RU2562785C2 - Композиция сложного полиэфира и бутылка для газированных пастеризованных продуктов - Google Patents

Композиция сложного полиэфира и бутылка для газированных пастеризованных продуктов Download PDF

Info

Publication number
RU2562785C2
RU2562785C2 RU2011138016/12A RU2011138016A RU2562785C2 RU 2562785 C2 RU2562785 C2 RU 2562785C2 RU 2011138016/12 A RU2011138016/12 A RU 2011138016/12A RU 2011138016 A RU2011138016 A RU 2011138016A RU 2562785 C2 RU2562785 C2 RU 2562785C2
Authority
RU
Russia
Prior art keywords
bottle
sulfoisophthalic acid
filling
oxygen
polyester
Prior art date
Application number
RU2011138016/12A
Other languages
English (en)
Other versions
RU2011138016A (ru
Inventor
Франк Вильхельм ЭМБС
Original Assignee
Инвиста Текнолоджиз С.А.Р.Л.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Инвиста Текнолоджиз С.А.Р.Л. filed Critical Инвиста Текнолоджиз С.А.Р.Л.
Publication of RU2011138016A publication Critical patent/RU2011138016A/ru
Application granted granted Critical
Publication of RU2562785C2 publication Critical patent/RU2562785C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • C08L23/0861Saponified vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/012Additives improving oxygen scavenging properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/08Polymer mixtures characterised by way of preparation prepared by late transition metal, i.e. Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru or Os, single site catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Packages (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
  • Devices For Dispensing Beverages (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Данное изобретение относится к композициям сложного полиэфира, подходящим для изготовления контейнеров, которые сводят к минимуму эффект вторичного загрязнения во время заполнения. Говоря более конкретно, настоящее изобретение относится к бутылке из сложного полиэфира для использования при заполнении газированными пастеризованными продуктами, содержащей по меньшей мере один компонент, акцептирующий кислород, который ограничивает поступление кислорода значением, равным приблизительно 1 ч./млн и менее, при проведении измерения по истечении шести месяцев после заполнения, и по меньшей мере один пассивный компонент, который ограничивает потери при газировании значением, меньшим чем приблизительно 25%, при проведении измерения по истечении шести месяцев после заполнения. Настоящее изобретение также относится к способу использования бутылки из сложного полиэфира для сведения к минимуму роста вторичных загрязнителей в газированном пастеризованном продукте. 2 н. и 7 з.п. ф-лы.

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННУЮ ЗАЯВКУ
Данная заявка заявляет приоритет предварительной заявки № 61/153498, поданной 18 февраля 2009 года. Данная заявка во всей своей полноте посредством ссылки на предварительную заявку № 61/153498 включается в настоящий документ.
ОБЛАСТЬ ТЕХНИКИ
Данное изобретение относится к композициям сложного полиэфира, подходящим для изготовления контейнеров, которые сводят к минимуму эффект вторичного загрязнения во время заполнения газированными пастеризованными продуктами.
УРОВЕНЬ ТЕХНИКИ
Множество продуктов (например, фруктовые и овощные соки, пиво и молочные продукты) подвергают пастеризации для уменьшения и дезактивации роста в продукте микроорганизмов, вызывающих порчу. Обычно способ включает нагревание заполненного и герметично закрытого контейнера при повышенной температуре в течение периода времени, достаточного для пастеризации содержимого. В желательном случае физическая стойкость бутылки и биологическая стойкость и вкусоароматические характеристики содержимого ухудшаются в минимальной степени, что, тем самым, увеличивает срок годности при хранении.
Например, в данных продуктах существуют различные организмы, которые, не будучи патологичными или опасными для людей, могут оказывать неблагоприятное воздействие на вкус и внешний вид содержимого, если им позволить расти (первичные загрязнители). Для достижения продолжительного срока годности при хранении данные продукты, упакованные в стеклянные бутылки или металлические банки, традиционно пастеризуют. При обычном способе пастеризации, известном как «туннельная пастеризация», на последовательности из близко расположенных упаковок по мере их движения на конвейере через пастеризационный туннель разбрызгивают воду. Температуру продукта в контейнерах последовательно увеличивают до желательного уровня (обычно в диапазоне от 60 до 70°С), проводят выдерживание при данной температуре в течение предварительно определенного периода времени, а после этого охлаждение перед выпуском из туннеля. Температуру и время устанавливают таким образом, чтобы обеспечить уменьшение количества жизнеспособных микроорганизмов в 5 логарифмических единицах. Туннельная пастеризация является капитало- и энергозатратной.
Несмотря на пастеризацию данных продуктов исторически в стеклянных бутылках было бы желательным воспользоваться контейнерами из пластика, например, контейнерами, содержащими полиэтилентерефталатные (ПЭТФ) гомополимер или сополимер, в целях использования меньшей массы и стойкости к раскалыванию ПЭТФ. Однако получение пастеризуемого контейнера из пластика, который может выдерживать воздействие профиля времени/температуры пастеризации и обеспечивать получение желательного срока годности при хранении, при использовании туннельной пастеризации ограничено тем, что диапазон температур, встречающихся во время пастеризации, будет вызывать появление у обычного контейнера из пластика необратимой контролируемой деформации (также известной под наименованием деформации ползучести). Увеличение давления газирования в случае газированных жидкостей, таких как пиво, увеличивает объем контейнера, таким образом, уменьшая уровень газирования в жидкости.
В альтернативном варианте, в общем случае для пастеризации и удаления первичных загрязнителей в продуктах питания и напитках, которые содержат микроорганизмы, используют менее дорогостоящие способы. Данные способы представляют собой мгновенную пастеризацию, при которой продукт проходит через пластинчатый или трубчатый теплообменник, увеличивающий температуру продукта до значения в диапазоне приблизительно от 70 до 75°С в течение периода времени продолжительностью приблизительно от 15 до 30 секунд перед охлаждением до температуры заполнения в диапазоне приблизительно от 1 до 2°С. Один альтернативный способ представляет собой фильтрование холодного продукта через мембранный фильтр (ультрафильтрование), который удаляет микроорганизмы. Недостаток мгновенной пастеризации или ультрафильтрования заключается в том, что данный способ реализуют перед заполнением контейнера, и он не уничтожает микроорганизмы (вторичные загрязнители), которые могли бы быть введены во время заполнения. Поэтому для предотвращения повторного введения микроорганизмов существенным является проведение операции хорошо контролируемых стерильных заполнения и укупоривания. Время от времени данные стерильные условия не выдерживаются.
КРАТКОЕ ИЗЛОЖЕНИЕ ИЗОБРЕТЕНИЯ
Для сведения к минимуму роста какого-либо загрязнения множество описывавшихся выше пастеризованных продуктов требует минимального наличия кислорода в контейнере. Характеристики композиции контейнера, требуемые для сведения к минимуму воздействия вторичных загрязнителей на порчу, неизвестны. Поэтому существует потребность в композиции сложного полиэфира, которая сводит к минимуму рост вторичных загрязнителей.
Как теперь было установлено в соответствии с настоящим изобретением, существует композиция бутылки из сложного полиэфира, которая сводит к минимуму рост вторичных загрязнителей. Настоящее изобретение относится к бутылке из сложного полиэфира для заполнения газированным пастеризованным продуктом, содержащей по меньшей мере один компонент, акцептирующий кислород, который ограничивает поступление кислорода значением, равным приблизительно 1 ч./млн и менее, при проведении измерения по истечении шести месяцев после заполнения, и по меньшей мере один пассивный компонент, который ограничивает потери при газировании значением, меньшим чем приблизительно 25%, при проведении измерения по истечении шести месяцев после заполнения. Еще один вариант осуществления настоящего изобретения представляет собой способ использования бутылки из сложного полиэфира для сведения к минимуму роста вторичных загрязнителей в газированном пастеризованном продукте.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение может быть охарактеризовано как бутылка из сложного полиэфира для заполнения газированным пастеризованным продуктом, содержащая по меньшей мере один компонент, акцептирующий кислород, который ограничивает поступление кислорода значением, равным приблизительно 1 ч./млн и менее, при проведении измерения по истечении шести месяцев после заполнения, и по меньшей мере один пассивный компонент, который ограничивает потери при газировании значением, меньшим, чем приблизительно 25% при проведении измерения по истечении шести месяцев после заполнения. Поступление кислорода может составлять приблизительно 0,02 ч./млн и менее, при проведении измерения по истечении одного месяца после заполнения. Компонент, акцептирующий кислород, может включать по меньшей мере одного представителя, выбираемого из группы, состоящей из полимеров или соединений, содержащих аллильный водород, бензильный водород или группу простого эфира. Например, компонент, акцептирующий кислород и содержащий аллильные позиции, такой как полимеры на полибутадиеновой основе или сополимеры полиэтилен/циклогексен, или содержащий бензильные позиции, такой как полиамиды на м-ксилиламиновой основе, или группу простого эфира, такой как сополиэфироэфиры на основе сложных и простых эфиров, или их смеси. Пассивный компонент может быть выбран из группы, состоящей из сополимера этилен-виниловый спирт, полигликолевой кислоты и частично ароматического найлона. Например, частично ароматический найлон может представлять собой поли(мета-ксилиленадипамид), который коммерчески известен под обозначением MXD6. Бутылка может дополнительно содержать катализатор на основе переходного металла, например, кобальтовую соль. Бутылка также может дополнительно содержать ионную добавку, улучшающую совместимость, например, иономер или сложный сульфосополиэфир. Необходимо отметить то, что MXD6 может представлять собой как активный компонент, акцептирующий кислород, (в присутствии катализатора на основе переходного металла), так и пассивный компонент.
Еще один вариант осуществления настоящего изобретения представляет собой способ, включающий получение бутылки из сложного полиэфира, содержащей по меньшей мере один компонент, акцептирующий кислород, который ограничивает поступление кислорода значением, равным приблизительно 1 ч./млн и менее, при проведении измерения по истечении шести месяцев после заполнения, пассивный компонент, который ограничивает потери при газировании значением, меньшим чем приблизительно 25%, при проведении измерения по истечении шести месяцев после заполнения, и заполнение бутылки из сложного полиэфира газированным пастеризованным продуктом. Поступление кислорода может составлять приблизительно 0,02 ч./млн и менее при проведении измерения по истечении одного месяца после заполнения. Компонент, акцептирующий кислород, может включать по меньшей мере одного представителя, выбираемого из группы, состоящей из полимеров или соединений, содержащих аллильный водород, бензильный водород или группу простого эфира. Например, компонент, акцептирующий кислород и содержащий аллильные позиции, такой как полимеры на полибутадиеновой основе или сополимеры полиэтилен/циклогексен, или содержащий бензильные позиции, такой как полиамиды на м-ксилиламиновой основе, или группу простого эфира, такой как сополиэфироэфиры на основе сложных и простых эфиров, или их смеси. Пассивный компонент может быть выбран из группы, состоящей из сополимера этилен-виниловый спирт, полигликолевой кислоты и частично ароматического найлона. Например, частично ароматический найлон может представлять собой поли(мета-ксилиленадипамид), который коммерчески известен под обозначением MXD6. Бутылка может дополнительно содержать катализатор на основе переходного металла, например, кобальтовую соль. Бутылка также может дополнительно содержать ионную добавку, улучшающую совместимость, например иономер или сложный сульфосополиэфир. Газированный пастеризованный продукт может быть выбран из группы, состоящей из сока и пива.
Катализатор на основе переходного металла может представлять собой ацетат кобальта, карбонат кобальта, хлорид кобальта, гидроксид кобальта, нафтенат кобальта, олеинат кобальта, линолеат кобальта, октаноат кобальта, стеарат кобальта, нитрат кобальта, фосфат кобальта, сульфат кобальта, (эиленгликолят) кобальта и смеси двух и более из них. В качестве катализатора на основе переходного металла для активного акцептирования кислорода подходящими для использования являются ацетат кобальта или соль длинноцепной жирной кислоты, например, ацетат кобальта, октаноат кобальта или стеарат кобальта.
Ионная добавка, улучшающая совместимость, может представлять собой сложный сополиэфир, имеющий группу металлической соли сульфокислоты. Ион металла соли сульфокислоты может представлять собой Na+, Li+, K+, Zn++, Mn++, Ca++ и тому подобное. Группу соли сульфокислоты присоединяют к ядру ароматической кислоты, такому как бензольное, нафталиновое, дифенильное, оксидифенильное, сульфонилдифенильное или метилендифенильное ядро. В подходящем случае ядро ароматической кислоты может представлять собой сульфофталевую кислоту, сульфотерефталевую кислоту, сульфоизофталевую кислоту, 4-сульфонафталин-2,7-дикарбоновую кислоту и их сложные эфиры. В более подходящем случае сульфомономер может представлять собой 5-натрийсульфоизофталевую кислоту, 5-литийсульфоизофталевую кислоту или 5-цинксульфоизофталевую кислоту или их диалкиловые сложные эфиры, такие как диметиловый сложный эфир (SIM) и гликолевый сложный эфир (SIPEG). Один диапазон 5-натрийсульфоизофталевой, 5-литийсульфоизофталевой или 5-цинксульфоизофталевой кислоты, подходящий для уменьшения мутности контейнера, может быть заключен в пределах от 0,1 до 2,0% (моль.).
Порча пива, утрата вкусоароматических характеристик в принципе обуславливаются поступлением кислорода в контейнер, что вызывает окислительную деструкцию. Потери при газировании сглаживают вкус пива, и для сведения к минимуму фотодеструкции требуется защита от света. Для достижения продолжительного срока годности при хранении (большего чем 6 месяцев) в случае бутылок из сложного полиэфира требуется поступление кислорода, равное приблизительно 1 ч./млн и менее, также желательными являются потери при газировании, меньшие чем 25%. Для акцептирования кислорода в целях удовлетворения данных требований («активные акцепторы кислорода») были разработаны композиции сложных полиэфиров, которые в своей основе имеют смесь сложного полиэфира с окисляемыми полимерами или окисляемыми соединениями и в подходящем случае катализатором для ускорения окисления. В дополнение к этому, в одинарном слое для монослойных бутылок или в одном слое в многослойных бутылках могут быть использованы смеси с высоконепроницаемыми полимерами, такими как сополимер этилен-виниловый спирт (EVOH), полигликолевая кислота и частично ароматический найлон («пассивный барьер»).
Для определения характеристик поступления кислорода и потерь диоксида углерода в течение 6-месячного периода провели исследование для различных смесей со сложным полиэфиром. В дополнение к этому, пиво, хранившееся в данных бутылках, дегустировали для определения того, в какой момент времени возникало значительное отличие вкуса в сопоставлении с тем, что имело место для пива, в течение того же самого периода времени хранившегося в стеклянных бутылках.
ПРИМЕРЫ
Использовавшиеся акцептирующие кислород сложные сополиэфиры, полиамид и базовый сложный полиэфир представляли собой:
Смола сложного полиэфира PolyShield® (Invista, Germany), которая представляет собой сложный сополиэфир полиэтилентерефталата (ПЭТФ) и 5-сульфоизофталевой кислоты и кобальтовую соль, формирующую количество элементарного кобальта 70 ч./млн.
Смола сложного полиэфира Amosorb® (ColorMatrix, USA), которая представляет собой сополимер ПЭТФ, содержащий полибутадиеновые сегменты, и кобальтовую соль, формирующую уровень содержания элементарного кобальта 50 ч./млн.
Поли(мета-ксилиленадипамид) (MXD6, grade 6007, Mitsubishi Gas Chemical, Japan). Стандартная смола бутылки из ПЭТФ (Type 1101, Invista, Germany).
Использовавшиеся янтарные красители представляли собой:
Golden Amber-3 (0,1 %) - ColorMatrix
Ultra Amber-1 - ColorMatrix
Repi 80107 (0,24 %) - Repi, Italy
Repi 98947 - Repi, Italy
Бутылки (1,5 л) получали в результате перемешивания смолы бутылки из сложного полиэфира с различными комбинациями из активных акцепторов кислорода и высоконепроницаемых полимеров, разработанными для сведения к минимуму поступления кислорода. В дополнение к этому, в данных композициях сложного полиэфира, содержащих красители, использовали различные янтарные красители. Бутылки заполняли при использовании 1455 г дистиллированной воды совместно с 24 г лимонной кислоты и 15 г бикарбоната натрия, что создавало значение рН, равное приблизительно 4,3, для моделирования пива. Уровень содержания диоксида углерода в бутылках измеряли в течение 6-месячного периода времени при использовании прибора Orbisphere Micro Logger, model 3654 и приводили в г/л.
Еще один комплект бутылок на 1,5 л снабжали оптико-химическим датчиком (PreSens OXYSens). После стерилизации данные бутылки заполняли пивом, которое подвергали мгновенной пастеризации на пивоваренном предприятии, и закупоривали крышкой винтового типа, состоящей из двух частей. Измерения для кислорода проводили еженедельно в течение первых 3 месяцев, а после этого каждую вторую неделю с приведением результатов в ч./млн.
О вкусе и внешнем виде пива судила с месячной частотой квалифицированная экспертная группа из 8-10 человек. Стеклянные бутылки использовали в качестве контрольного образца для экспериментов по поступлению кислорода и потерям при газировании, а также при оценке вкуса пива.
Все бутылки хранили при температуре 23°С и относительной влажности 50%.
Композиции, использовавшиеся для данных бутылок, представлены в таблице 1.
Таблица 1
Пример Сложный полиэфир, Акцептор кислорода MXD6 Краситель Сокращенное обозначение
% (мас.) Тип % (мас.) % (мас.) Тип
Стекло Стекло
1 100 ПЭТФ
2 PolyShield 98 2 PS2
3 PolyShield 97 3 PS3
4 PolyShield 96 4 PS4
5 PolyShield 95 5 PS5
6 PolyShield 98 2 G. Amber-1 PS2-amber
7 PolyShield 97 3 G. Amber-1 PS3-amber
8 PolyShield 96 4 G. Amber-1 PS4-amber
9 PolyShield 95 5 G. Amber-1 PS5-amber
10 PolyShield 98 2 Repi 989747 PS2-Repi
11 PolyShield 97 3 Repi 989747 PS3-Repi
12 PolyShield 96 4 Repi 989747 PS4-Repi
13 PolyShield 95 5 Repi 989747 PS5-Repi
14 98 Amosorb 2 A2
15 97 Amosorb 3 A3
16 96 Amosorb 4 A4
17 95 Amosorb 2 3 A2/MX3
18 95 Amosorb 3 2 A3/MX2
19 93 Amosorb 4 3 A4/MX3
20 98 Amosorb 2 Ultra Amber A2-amber
21 97 Amosorb 3 Ultra Amber A3-amber
22 96 Amosorb 4 Ultra Amber A4-amber
23 95 Amosorb 2 3 Ultra Amber A2/MX3-amber
24 95 Amosorb 3 2 Ultra Amber A3/MX2-amber
25 93 Amosorb 4 3 Ultra Amber A4/MX3-amber
У некоторых из данных бутылок измеряли уровень содержания диоксида углерода (г/л) с течением времени, что и представлено в таблице 2.
Таблица 2
Образец Неделя
0 3 7 10 15 19 23 27
Стекло 6,20 6,11 6,05 5,93 5,86 5,77 5,79 5,78
ПЭТФ 5,90 5,57 5,11 4,67 4,34 4,10 3,85 3,72
PS2 5,90 5,79 5,46 5,06 4,76 4,65 4,41 4,22
PS3 5,90 5,75 5,44 4,96 4,76 4,58 4,33 4,18
PS4 5,90 5,78 5,51 5,00 4,85 4,71 4,42 4,27
PS5 5,90 5,80 5,51 5,08 4,95 4,79 4,55 4,41
PS2-Repi 5,90 5,71 5,39 4,94 4,74 4,54 4,28
PS3-Repi 5,90 5,84 5,41 5,01 4,83 4,70 4,46 4,25
PS4-Repi 5,90 5,70 5,49 5,05 4,87 4,72 4,52 4,32
PS5-Repi 5,90 5,82 5,51 5,13 5,01 4,76 4,57 4,38
A2 5,90 5,70 5,22 4,80 4,56 4,34 4,08 3,80
A3 5,90 5,71 5,32 4,84 4,59 4,37 4,07 3,85
A4 5,90 5,54 5,04 4,61 4,36 4,10 3,79 3,59
A2/MX3 5,90 5,69 5,51 5,11 4,87 4,69 4,43 4,21
A3/MX2 5,90 5,68 5,35 4,98 4,74 4,60 4,33 4,08
A4/MX3 5,90 5,47 5,26 4,85 4,71 4,56 4,38 4,24
Как демонстрируют данные результаты, для сведения потерь при газировании к минимуму в виде менее чем 25% по истечении 6 месяцев (уровень содержания СО2>4,4 г/л в приведенной выше таблице по истечении 21 недели) требуется уровень содержания MXD6, больший чем 3% (мас.). Краситель не оказывал негативного воздействия на потери при газировании с течением времени.
Выраженное в ч./млн поступление кислорода с течением времени для некоторых из бутылок, рецептуры которых составлены при использовании смолы PolyShield® и различных уровней содержания MXD6 и красителей, представлено в таблице 3.
Таблица 3
Неделя Образец
ПЭТФ PS2 PS3 PS4 PS5 PS3-amber PS3-Repi
0 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 0,147 0,057
2 0,432 0,236 0,038 -0,013 -0,013 0,175 0,108
3 0,493 0,234 0,030 -0,019 -0,019 0,230 0,133
4 0,718 0,328 0,025 -0,023 -0,023 0,246 0,162
5 0,872 0,348 0,023 -0,026 -0,026 0,264 0,155
6 1,046 0,390 0,021 -0,027 -0,027 0,251 0,151
7 1,099 0,393 0,017 -0,028 -0,028 0,222 0,141
8 1,266 0,397 0,014 -0,030 -0,030 0,218 0,130
9 1,485 0,403 0,011 -0,030 -0,030 0,201 0,125
10 1,613 0,424 0,011 -0,030 -0,030 0,192 0,116
11 1,772 0,459 0,020 -0,030 -0,030 0,180 0,106
12 2,045 0,510 0,035 -0,031 -0,031 0,162 0,119
13 2,134 0,509 0,047 -0,032 -0,032 0,167 0,120
15 0,547 0,087 -0,032 - 0,032 0,151 0,104
17 0,660 0,135 -0,032 -0,032 0,164 0,143
19 0,721 0,175 -0,032 -0,032 0,186 0,171
21 0,877 0,250 -0,032 -0,032 0,216 0,208
23 0,933 0,291 -0,033 -0,033 0,228 0,231
25 0,922 0,285 -0,033 -0,033 0,262 0,259
27 0,292 0,285
29 0,369 -0,033 -0,033 0,324 0,321
31 0,428 -0,034 -0,034 0,371 0,450
33 0,558 -0,034 -0,034 0,414 0,388
35 0,482 -0,034 -0,034 0,449
Отрицательные значения указывают на удаление системой акцептирования кислорода любого количества кислорода, растворенного в пиве или присутствующего в свободном пространстве над жидкостью. Поступление кислорода включает любые протечки в окрестности пробки. Как демонстрируют данные результаты, для ограничения поступления кислорода значением, меньшим чем 0,02 ч./млн, в течение первого месяца, требуется более чем 4% MXD6. В дополнение к этому, по истечении 35 недель данные бутылки не обнаружили какого-либо признака поступления кислорода.
При загрузке 3% MXD6 в смолу PolyShield® красители вызывали увеличение поступления кислорода в течение первых 4 недель с последующим уменьшением уровня содержания кислорода до того значения, которое достигали в отсутствие красителя по истечении приблизительно 6 месяцев.
Выраженное в ч./млн. поступление кислорода с течением времени для некоторых из бутылок, рецептуры которых составлены при использовании смолы Amosorb® и различных уровней содержания MXD6 и красителей, представлено в таблице 4.
Таблица 4
Неделя Образец
A2 A3 A4 A2/MX3 A3/MX2 A4-amber A3/MX2-amber
0 0,000 0,000 0,000 0,000 0,000 0,000 0,000
1 -0,007 -0,002
2 0,136 0,000 -0,004 0,000 -0,003 -0,005 -0,012
3 0,208 0,084 -0,007 -0,003 -0,006 0,002 -0,018
4 0,350 0,189 -0,006 -0,007 -0,010 0,018 -0,019
5 0,442 0,269 0,004 -0,010 -0,010 0,046 -0,024
6 0,596 0,390 0,033 -0,010 -0,011 0,074 -0,027
7 0,686 0,476 0,069 -0,011 -0,012 0,140 -0,029
8 0,789 0,569 0,142 -0,013 -0,012 0,196 -0,031
9 0,914 0,679 0,219 -0,011 -0,010 0,276 -0,032
10 1,069 0,827 0,299 -0,009 -0,011 0,371 -0,034
11 1,194 0,934 0,405 -0,007 -0,012 0,436 -0,034
12 1,410 1,141 0,627 0,000 -0,011 0,563 -0,031
13 1,454 1,185 0,678 0,004 -0,009 0,626 -0,022
15 1,636 1,340 0,914 0,033 0,005 0,838 -0,001
17 1,953 1,735 1,189 0,081 0,039 1,065 0,050
19 1,946 1,425 0,136 0,091 1,322 0,108
21 1,676 0,229 0,185 1,520 0,223
23 1,848 0,324 0,281 1,695 0,249
25 0,301 0,273 1,963 0,358
27 0,443
29 0,476 0,440 0,559
31 0,575 0,557
Композиция, содержащая 4% Amosorb, действительно сохраняла уровень содержания кислорода в бутылке на величине, меньшей чем 0,02 ч./млн, в течение первого месяца, но приводила к экспоненциальному достижению уровня в 0,5 ч./млн в течение 2 месяцев. Композиция из 2% Amosorb и 3% MXD6 и из 3% Amosorb и 2% MXD6 действительно обеспечивала низкое поступление кислорода и задерживала быстрое увеличение поступления кислорода в течение 15 недель. Краситель Ultra Amber-1 при использовании с той же самой композицией не дезактивировал скорость акцептирования кислорода.
Дегустационный анализ пива проводили по истечении каждого месяца при использовании в качестве эталона пива, заполняющего в то же самое время стеклянные бутылки. Экспертную группу обязывали делать пометку тогда, когда пиво, хранившееся в бутылках из сложного полиэфира, демонстрировало отличие вкуса, в особенности в связи с наличием окисления пива. Результаты по продолжительности времени до выявления статистического отличия вкуса суммарно представлены в таблице 5.
Таблица 5
Образец Время до выявления отличия вкуса, месяцы
ПЭТФ 3
PS2 3
PS3 4
PS4 >6
PS5 >6
A2 3
A3 5
A4 6
A3/MX2 6
A2/MX3 >6
A3/MX4 >6
Композиции, которые содержали более чем 4% MXD6, и композиции, содержащие Amosorb при более чем 3% MXD6, предотвращали окисление пива в степени, изменяющей вкус, в течение вплоть до 6 месяцев. Данными композициями являются те, которые характеризуются низким поступлением кислорода (менее чем приблизительно 0,02 ч./млн в первом месяце) и уровнем, меньшим чем 1 ч./млн, в течение 6 месяцев.
По истечении 3 месяцев на дне некоторых из тех бутылок, в которых пиво быстро окислялось, то есть не проходило дегустационный анализ до истечения 6 месяцев, присутствовали видимые загрязнители. При открывании данных бутылок отмечали повышенное давление диоксида углерода, что указывает на рост вторичных загрязнителей. При анализе в загрязненном пиве обнаруживали следующие далее микроорганизмы: Saccaromyces diastaticus, micrococcus spec. и другие чужеродные дрожжи и плесени.
Для предотвращения роста чужеродных микроорганизмов во время заполнения пивом бутылки из сложного полиэфира должны характеризоваться низким поступлением кислорода, в особенности в первом месяце, например, меньшим чем 0,02 ч./млн. Поступление кислорода в течение заданного срока годности бутылки при хранении не должно превышать приблизительно 1 ч./млн для предотвращения изменения вкуса. В дополнение к этому, потери при газировании должны быть меньшими чем 25% по окончании заданного срока годности при хранении.
Бутылки из сложного полиэфира, содержащие как активные соединение или полимер, акцептирующие кислород, так и полимер, характеризующийся высокой газонепроницаемостью, обеспечивают получение надлежащего баланса газопроницаемости (низкие поступление кислорода и потери при газировании) для достижения срока годности при хранении равного по меньшей мере 6 месяцам. Данные композиции демонстрируют дополнительное преимущество, заключающееся в предотвращении роста чужеродных микроорганизмов (вторичных загрязнителей) во время проведения операции по заполнению бутылки.
Для продления срока годности продукта при хранении низкое поступление кислорода в контейнер из сложного полиэфира также требуется в течение первого месяца и при упаковывании негазированных напитков и других пастеризованных продуктов.
Как можно определить из приведенной выше информации, вторичные загрязнители будут возникать на первых нескольких неделях, если только начальный уровень содержания кислорода не будет уменьшен до менее чем 0,02 ч./млн во время данного начального периода времени и выдержан равным приблизительно 1 ч./млн и менее в течение 6-месячного периода. Данное требование может быть удовлетворено в случае композиции сложного полиэфира, которая формирует пассивный и активный барьер для кислорода. Пассивный барьер может представлять собой частично ароматический полиамид, например поли-м-ксилиленадипамид (MXD6). MXD6 также может исполнять функцию активного компонента, акцептирующего кислород, в присутствии соли переходного металла, например кобальтовой соли. Частично ароматический полиамид также может исполнять функцию пассивного барьера, уменьшающего потери при газировании. В альтернативном варианте, частично ароматический полиамид или другой высоконепроницаемый полимер могут быть использованы совместно со смесью с другими окисляемыми соединениями и полимерами и в подходящем случае катализатором на основе переходного металла. В случае необходимости срока годности при хранении меньшего чем 6 месяцев смесь очень активного акцептора кислорода может оказаться достаточной для предотвращения порчи, если она обеспечит выдерживание низкого уровня содержания кислорода для данного более короткого срока годности при хранении.
Несмотря на описание изобретения в связи с его конкретными вариантами осуществления ясно то, что в свете вышеизложенного описания изобретения специалистам в соответствующей области техники будет очевидно и множество альтернатив, модификаций и вариаций. В соответствии с этим, предусматривается включение всех таких альтернатив, модификаций и вариаций, которые соответствуют духу и широкому объему прилагаемой формулы изобретения.

Claims (9)

1. Бутылка из сложного полиэфира для использования при заполнении газированным пастеризованным продуктом, содержащая по меньшей мере один компонент, акцептирующий кислород, и по меньшей мере один пассивный компонент, при этом бутылка имеет поступление кислорода 0,02 ч./млн или менее при проведении измерения по истечении одного месяца после заполнения и потери при газировании, меньшие чем 25%, при проведении измерения по истечении шести месяцев после заполнения,
при этом указанный сложный полиэфир является сложным сополиэфиром полиэтилентерефталата и 5-сульфоизофталевой кислоты,
при этом указанный компонент, акцептирующий кислород, содержит по меньшей мере одного представителя, выбранного из группы, состоящей из аллильного водорода, бензильного водорода и группы простого эфира, и
при этом указанным пассивным компонентом является поли(мета- ксилиленадипамид) и весовой процент указанного пассивного компонента больше чем 4% указанной бутылки.
2. Бутылка по п. 1, дополнительно содержащая катализатор на основе переходного металла.
3. Бутылка по п. 2, в которой указанный пассивный компонент активно акцептирует кислород в присутствии катализатора на основе переходного металла.
4. Бутылка по п.1, в которой указанная 5-сульфоизофталевая кислота выбрана из группы, состоящей из 5-натрийсульфоизофталевой кислоты, 5-литийсульфоизофталевой кислоты и 5- цинксульфоизофталевой кислоты или их диалкиловых сложных эфиров.
5. Бутылка по п. 4, в которой указанная 5-сульфоизофталевая кислота является 5-натрийсульфоизофталевой кислотой или 5- литийсульфоизофталевой кислотой и присутствует в указанной бутылке в пределах от 0,1 до 2,0% (моль).
6. Способ минимизации роста вторичных загрязнений в газированном пастеризованном продукте, включающий:
a) получение бутылки из сложного полиэфира, содержащей по меньшей мере один компонент, акцептирующий кислород,
b) пассивный компонент, и
c) заполнение бутылки из сложного полиэфира газированным пастеризованным продуктом, при этом бутылка имеет поступление кислорода 0,02 ч./млн или менее при проведении измерения по истечении одного месяца после заполнения и потери при газировании, меньшие чем 25%, при проведении измерения по истечении шести месяцев после заполнения, при этом указанный сложный полиэфир является сложным сополиэфиром полиэтилентерефталата и 5-сульфоизофталевой кислоты,
при этом указанный компонент, акцептирующий кислород, содержит по меньшей мере одного представителя, выбранного из группы, состоящей из аллильного водорода, бензильного водорода и группы простого эфира, и при этом указанным пассивным компонентом является поли(мета-ксилиленадипамид) и весовой процент указанного пассивного компонента больше чем 4% указанной бутылки.
7. Способ по п. 6, дополнительно содержащий катализатор на основе переходного металла.
8. Способ по п. 6, в котором указанная 5-сульфоизофталевая кислота выбрана из группы, состоящей из 5-натрийсульфоизофталевой кислоты, 5-литийсульфоизофталевой кислоты и 5-цинксульфоизофталевой кислоты или их диалкиловых сложных эфиров.
9. Способ по п. 6, в котором газированный пастеризованный продукт выбран из группы, состоящей из сока или пива.
RU2011138016/12A 2009-02-18 2010-02-17 Композиция сложного полиэфира и бутылка для газированных пастеризованных продуктов RU2562785C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15349809P 2009-02-18 2009-02-18
US61/153,498 2009-02-18
PCT/US2010/024402 WO2010096430A2 (en) 2009-02-18 2010-02-17 Polyester composition and bottle for carbonated pasteurized products

Publications (2)

Publication Number Publication Date
RU2011138016A RU2011138016A (ru) 2013-03-27
RU2562785C2 true RU2562785C2 (ru) 2015-09-10

Family

ID=42634419

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011138016/12A RU2562785C2 (ru) 2009-02-18 2010-02-17 Композиция сложного полиэфира и бутылка для газированных пастеризованных продуктов

Country Status (11)

Country Link
US (1) US20120034355A1 (ru)
EP (1) EP2398712B1 (ru)
JP (1) JP5889637B2 (ru)
KR (2) KR20180033610A (ru)
CN (2) CN102325699A (ru)
DK (1) DK2398712T3 (ru)
ES (1) ES2899634T3 (ru)
HU (1) HUE057512T2 (ru)
PL (1) PL2398712T3 (ru)
RU (1) RU2562785C2 (ru)
WO (1) WO2010096430A2 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120034355A1 (en) 2009-02-18 2012-02-09 Invista North America S.A.R.L. Polyester composition and bottle for carbonated pasteurized products
US8409680B2 (en) * 2009-06-11 2013-04-02 M&G Usa Corporation Polyamide-polydiene blends with improved oxygen reactivity
US20120283366A1 (en) * 2011-05-06 2012-11-08 Graham Packaging Company, L.P. Activated oxygen scavenging compositions for plastic containers
CN102382429B (zh) * 2011-10-24 2013-11-06 广州信联智通实业股份有限公司 一种聚对苯二甲酸乙二醇酯阻隔性复合材料及其制备工艺

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6135015A (en) * 1995-05-16 2000-10-24 Mendez; Alejandro Industrial apparatus for the aseptic packaging of perishables to extend shelf life without refrigeration
US6083585A (en) * 1996-09-23 2000-07-04 Bp Amoco Corporation Oxygen scavenging condensation copolymers for bottles and packaging articles
US6863988B2 (en) * 1996-09-23 2005-03-08 Bp Corporation North America Inc. Oxygen scavenging monolayer bottles
BR9711523A (pt) * 1996-09-23 1999-08-24 Amoco Corp Recipiente termopl stico garrafa termopl stica e processo para a fabrica-Æo de uma garrafa eliminadora de oxig-nio
DK1045801T3 (da) * 1997-09-22 2002-04-29 Bp Corp North America Inc Aktiv og passiv oxygenbarriere af copolyamidharpikser
US5977212A (en) * 1997-11-21 1999-11-02 W. R. Grace & Co.-Conn. Oxygen scavenging compositions
US20020037377A1 (en) * 1998-02-03 2002-03-28 Schmidt Steven L. Enhanced oxygen-scavenging polymers, and packaging made therefrom
AU2578499A (en) * 1998-02-03 1999-08-16 Continental Pet Technologies, Inc. Enhanced oxygen-scavenging polymers, and packaging made therefrom
US6454965B1 (en) * 1999-03-24 2002-09-24 Chevron Phillips Chemical Company Lp Oxygen scavenging polymers in rigid polyethylene terephthalate beverage and food containers
JP2001062975A (ja) * 1999-08-24 2001-03-13 Showa Denko Kk 環境対応ビール用プラスチックボトル
JP2001097342A (ja) * 1999-09-28 2001-04-10 Showa Denko Kk ビール用プラスチックボトル
GB9926601D0 (en) * 1999-11-11 2000-01-12 Crown Cork & Seal Tech Corp Polyester containers
US6525123B1 (en) * 2000-05-19 2003-02-25 Chevron Phillips Chemical Company Lp Compatible blend systems from ethylene vinyl alcohol and oxygen scavenging polymers
US7247390B1 (en) * 2000-05-19 2007-07-24 Chevron Phillips Chemical Company, Lp Compatible blend systems of oxygen barrier polymers and oxygen scavenging polymers
AU2002220024A1 (en) 2000-11-08 2002-05-21 Valspar Sourcing, Inc. Multilayered package with barrier properties
AU780900B2 (en) * 2000-12-08 2005-04-21 Toyo Seikan Kaisha Ltd. Packaging material and multi-layer container
WO2002049923A2 (en) * 2000-12-21 2002-06-27 Amcor Twinpak-North America Inc. Et Al. Modified container
AU784042B2 (en) * 2001-05-24 2006-01-19 Mitsubishi Gas Chemical Company, Inc. Polyester based resin composition and molded product therefrom
JP3978012B2 (ja) * 2001-11-01 2007-09-19 株式会社クレハ 多層容器及びその製造方法
CN1625466A (zh) * 2002-02-01 2005-06-08 因温斯特北美公司 不透明的聚酯容器
US6774063B2 (en) * 2002-02-19 2004-08-10 Appleton Papers Inc. Slip resistant nonwoven
UA81055C2 (ru) 2003-08-26 2007-11-26 Інвіста Технолоджіс С.А.Р.Л. Композиция для емкостей и преформа или емкость
US20060029822A1 (en) * 2004-08-04 2006-02-09 Brown Michael J Containers incorporating polyester-containing multilayer structures
PL1778791T3 (pl) * 2004-08-17 2008-12-31 Invista Tech Sarl Barwinowe polimery o właściwościach zmiatania wolnych rodników tlenu
CN101048275A (zh) * 2004-08-31 2007-10-03 因维斯塔技术有限公司 具有低雾度的聚酯-聚酰胺共混物
ES2331145T3 (es) * 2004-12-06 2009-12-22 Eastman Chemical Company Concentrados de cobalto basados en poliester para composiciones de barrido de oxigeno.
US7375154B2 (en) * 2004-12-06 2008-05-20 Eastman Chemical Company Polyester/polyamide blend having improved flavor retaining property and clarity
US20080171169A1 (en) 2005-04-13 2008-07-17 Invista North America S.A.R.L. Oxygen Scavenging Compositions and Method of Preparation
US20070128389A1 (en) * 2005-12-06 2007-06-07 Dak Americas Llc Process for manufacturing co-polyester barrier resins without solid-state polymerization, co-polyester resins made by the process, and clear mono-layer containers made of the co-polyester resins
US7427430B2 (en) * 2005-12-29 2008-09-23 Honeywell International Inc. Polyamide blend composition having excellent gas barrier performance
US8512783B2 (en) 2007-04-05 2013-08-20 Graham Packaging Company Lp Reduced pressure loss pasteurizable container and method of making the same
US20080255280A1 (en) 2007-04-11 2008-10-16 Susan Sims Oxygen-scavenging polymer blends suitable for use in packaging
US20120034355A1 (en) 2009-02-18 2012-02-09 Invista North America S.A.R.L. Polyester composition and bottle for carbonated pasteurized products

Also Published As

Publication number Publication date
HUE057512T2 (hu) 2022-05-28
EP2398712A2 (en) 2011-12-28
EP2398712B1 (en) 2021-10-06
JP2012517947A (ja) 2012-08-09
CN105295312A (zh) 2016-02-03
RU2011138016A (ru) 2013-03-27
PL2398712T3 (pl) 2022-02-07
CN102325699A (zh) 2012-01-18
US20120034355A1 (en) 2012-02-09
WO2010096430A3 (en) 2010-11-04
WO2010096430A2 (en) 2010-08-26
ES2899634T3 (es) 2022-03-14
KR20110120950A (ko) 2011-11-04
DK2398712T3 (da) 2022-01-03
EP2398712A4 (en) 2015-04-15
JP5889637B2 (ja) 2016-03-22
KR20180033610A (ko) 2018-04-03

Similar Documents

Publication Publication Date Title
JP4454570B2 (ja) 透明容器入り乳性飲食品及びその製造方法
RU2562785C2 (ru) Композиция сложного полиэфира и бутылка для газированных пастеризованных продуктов
RU2693945C2 (ru) Вино, упакованное в алюминиевые емкости
JP6074088B2 (ja) アルミニウム容器にパッケージされたワイン
AU609179B2 (en) Food-grade oxygen scavenger for water containing products
AU2012372142B2 (en) Packaging wine in aluminium containers
JP2018524420A (ja) 脱酸素性ポリマー
JP5922290B1 (ja) 容器詰飲料
Berlinet et al. Quality of orange juice in barrier packaging material
KR101911284B1 (ko) Uv 조사 활성 산소흡착 포장재 및 이의 제조방법
RU2450552C1 (ru) Напиток безалкогольный "страна лимония "шифон" премиум"
US20100297289A1 (en) Composition for Stabilising a Dietary Aqueous Liquid Sensitive to Oxidation
WO1999020128A1 (en) Method to retain carbonation in carbonated beverages and composition therefor
Robertson Food packaging and shelf life
CN104169207B (zh) 装有葡萄酒的经灌装的铝容器及其灌装葡萄酒的方法
Ashurst Packaging and the shelf life of water and carbonated drinks
KR20240030134A (ko) 육류 패키징 방법
NZ627588B2 (en) Wine packaged in aluminium containers
NZ627587B2 (en) Packaging wine in aluminium containers

Legal Events

Date Code Title Description
HE9A Changing address for correspondence with an applicant