акционерное общество "Заволжский моторный завод" Способ работы и устройство поршневого двигателя внутреннего сгорания с комплексной системой глубокой утилизации теплоты и снижения вредных выбросов в атмосферу

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697246C2 (ru) * 2016-05-23 2019-08-13 Форд Глобал Текнолоджиз, Ллк Способ и система (варианты) для управления потоками воздуха в двигателе
RU2736445C1 (ru) * 2019-02-08 2020-11-17 Фольксваген Акциенгезельшафт Приводной блок для автомобиля с комбинированным расположением циклического устройства и термоэлектрического генератора
US11085347B2 (en) 2019-02-08 2021-08-10 Volkswagen Aktiengesellschaft Drive unit for a motor vehicle having a combined arrangement of a cyclic process device and a thermoelectric generator

Also Published As

Publication number Publication date
EP2593645B1 (en) 2020-05-06
BR112013000862B1 (pt) 2021-07-13
EP2593645A1 (en) 2013-05-22
CN103109046A (zh) 2013-05-15
BR112013000862A2 (pt) 2017-08-08
JP5976644B2 (ja) 2016-08-24
WO2012009526A1 (en) 2012-01-19
CN103109046B (zh) 2015-08-19
RU2013106154A (ru) 2014-08-20
US8919123B2 (en) 2014-12-30
US20130186087A1 (en) 2013-07-25
JP2013531177A (ja) 2013-08-01
EP2593645A4 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
RU2566207C2 (ru) Система утилизации отходящего тепла с частичной рекуперацией
US20130219872A1 (en) Thermoelectric recovery and peltier heating of engine fluids
RU2435052C2 (ru) Двигательная установка с контуром охлаждения и отдельным контуром рекуперации тепла
CN103154488B (zh) 内燃机的废热利用装置
US7013644B2 (en) Organic rankine cycle system with shared heat exchanger for use with a reciprocating engine
CN101566113B (zh) 基于有机朗肯循环的发动机废热回收***
US10012136B2 (en) System and method for recovering thermal energy for an internal combustion engine
US9074492B2 (en) Energy recovery arrangement having multiple heat sources
US20050262842A1 (en) Process and device for the recovery of energy
JP6389640B2 (ja) 内燃機関の排気熱リサイクルシステム
WO2015197088A1 (en) Exhaust gas arrangement
JPH094510A (ja) 燃焼エンジンプラント、燃焼エンジンプラント用過給燃焼エンジン装置および燃焼エンジンプラントの効率を改善する方法
CN104995478B (zh) 串并联废热回收***
US20190234343A1 (en) Organic rankine cycle waste heat recovery system having two loops
US9896985B2 (en) Method and apparatus for recovering energy from coolant in a vehicle exhaust system
RU2725583C1 (ru) Когенерационная установка с глубокой утилизацией тепловой энергии двигателя внутреннего сгорания
JP2013160076A (ja) ランキンサイクル装置
US20150121866A1 (en) Rankine cycle mid-temperature recuperation
GB2544479B (en) Internal combustion engine with increased thermal efficiency
US20190101038A1 (en) A control system and a method for controlling the exhaust gas flow in an exhaust line of a combustion engine