RU2562656C2 - Сплав, защитное покрытие и конструкционная деталь - Google Patents

Сплав, защитное покрытие и конструкционная деталь Download PDF

Info

Publication number
RU2562656C2
RU2562656C2 RU2013151464/02A RU2013151464A RU2562656C2 RU 2562656 C2 RU2562656 C2 RU 2562656C2 RU 2013151464/02 A RU2013151464/02 A RU 2013151464/02A RU 2013151464 A RU2013151464 A RU 2013151464A RU 2562656 C2 RU2562656 C2 RU 2562656C2
Authority
RU
Russia
Prior art keywords
protective coating
nickel
alloy
structural part
oxidation
Prior art date
Application number
RU2013151464/02A
Other languages
English (en)
Other versions
RU2013151464A (ru
Inventor
Фридхельм ШМИТЦ
Вернер ШТАММ
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2013151464A publication Critical patent/RU2013151464A/ru
Application granted granted Critical
Publication of RU2562656C2 publication Critical patent/RU2562656C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0463Cobalt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/95Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/121Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/132Chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Изобретение относится к области металлургии, а именно к защитному покрытию для защиты конструкционной детали от коррозии и/или окисления. Безрениевый сплав на основе никеля, обладающий стойкостью к коррозии и/или окислению, содержит, в вес.%: кобальт 24-26, хром 12-15, алюминий 10,5-11,5, по меньшей мере один элемент из скандия и/или редкоземельных элементов, в частности иттрий, 0,1-0,7, тантал 0,1-3, необязательно кремний 0,05-0,6, никель - остальное. Защитное покрытие выполнено из заявленного сплава. Конструкционная деталь, в частности, конструкционная деталь (120, 130, 155) газовой турбины (100), содержащая подложку (4) из сплава на основе никеля или на основе кобальта, защитное покрытие и керамический термобарьерный слой (10), причем упомянутый керамический термобарьерный слой (10) нанесен, в частности, на защитное покрытие (7). Защитное покрытие имеет высокую устойчивость к высокотемпературной коррозии и окислению, имеет долговременную стабильность. 3 н. и 9 з.п. ф-лы, 5 ил.

Description

Изобретение относится к сплаву по Пункту 1 патентной формулы, к защитному покрытию для защиты конструкционной детали от коррозии и/или окисления, в частности, при высоких температурах, по Пункту 13 патентной формулы, и к конструкционной детали по Пункту 15 патентной формулы.
Защитные покрытия для металлических конструкционных деталей, которые должны повышать их коррозионную стойкость и/или устойчивость к окислению, известны в большом числе прототипных примеров. Большинство этих защитных покрытий известно под групповым наименованием MCrAlY, причем М означает по меньшей мере один элемент из группы, включающей железо, кобальт и никель, и прочие существенные компоненты представляют собой хром, алюминий и иттрий.
Типичные покрытия этого типа известны из Патентов США 4,005,989 и 4,034,142.
Стремление повысить температуры на входе как стационарных газовых турбин, так и авиационных двигателей, имеет большое значение для отрасли газовых турбин, поскольку температуры на входе представляют собой важные параметры для достигаемых газовыми турбинами термодинамических коэффициентов полезного действия. При применении специально разработанных сплавов в качестве основного материала для термически высоконагруженных конструкционных деталей, таких как направляющие и рабочие лопатки, в частности, с использованием монокристаллических жаропрочных сплавов, вполне возможны температуры на входе свыше 1000°С. Между тем прототипные решения позволяют применять температуры на входе на уровне 950°С и более для стационарных газовых турбин, а также 1100°С и более в газовых турбинах авиационных силовых установок.
Примеры конструкции турбинной лопатки с монокристаллической корпусной частью, которая, в свою очередь, может иметь сложное строение, следуют из патентного документа WO 91/01433 А1.
В то время как физическая допустимая нагрузка разработанных теперь основных материалов для высоконагруженных конструкционных деталей в отношении еще возможных дополнительных повышений температур на входе проблем почти не составляет, для достижения достаточной устойчивости к окислению и коррозии необходимо вернуться к защитным покрытиям. Наряду с достаточной химической устойчивостью защитного покрытия при воздействиях, которых следует ожидать от топочных газов при температурах с величиной порядка 1000°С, защитное покрытие должно также иметь достаточно хорошие механические свойства, не в последнюю очередь в отношении механического взаимодействия между защитным покрытием и основным материалом. В частности, защитное покрытие должно быть достаточно пластичным, чтобы иметь возможность следовать возможным деформациям основного материала и не растрескиваться, так как в этой ситуации могли бы создаваться места для окислительного и коррозионного воздействия. При этом обычно возникает та проблема, что повышение содержания таких элементов, как алюминий и хром, которые могут улучшать устойчивость защитного покрытия к окислению и коррозии, ведет к ухудшению пластичности защитного покрытия, так что необходимо принимать в расчет механический выход из строя, в частности образование трещин, при механической нагрузке, обычно имеющей место в газовой турбине.
Соответственно этому, в основу изобретения положена задача создания сплава и защитного покрытия, которое имеет хорошую устойчивость к высокотемпературным коррозии и окислению, проявляет хорошую долговременную стабильность и, кроме того, особенно хорошо приспособлено к механической нагрузке, которой следует ожидать, в частности, в газовой турбине при высокой температуре.
Задача решена с помощью сплава согласно Пункту 1 патентной формулы и защитного покрытия по Пункту 13 патентной формулы.
Дополнительная задача изобретения состоит в том, чтобы представить конструкционную деталь, которая имеет повышенную защиту от коррозии и окисления.
Задача также решена с помощью конструкционной детали по Пункту 15 патентной формулы, в частности, конструкционной детали газовой турбины или паровой турбины, которая для защиты от коррозии и окисления при высоких температурах имеет защитное покрытие вышеописанного типа.
В зависимых пунктах патентной формулы перечислены дополнительные полезные меры, которые могут быть произвольно скомбинированы друг с другом благоприятным путем.
Далее изобретение разъясняется более подробно.
Как показано:
Фиг. 1 представляет систему слоев с защитным покрытием,
Фиг. 2 представляет составы жаропрочных сплавов,
Фиг. 3 представляет газовую турбину,
Фиг. 4 представляет турбинную лопатку, и
Фиг. 5 представляет камеру сгорания.
Фигуры и описание представлены только в качестве примеров осуществления изобретения.
Согласно изобретению, защитное покрытие 7 (Фиг. 1) для защиты конструкционной детали от коррозии и окисления при высокой температуре главным образом состоит из следующих элементов (данные о содержании в % по весу):
никель
Со: 24%-26%
Cr: 12%-15%
Al: 10,5%-11,5%
0,1%-0,7% редкоземельного элемента (иттрия,...), и/или скандия (Sc):
необязательно
Si: 0,05%-0,4%
Та: 0,1%-3%.
Список элементов Ni, Co, Cr, Al, Y, Si, Ta как компонентов сплава не является окончательным.
Никель предпочтительно образует матрицу.
Список из Ni, Co, Cr, Al, Y, Si, Ta предпочтительно является окончательным.
Уровни содержания элементов сплава обеспечивают следующие достоинства:
Невысокое содержание Co:
расширение бета/гамма-области, устранение хрупких фаз, например, таких как альфа-фазы.
Умеренное содержание Cr:
в достаточной мере высокое для повышения активности Al для образования Al2O3;
достаточно низкое, чтобы устранить хрупкие фазы (альфа-хром или сигма-фаза).
Невысокое содержание Al:
в достаточной мере высокое для активности Al в образовании стабильного слоя Al2O3;
достаточно низкое, чтобы избегать эффекта охрупчивания.
Низкое содержание Y:
высокое в достаточной мере, чтобы при незначительной загрязненности кислородом образовывать еще достаточное количество алюмината иттрия для формирования Y-содержащих «штифтов»;
достаточно низкое, чтобы оказывать негативное влияние на ускорение роста такого оксидного слоя, как Al2O3-слой.
Низкое содержание Si:
достаточно высокое, чтобы слегка улучшить сцепление оксидного слоя;
достаточно низкое, чтобы не ухудшить пластичность покрытия.
Следует констатировать, что уровни содержания отдельных элементов в особенности согласованы в отношении их действий, которые, в частности, должны проявляться в связи с элементом кремнием. Когда уровни содержания рассчитаны так, что не образуются никакие кремниевые осаждения, то во время применения защитного покрытия предпочтительно не возникают никакие хрупкие фазы, так что улучшаются характеристики долговечности и продлевается ресурс.
Это имеет место не только вследствие низкого содержания хрома, но также, с учетом влияния алюминия на формирование фаз, благодаря точному расчету содержания алюминия.
Во взаимодействии с сокращением хрупких фаз, которые особенное негативное влияние оказывают при повышенных механических нагрузках, механические свойства улучшаются путем снижения механических напряжений в результате выбранного содержания никеля.
Защитное покрытие, при хорошей коррозионной стойкости, имеет особенно хорошую устойчивость против окисления, и отличается также особенно хорошими характеристиками пластичности, так что оно особенно рекомендуется для применения в газовой турбине 100 (Фиг. 3) при дополнительном повышении температуры на входе. Во время работы это едва ли приводит к охрупчиванию, так как покрытие вряд ли имеет осаждения хрома-кремния, которые становятся хрупкими в ходе эксплуатации.
Столь же важную роль играют содержащиеся в следовых количествах элементы в напыляемом порошке, которые образуют осаждения и тем самым обусловливают охрупчивание.
Порошки наносятся, например, путем плазменного напыления (способами APS (атмосферное плазменное напыление), LPPS (плазменное напыление при низком давлении), VPS (вакуумное плазменное напыление),...), чтобы сформировать защитное покрытие. Также возможны другие способы (PVD (физическое осаждение из газовой фазы), CVD (химическое осаждение из газовой фазы), SPPS (плазменное напыление из раствора прекурсора),...).
Описываемое защитное покрытие 7 также действует на жаропрочный сплав как усиливающий сцепление слой.
На это защитное покрытие 7 могут быть нанесены дополнительные слои, в частности керамические термобарьерные слои 10.
В случае конструкционной детали 1 защитное покрытие 7 предпочтительно наносится на подложку 4 из жаропрочного сплава на основе никеля или кобальта (Фиг. 2).
В качестве подложки предусматривается, в частности, следующий состав (данные в % по весу):
от 0,1% до 0,15% углерода
от 18% до 22% хрома
от 18% до 19% кобальта
от 0% до 2% вольфрама
от 0% до 4% молибдена
от 0% до 1,5% тантала
от 0% до 1% ниобия
от 1% до 3% алюминия
от 2% до 4% титана
от 0% до 0,75% гафния,
по выбору незначительные доли бора и/или циркония, остальное количество составляет никель.
Составы этого типа известны как литейные сплавы с обозначениями GTD222, IN939, IN6203 и Udimet 500.
Дополнительные альтернативные варианты для подложки 4 (Фиг. 2) конструкционной детали 1, 120, 130, 155 перечислены в Фиг. 2.
Толщина защитного покрытия 7 на конструкционной детали 1 предпочтительно рассчитывается из значения между примерно 100 мкм и 300 мкм.
Защитное покрытие 7 в особенности пригодно для защиты конструкционной детали 1, 120, 130, 155 от коррозии и окисления, в то время как конструкционная деталь подвергается воздействию топочных газов, имея температуру материала около 950°С, для авиационных турбин также примерно 1100°С.
Защитное покрытие 7 согласно изобретению тем самым особенно рекомендовано для защиты конструкционной детали газовой турбины 100, в частности, направляющей лопатки 120, рабочей лопатки 130 или теплозащитного элемента 155, которая подвергается воздействию горячего газа перед турбиной или в турбине газовой турбины 100 или паровой турбины.
Защитное покрытие 7 может быть использовано как верхний слой (защитное покрытие представляет собой самый наружный слой) или как связующее покрытие (защитное покрытие представляет собой промежуточный слой).
Фиг. 1 показывает в качестве конструкционной детали систему 1 слоев.
Система 1 слоев имеет подложку 4.
Подложка 4 может быть металлической и/или керамической. В частности, для турбинных конструкционных деталей, например, таких как турбинные рабочие лопатки 120 (Фиг. 4) или направляющие лопатки 130 (Фиг. 3, 4), теплозащитные элементы 155 (Фиг. 5), а также другие детали корпуса паровой или газовой турбины 100 (Фиг. 3), подложка 4 включает жаропрочный сплав на основе никеля, кобальта или железа, в частности, она состоит из него.
Предпочтительно используются жаропрочные сплавы на основе никеля (Фиг. 2).
На подложке 4 имеется соответствующее изобретению защитное покрытие 7.
Это защитное покрытие 7 предпочтительно наносится плазменным напылением (способами VPS, LPPS, APS,...).
Оно может быть использовано в качестве наружного слоя (не показан) или промежуточного слоя (Фиг. 1).
На защитном покрытии 7 предпочтительно имеется керамический термобарьерный слой 10.
Система слоев предпочтительно состоит из подложки 4, защитного покрытия 7 и керамического термобарьерного слоя 10, необязательно слоя термически выращенного оксида (TGO) под термобарьерным слоем 10.
Защитное покрытие 7 может быть нанесено на вновь изготовленные конструкционные детали, и повторно на обработанные конструкционные детали в ходе восстановления.
Регенерация (восстановление) означает, что с конструкционных деталей 1 после их использования при необходимости отделяются покрытия (термобарьерный слой), и удаляются продукты коррозии и окисления, например, кислотной обработкой (кислотное стрипперование). При необходимости должны быть также отремонтированы трещины. После этого на такую конструкционную деталь опять наносится покрытие, поскольку подложка 4 является очень дорогостоящей.
Фиг. 3 показывает, в качестве примера, газовую турбину 100 в виде частичного продольного разреза.
Внутри газовой турбины 100 имеется ротор 103, который смонтирован вращающимся вокруг оси 102 вращения, с валом 101, также называемый ротором турбины.
Вдоль ротора 103 один за другим следуют впускной корпус 104, компрессор 105, например, тороидальная камера 110 сгорания, в частности, кольцевая камера сгорания, с многочисленными коаксиально размещенными форсунками 107, турбина 108 и выпускной корпус 109.
Кольцевая камера 110 сгорания сообщается, например, с кольцеобразным каналом 111 для горячего газа. Там, например, четыре последовательно соединенных ступени 112 турбины образуют турбину 108.
Каждая ступень 112 турбины сформирована, например, из двух лопастных венцов. Если смотреть по направлению течения рабочей среды 113, в канале 111 для горячего газа ряд 125, сформированный из рабочих лопаток 120, следует за рядом 115 направляющих лопаток.
При этом направляющие лопатки 130 закреплены на внутреннем корпусе 138 статора 143, тогда как рабочие лопатки 120 ряда 125 вставлены в ротор 103, например, с помощью турбинного диска 133.
С ротором 103 соединен генератор или рабочая машина (не показаны).
Во время работы газовой турбины 100 компрессор 105 через впускной корпус 104 засасывает воздух 135 и сжимает его. Сжатый воздух, подготовленный на обращенном к турбине конце компрессора 105, поступает к форсункам 107 и там смешивается с топливом. Затем смесь сгорает в камере 110 сгорания с образованием рабочей среды 113. Оттуда рабочая среда 113 протекает вдоль канала 111 для горячего газа на направляющие лопатки 130 и рабочие лопатки 120. На рабочих лопатках 120 рабочая среда 113 расширяется с передачей им импульса силы так, что рабочие лопатки 120 приводят во вращение ротор 103, и он приводит в движение соединенную с ним рабочую машину.
Конструкционные детали, находящиеся в горячей рабочей среде 113 во время работы газовой турбины 100, подвергаются воздействию термических нагрузок. Направляющие лопатки 130 и рабочие лопатки 120 в первой ступени 112 турбины, если смотреть по направлению течения рабочей среды 113, вместе с теплозащитными элементами, облицовывающими кольцеобразную камеру 110 сгорания, испытывают самые высокие термические нагрузки.
Чтобы выдерживать господствующие там температуры, эти детали могут охлаждаться с помощью охлаждающей среды.
Подобным образом, подложки конструкционных деталей могут иметь направленную структуру, то есть они являются монокристаллическими (SX-структура), или включают только продольно направленные зерна (DS-структура). Например, в качестве материала для конструкционных деталей, в частности, для турбинных лопаток 120, 130, и конструкционных деталей камеры 110 сгорания, используются жаропрочные сплавы на основе железа, никеля или кобальта.
Такие жаропрочные сплавы известны, например, из патентных документов EP 1 204 776 В1, EP 1 306 454, EP 1 319 729 А1, WO 99/67435 или WO 00/44949.
Направляющая лопатка 130 имеет корень направляющей лопатки (здесь не показан), обращенный к внутреннему корпусу 138 турбины 108, и головку направляющей лопатки на противоположной стороне относительно корня направляющей лопатки. Головка направляющей лопатки обращена к ротору 103 и закреплена на крепежном кольце 140 статора 143.
Фиг. 4 показывает перспективный вид рабочей лопатки 120 или направляющей лопатки 130 турбомашины, которая является протяженной вдоль продольной оси 121.
Турбомашина может представлять собой газовую турбину самолета или электростанции для выработки электроэнергии, паровую турбину или компрессор.
Лопатка 120, 130 имеет последовательно протяженные вдоль продольной оси 121 крепежный участок 400 (хвостовик), примыкающую к нему полку 403 лопатки, а также рабочую сторону (перо) 406, и вершину 415 лопатки.
Будучи в качестве направляющей лопатки 130, лопатка 130 на своей вершине 415 лопатки может иметь дополнительную полку (не показана).
В крепежном участке 400 сформирован корень 183 лопатки, который служит для крепления рабочих лопаток 120, 130 к валу или диску (не показан).
Корень 183 лопатки выполнен, например, в форме головки молотка. Возможны также другие конструкции, такие как елочный хвостовик или «ласточкин хвост».
Лопатка 120, 130 имеет входную кромку 409 и выходную кромку 412 для среды, которая обтекает основную часть 406 лопатки.
Для традиционных лопаток 120, 130, в качестве примера, во всех участках 400, 403, 406 лопатки 120, 130 используются сплошные металлические материалы, в частности жаропрочные сплавы.
Такие жаропрочные сплавы известны, например, из патентных документов EP 1 204 776 В1, EP 1 306 454, EP 1 319 729 А1, WO 99/67435 или WO 00/44949.
При этом лопатка 120, 130 может быть изготовлена способом литья, также с помощью направленного затвердевания, способом ковки, способом фрезерования или их комбинациями.
Заготовки с монокристаллической структурой или структурами используются в качестве конструкционных деталей для машин, которые во время работы подвергаются воздействию высоких механических, термических и/или химических нагрузок.
Изготовление подобных монокристаллических заготовок выполняется, например, направленным затвердеванием из расплава. При этом речь идет о процессах литья, в которых жидкий металлический сплав затвердевает с образованием монокристаллической структуры, то есть в монокристаллическую заготовку, то есть затвердевает направленно.
При этом образуются дендритные кристаллы, ориентированные в направлении теплового потока, и формируют либо структуру с зернами в виде столбчатых кристаллов (то есть, с зернами, которые проходят по всей длине заготовки, и здесь, в соответствии со стандартной терминологией, называются направленно затвердевшими), либо монокристаллическую структуру, то есть, вся заготовка состоит из одного монокристалла. В этом процессе должен быть исключен переход к глобулярному (поликристаллическому) затвердеванию, поскольку ненаправленный рост неизбежно ведет к образованию поперечных и продольных границ между зернами, которые сводят на нет хорошие свойства направленно затвердевшей или монокристаллической детали.
Если в общем речь идет о направленно затвердевших структурах, то тем самым подразумеваются как монокристаллы, которые не имеют никаких границ между зернами или, в крайнем случае, имеют малоугловые межзеренные границы, так и структуры из столбчатых кристаллов, которые имеют границы между зернами, проходящие в продольном направлении, но не имеют никаких поперечных межзеренных границ. В случае этих указанных вторыми кристаллических структур речь также может идти о направленно затвердевших структурах (направленно отвержденных структурах).
Такие способы известны из патентных документов US-PS 6,024,792 и EP 0 892 090 А1.
Лопатки 120, 130 также могут иметь соответствующие изобретению защитные покрытия 7 против коррозии или окисления. Плотность предпочтительно составляет 95% теоретической плотности.
На MCrAlX-слое (в качестве промежуточного слоя или в качестве самого наружного слоя) образуется защитный слой из оксида алюминия (TGO = термически выращенный оксидный слой).
На MCrAlX также может присутствовать еще и термобарьерное покрытие, которое предпочтительно представляет собой самый наружный слой и состоит, например, из ZrO2, Y2O4-ZrO2, то есть оно является не стабилизированным, частично или полностью стабилизированным оксидом иттрия, и/или оксидом кальция, и/или оксидом магния.
Термобарьерное покрытие полностью покрывает весь MCrAlX-слой. С помощью подходящего способа нанесения покрытий, например, такого как физическое осаждение из паровой фазы с испарением электронным пучком (EB-PVD), в термобарьерном покрытии получаются столбчатые зерна.
Возможны другие способы нанесения покрытий, например, атмосферное плазменное напыление (APS), LPPS (плазменное напыление при низком давлении), VPS (вакуумное плазменное напыление) или CVD (химическое осаждение из газовой фазы). Для лучшей устойчивости против теплового удара термобарьерное покрытие может иметь пористые зерна, прилипающие к микро- или макротрещинам. Термобарьерное покрытие также предпочтительно является более пористым, чем MCrAlX-слой.
Лопатка 120, 130 может быть выполнена пустотелой или сплошной. Если лопатка 120, 130 должна охлаждаться, то она является пустотелой и также при необходимости может включать отверстия 418 для пленочного охлаждения (обозначены пунктирными линиями).
Фигура 5 показывает камеру 110 сгорания газовой турбины 100. Камера 110 сгорания, например, выполнена в виде так называемой кольцевой камеры сгорания, в которой размещенные вокруг оси 102 вращения в окружном направлении многочисленные форсунки 107 открыты в общий объем 154 камеры сгорания, которые образуют факелы 156 пламени. Для этой цели вся камера 110 сгорания в целом имеет кольцеобразную конфигурацию, которая позиционирована вокруг оси 102 вращения.
Для достижения сравнительно высокого коэффициента полезного действия камера 110 сгорания рассчитана на сравнительно высокую температуру рабочей среды М от около 1000°С до 1600°С. Чтобы и при этих неблагоприятных для материалов эксплуатационных параметрах обеспечивалась возможность относительно длительной продолжительности работы, стенка 153 камеры сгорания на ее стороне, обращенной к рабочей среде М, оснащена внутренней облицовкой, сформированной из теплозащитных элементов 155.
Кроме того, вследствие высоких температур внутри камеры 110 сгорания может быть предусмотрена система охлаждения теплозащитных элементов 155 или, соответственно, деталей их крепления. В этом случае теплозащитные элементы 155 являются, например, пустотелыми и при необходимости также могут иметь открытые в объем 154 камеры сгорания отверстия для охлаждения (не показаны).
Каждый теплозащитный элемент 155 из сплава на стороне рабочей среды оснащен особенно термостойким защитным покрытием (MCrAlX-слой и/или керамическое покрытие) или изготовлен из устойчивого к высоким температурам материала (сплошные керамические кирпичи).
Эти защитные слои 7 могут быть подобны лопаткам турбины.
На MCrAlX также может присутствовать, например, керамическое термобарьерное покрытие, состоящее, например, из ZrO2, Y2O4-ZrO2, то есть, которое является не стабилизированным, частично или полностью стабилизированным оксидом иттрия, и/или оксидом кальция, и/или оксидом магния.
Столбчатые зерна в термобарьерном покрытии получаются с помощью подходящих способов нанесения покрытий, например, таких как физическое осаждение из паровой фазы с испарением электронным пучком (EB-PVD).
Возможны другие способы нанесения покрытий, например атмосферное плазменное напыление (APS), LPPS, VPS, или CVD. Для лучшей устойчивости против теплового удара термобарьерное покрытие может иметь пористые зерна, прилипающие к микро- или макротрещинам.
Регенерация (восстановление) означает, что с турбинных лопаток 120, 130, теплозащитных элементов 155 после их использования при необходимости должны быть удалены защитные покрытия (например, пескоструйной обработкой). После этого выполняется удаление слоев и, соответственно, продуктов коррозии и/или окисления. При необходимости также подлежат ремонту трещины в турбинных лопатках 120, 130 или в теплозащитном элементе 155. После этого следует повторное нанесение покрытия на турбинные лопатки 120, 130, теплозащитные элементы 155, и повторное использование турбинных лопаток 120, 130 или теплозащитных элементов 155.

Claims (12)

1. Безрениевый сплав на основе никеля, обладающий стойкостью к коррозии и/или окислению, содержащий следующие элементы, в вес.%:
Кобальт (Со) 24-26, в частности 25,
Хром (Cr) 12-15, в частности от 12 до 14, предпочтительно 13,
Алюминий (Al) 10,5-11,5, в частности 11,
по меньшей мере один элемент из скандия (Sc) и/или редкоземельных элементов, в частности иттрий (Y), 0,1-0,7,
Тантал (Та) 0,1-3,
необязательно кремний (Si) 0,05-0,6,
никель (Ni) - остальное, в частности 43,2-53,4.
2. Сплав по п. 1, отличающийся тем, что он содержит 0,2-0,4 вес.% иттрия, в частности, 0,3 вес.%.
3. Сплав по п. 1, отличающийся тем, что он содержит по меньшей мере 0,1 вес.% кремния (Si).
4. Сплав по п. 3, отличающийся тем, что он содержит 0,2-0,4 вес.% кремния (Si), в частности 0,3 вес.%.
5. Сплав по п. 1, отличающийся тем, что он содержит по меньшей мере 0,5 вес.% тантала (Та), предпочтительно по меньшей мере 1,0 вес.%.
6. Сплав по п. 1, отличающийся тем, что он получен без циркония (Zr), и/или титана (Ti), и/или галлия (Ga), и/или германия (Ge), и/или платины (Pt), и/или гафния (Hf), и/или церия (Се).
7. Сплав по п. 1, отличающийся тем, что он состоит из кобальта, хрома, алюминия, иттрия, тантала и никеля.
8. Сплав по п. 1, отличающийся тем, что он состоит из кобальта, хрома, алюминия, иттрия, тантала, кремния и никеля.
9. Защитное покрытие (7) для защиты конструкционной детали (1) от коррозии и/или окисления, в частности при высоких температурах, выполненное из сплава по любому из пп. 1-8.
10. Защитное покрытие по п. 9, в котором никель (Ni) образует матрицу.
11. Защитное покрытие (7) по п. 9 или 10, которое нанесено плазменным напылением, в частности плазменным напылением в атмосфере (APS), или высокоскоростным газопламенным напылением (HVOF).
12. Конструкционная деталь, в частности конструкционная деталь (120, 130, 155) газовой турбины (100), содержащая подложку (4) из сплава на основе никеля или на основе кобальта, защитное покрытие по любому из пп. 9-11, и керамический термобарьерный слой (10), причем упомянутый керамический термобарьерный слой (10) нанесен, в частности, на защитное покрытие (7).
RU2013151464/02A 2010-06-02 2011-05-31 Сплав, защитное покрытие и конструкционная деталь RU2562656C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10005771.0 2010-06-02
EP10005771A EP2392684A1 (de) 2010-06-02 2010-06-02 Legierung, Schutzchicht und Bauteil
PCT/EP2011/058965 WO2011151334A1 (de) 2010-06-02 2011-05-31 Legierung, schutzschicht und bauteil

Publications (2)

Publication Number Publication Date
RU2013151464A RU2013151464A (ru) 2015-05-27
RU2562656C2 true RU2562656C2 (ru) 2015-09-10

Family

ID=42806005

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013151464/02A RU2562656C2 (ru) 2010-06-02 2011-05-31 Сплав, защитное покрытие и конструкционная деталь

Country Status (7)

Country Link
US (1) US20130136948A1 (ru)
EP (4) EP2392684A1 (ru)
JP (1) JP2013530309A (ru)
KR (2) KR20140094659A (ru)
CN (1) CN102933734B (ru)
RU (1) RU2562656C2 (ru)
WO (1) WO2011151334A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2773177C2 (ru) * 2017-10-31 2022-05-31 ЭРЛИКОН МЕТКО (ЮЭс) ИНК. Износостойкий слой
US11819913B2 (en) 2017-10-31 2023-11-21 Oerlikon Metco (Us) Inc. Wear resistant layer

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2474414A1 (de) * 2011-01-06 2012-07-11 Siemens Aktiengesellschaft Legierung, Schutzschicht und Bauteil
EP2474413A1 (de) * 2011-01-06 2012-07-11 Siemens Aktiengesellschaft Legierung, Schutzschicht und Bauteil
JP5597598B2 (ja) * 2011-06-10 2014-10-01 株式会社日立製作所 Ni基超合金と、それを用いたガスタービンのタービン動・静翼
EP2557201A1 (de) * 2011-08-09 2013-02-13 Siemens Aktiengesellschaft Legierung, Schutzschicht und Bauteil
US20150275677A1 (en) * 2014-03-27 2015-10-01 General Electric Company Article for use in high stress environments having multiple grain structures
ES2682362T3 (es) 2015-05-05 2018-09-20 MTU Aero Engines AG Superaleación a base de níquel exenta de renio con baja densidad
EP3485053A1 (en) * 2016-09-12 2019-05-22 Siemens Aktiengesellschaft Nicocraly-alloy, powder and layer system
CN106987755A (zh) * 2017-06-05 2017-07-28 北京普瑞新材科技有限公司 一种MCrAlY合金及其制备方法
CN108915872B (zh) * 2018-07-04 2021-04-13 贵溪发电有限责任公司 一种提高火力发电厂发电效率的方法
CN108915871B (zh) * 2018-07-04 2021-05-25 智腾机械设备(上海)有限公司 一种发电式燃气轮机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005989A (en) * 1976-01-13 1977-02-01 United Technologies Corporation Coated superalloy article
RU2165475C2 (ru) * 1999-05-27 2001-04-20 Всероссийский научно-исследовательский институт авиационных материалов Способ защиты стальных деталей машин от солевой коррозии
US6280857B1 (en) * 1997-10-30 2001-08-28 Alstom High temperature protective coating

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4034142A (en) 1975-12-31 1977-07-05 United Technologies Corporation Superalloy base having a coating containing silicon for corrosion/oxidation protection
JPS55161041A (en) * 1979-05-29 1980-12-15 Howmet Turbine Components Covering material
US4326011A (en) * 1980-02-11 1982-04-20 United Technologies Corporation Hot corrosion resistant coatings
JPS57155338A (en) * 1981-03-23 1982-09-25 Hitachi Ltd Metallic body with alloy coating resistant to corrosion and thermal shock
WO1991001433A1 (en) 1989-07-25 1991-02-07 Allied-Signal Inc. Dual alloy turbine blade
JPH0432546A (ja) * 1990-05-28 1992-02-04 Mitsubishi Heavy Ind Ltd ガスタービン動翼補修方法
DE59505454D1 (de) * 1994-10-14 1999-04-29 Siemens Ag Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
EP0892090B1 (de) 1997-02-24 2008-04-23 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
EP0861927A1 (de) 1997-02-24 1998-09-02 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
CN1198964C (zh) * 1997-10-30 2005-04-27 阿尔斯通公司 高温保护涂料
EP1306454B1 (de) 2001-10-24 2004-10-06 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
US20040180233A1 (en) * 1998-04-29 2004-09-16 Siemens Aktiengesellschaft Product having a layer which protects against corrosion. and process for producing a layer which protects against corrosion
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
EP1204776B1 (de) 1999-07-29 2004-06-02 Siemens Aktiengesellschaft Hochtemperaturbeständiges bauteil und verfahren zur herstellung des hochtemperaturbeständigen bauteils
DE60041951D1 (de) * 1999-12-20 2009-05-20 United Technologies Corp Verwendung einer Kathode zur Vakuumbogenverdampfung
DE50112339D1 (de) 2001-12-13 2007-05-24 Siemens Ag Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
EP1380672A1 (en) * 2002-07-09 2004-01-14 Siemens Aktiengesellschaft Highly oxidation resistant component
EP1411210A1 (en) * 2002-10-15 2004-04-21 ALSTOM Technology Ltd Method of depositing an oxidation and fatigue resistant MCrAIY-coating
EP1790743A1 (de) * 2005-11-24 2007-05-30 Siemens Aktiengesellschaft Legierung, Schutzschicht und Bauteil
EP1806418A1 (de) * 2006-01-10 2007-07-11 Siemens Aktiengesellschaft Legierung, Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen und Bauteil
US7846243B2 (en) * 2007-01-09 2010-12-07 General Electric Company Metal alloy compositions and articles comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005989A (en) * 1976-01-13 1977-02-01 United Technologies Corporation Coated superalloy article
US6280857B1 (en) * 1997-10-30 2001-08-28 Alstom High temperature protective coating
RU2165475C2 (ru) * 1999-05-27 2001-04-20 Всероссийский научно-исследовательский институт авиационных материалов Способ защиты стальных деталей машин от солевой коррозии

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2773177C2 (ru) * 2017-10-31 2022-05-31 ЭРЛИКОН МЕТКО (ЮЭс) ИНК. Износостойкий слой
US11819913B2 (en) 2017-10-31 2023-11-21 Oerlikon Metco (Us) Inc. Wear resistant layer

Also Published As

Publication number Publication date
EP2576853A1 (de) 2013-04-10
KR20140094659A (ko) 2014-07-30
CN102933734B (zh) 2016-05-18
EP2612950A2 (de) 2013-07-10
KR20130018906A (ko) 2013-02-25
CN102933734A (zh) 2013-02-13
EP2612949A2 (de) 2013-07-10
JP2013530309A (ja) 2013-07-25
US20130136948A1 (en) 2013-05-30
EP2612949A3 (de) 2014-02-19
EP2612950A3 (de) 2014-02-19
EP2576853B1 (de) 2014-10-29
WO2011151334A1 (de) 2011-12-08
EP2392684A1 (de) 2011-12-07
RU2013151464A (ru) 2015-05-27
EP2612949B1 (de) 2014-12-24

Similar Documents

Publication Publication Date Title
RU2562656C2 (ru) Сплав, защитное покрытие и конструкционная деталь
JP4874112B2 (ja) 構造部材の保護層
RU2521924C2 (ru) Сплав, защитный слой и деталь
RU2597459C2 (ru) СИСТЕМА СЛОЕВ С ДВОЙНЫМ МЕТАЛЛИЧЕСКИМ MCrAlY-ПОКРЫТИЕМ
JP5294689B2 (ja) パイロクロア相と酸化物とを有するセラミック粉末、セラミック層及び層組織
US20120003460A1 (en) Two-Layer Porous Layer System Having a Pyrochlore Phase
JP2009517241A (ja) ガドリニウム混晶パイロクロア相を有する層組織
US20150259770A1 (en) Metallic bondcoat with a high gamma/gamma' transition temperature and a component
JP2010241611A6 (ja) パイロクロア相と酸化物とを有するセラミック粉末、セラミック層及び層組織
RU2550461C2 (ru) Сплав, защитный слой и конструктивный элемент
RU2591096C2 (ru) Сплав, защитное покрытие и конструктивный элемент
US20090263675A1 (en) Alloy, Protective Layer for Protecting a Component Against Corrosion and/or Oxidation at High Tempertures and Component
RU2566693C2 (ru) Система слоев с двухслойным металлическим слоем
JP5615970B2 (ja) ガンマ/ガンマプライム転移温度の高い金属ボンドコート又は合金、及び部品
US20130337286A1 (en) Alloy, protective coating, and component
US20130288072A1 (en) Alloy, protective layer and component
RU2574559C2 (ru) Сплав, защитное покрытие и конструкционная деталь
US11092035B2 (en) Alloy, protective layer and component
US20120328900A1 (en) Alloy, protective layer, and component
US20120288730A1 (en) Alloy, protective layer, and component
JP2015034344A (ja) γ/γ’転移温度の高い金属ボンドコート及び部品

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20211201