RU2561812C1 - Способ утилизации тепла и осушения дымовых газов и устройство для его осуществления - Google Patents

Способ утилизации тепла и осушения дымовых газов и устройство для его осуществления Download PDF

Info

Publication number
RU2561812C1
RU2561812C1 RU2014114391/06A RU2014114391A RU2561812C1 RU 2561812 C1 RU2561812 C1 RU 2561812C1 RU 2014114391/06 A RU2014114391/06 A RU 2014114391/06A RU 2014114391 A RU2014114391 A RU 2014114391A RU 2561812 C1 RU2561812 C1 RU 2561812C1
Authority
RU
Russia
Prior art keywords
heat exchanger
heat
water
flue gases
installation
Prior art date
Application number
RU2014114391/06A
Other languages
English (en)
Inventor
Геннадий Юрьевич Князькин
Татьяна Геннадиевна Князькина
Дмитрий Юрьевич Волков
Андрей Владимирович Щеблыкин
Original Assignee
Геннадий Юрьевич Князькин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Геннадий Юрьевич Князькин filed Critical Геннадий Юрьевич Князькин
Priority to RU2014114391/06A priority Critical patent/RU2561812C1/ru
Application granted granted Critical
Publication of RU2561812C1 publication Critical patent/RU2561812C1/ru

Links

Images

Landscapes

  • Air Supply (AREA)

Abstract

Изобретение относится к теплоэнергетике, в частности к устройствам для использования тепла уходящих газов устройств, использующих в качестве топлива природный или сжиженный газ. Устройство утилизации тепла дымовых газов содержит систему газоводяных поверхностных теплообменников, выполненных из оребренных коррозионно-стойких биметаллических труб, при этом один теплообменник устройства выполнен выносным. Нагреваемыми теплоносителями является вода, водосодержащая незамерзающая жидкость, наружный холодный воздух приточной вентиляции. Выносной теплообменник установлен на входе (по ходу воздуха) калорифера приточной вентиляции помещений и по контуру циркуляции водосодержащей незамерзающей жидкости он работает в паре с последним теплообменником устройства, при этих условиях последний теплообменник устройства работает как конденсатор водяных паров дымовых газов. После прохождения теплообменников поток газов разделяется на два потока: большой и малый. На малом потоке в целях увеличения его динамического напора установлен напорный вентилятор, после прохождения которого два потока газов смешиваются в щелевом эжекторе, в котором также увеличивается динамический напор и большого потока, в результате компенсируются аэродинамические потери теплоутилизатора. Изобретение позволяет повысить эффективность использования низкопотенциального тепла конденсации водяных паров, содержащихся в дымовых газах. 2 н. и 5з.п. ф-лы, 2 ил.

Description

Область техники
Изобретение относится к теплотехнике, в частности к устройствам для использования тепла уходящих газов газифицированных котлов, печей, энергогенераторов и других устройств, использующих в качестве топлива природный или сжиженный газ.
Уровень техники
Ценная особенность природного газа - наличие в нем большого количества водорода, при сжигании которого образуются пары воды. При сжигании 1 м3 природного газа образуется до 1,6 кг воды в виде пара, за счет этого высшая теплота сгорания природного газа (с учетом скрытой теплоты парообразования) на 11% выше низшей теплоты сгорания, а это около 3320 килоджоулей на кубометр сожженного газа. Использование скрытой теплоты парообразования уходящих дымовых газов возможно только при конденсации водяного пара на поверхностях теплоутилизаторов, имеющих температуру ниже «точки росы», которая зависит от температуры уходящих дымовых газов и их влагосодержания. Процесс конденсации водяных паров из продуктов сгорания при сжигании природного газа и жидкого топлива наступает по достижении температуры 50-60°C, и чем ниже температура нагреваемого теплоносителя, тем выше его эффективность, при этом оптимальная температура на поверхности теплообменника составляет 0°C, такую температуру можно достичь только при температуре нагреваемого теплоносителя ниже 0°C.
В настоящее время это тепло практически все действующие традиционные газосжигающие установки недополучают по следующим причинам:
- для эффективной работы необходимо не только дополнительно поставить теплоутилизатор с развитой поверхностью контактного или поверхностного типа, но и установить теплообменники в теплоутилизаторе по многоходовой противоточной схеме движения нагреваемого теплоносителя по отношению к уходящим дымовым газам, а это приводит к значительному увеличению аэродинамического сопротивления теплоутилизатора и требует, во многих случаях, замену дорогостоящего тягодутьевого оборудования. Особенно это проблематично на теплогенераторах, работающих под наддувом, без дымососа;
- необходимо провести комплекс работ по недопущению образования значительного количества конденсата в дымовой трубе и газоходе, а именно выполнить дополнительную теплоизоляцию, провести гидроизоляционные и противокоррозионные работы;
- современные конструкции теплоутилизаторов доводят температуру уходящих газов до 35-40°C, при этом водяные пары в уходящих газах находятся на линии насыщения и имеют еще значительное паросодержание (порядка 40-50 г/м3), поэтому в целях предотвращения образования конденсата в дымовой трубе, уже при наружных температурах воздуха ниже +10°C, приходится значительно повышать температуру уходящих газов за счет байпасирования части уходящих газов мимо теплоутилизатора, в некоторых случаях до 50%. В связи с чем в наиболее востребованный период работы резко снижаются теплопроизводительность утилизатора и его технико-экономические показатели, при этом не дается полной гарантии защиты газоходов и дымовых труб от конденсата в холодное время года;
- низкая степень заводской готовности теплоутилизаторов и значительная их материалоемкость ведет к значительным затратам на монтаже и наладке.
В ряде отраслей промышленности применяют теплообменники, выполненные из труб со спирально-кольцевыми накатными или навитыми и приваренными ребрами [Кунтыш В.Б., Кузнецов Н.М. Тепловой и аэродинамический расчет оребренных теплообменников воздушного охлаждения. Энергоатомиздат, С.-Петербург, 1988, 278 с].
В последнее время такие теплообменники используют и для более глубокого охлаждения уходящих газов за паровыми и водогрейными котлами, сжигающими природный газ [Кудинов А.А., Антонов В.А., Алексеев Ю.А. Анализ эффективности применения конденсационного теплоутилизатора за паровым котлом ДЕ-10-14ГМ//Промышленная энергетика. - 1997, №8; Гомон В.И., Пресич Г.А., Навродская Р.А. «Утилизация теплоты уходящих газов с использованием поверхностных (в том числе конденсационных) и контактных теплоутилизаторов». В сб. «Материалы семинара «Современное котельное оборудование - экономичность, безопасность и экологичность»» - Киев, 1996, с.31-37].
Наиболее близким к заявляемому изобретению является теплоутилизатор (патент РФ №2323384, F22B 1/18 от 30.08.2006), содержащий систему теплообменников (поверхностного, контактного типа, водовоздушный, водо-водяной, газо-газовый), каплеуловитель, газо-газовый теплообменник, включенный по схеме прямотока, газоходы, трубопроводы, насос, датчики температуры, клапаны-регуляторы. По ходу движения оборотной воды контактного теплообменника последовательно расположены водо-водяной теплообменник и водовоздушный теплообменник с обводным каналом по ходу движения воздуха.
Способ работы теплоутилизатора (патент РФ №2323384, F22B 1/18 от 30.08.2006) заключается в том, что уходящие газы по газоходу поступают на вход газо-газового теплообменника, последовательно проходя три его секции, затем на вход контактного теплообменника, где, проходя через насадку, омываемую оборотной водой, охлаждаются ниже точки росы, отдавая явное и скрытое тепло оборотной воде. Далее охлажденные и влажные газы освобождаются от большей части унесенной потоком жидкой воды в каплеуловителе, нагреваются и подсушиваются, по меньшей мере, в одной секции газогазового теплообменника, дымососом направляются в трубу и выбрасываются в атмосферу. Одновременно нагретая оборотная вода из поддона контактного теплообменника насосом подается в водо-водяной теплообменник, где нагревает холодную воду из трубопровода. Нагретая в теплообменнике вода поступает на нужды технологического и бытового горячего водоснабжения или в низкотемпературный отопительный контур. Далее оборотная вода поступает в водовоздушный теплообменник, нагревает, по меньшей мере, часть дутьевого воздуха, поступающего из-за пределов помещения по воздуховоду, охлаждаясь до минимально возможной температуры, и поступает в контактный теплообменник через водораспределитель, где отбирает тепло от газов, попутно промывая их от взвешенных частиц, и поглощает часть оксидов азота и серы. Нагретый воздух из теплообменника дутьевым вентилятором подается в штатный воздухоподогреватель или непосредственно в топку. Оборотная вода по необходимости фильтруется и обрабатывается известными способами.
Недостатками данного прототипа являются: сложность системы регулирования, применение большого количества дополнительного оборудования, трубопроводов, газовоздухопроводов, низкая степень осушения уходящих дымовых газов в осенне-весенний и зимний периоды, требующая значительного последующего их нагрева, что снижает эффективность работы установки в осенне-весенний и зимний периоды.
Технический результат
Техническим результатом заявляемого изобретения является:
- повышение эффективности использования низкопотенциального тепла конденсации водяных паров, содержащихся в дымовых газах, для нагрева всех теплоносителей, участвующих в тепловом балансе котельной установки;
- увеличение степени осушения уходящих дымовых газов в осенне-весенний и зимний периоды;
- повышение коэффициента теплопередачи в теплоутилизаторе и компенсация аэродинамических потерь, связанных с установкой теплоутилизатора с высокоразвитой поверхность нагрева и многоходовой противоточной схеме движения нагреваемого теплоносителя, по отношению к уходящим дымовым газам;
- повышение степени заводской готовности теплоутилизатора, что приводит к упрощению технологии утилизации тепла и снижению затрат на монтажные и пусконаладочные работы.
Сущность изобретения
Названный выше технический результат достигается при осуществлении заявленного способа утилизации тепла и осушения дымовых газов, согласно которому уходящие дымовые газы за счет охлаждения исходных дымовых газов и конденсации водяных паров по схеме противотока без регулирования расхода газов нагревают воздух и воду, которые используются для отопления и покрытия потребности процесса горения. Причем осушение дымовых газов производится в системе газоводяных теплообменников теплоутилизатора, где один теплообменник теплоутилизатора выполнен выносным и установлен на входе, по ходу движения воздуха, калорифера приточной вентиляции котельной и работает как его первая ступень. Теплоносителем по этому контуру является незамерзающая водосодержащая жидкость. При этом, последний по ходу дымовых газов теплообменник работает в паре с выносным так, что в зависимости от температуры наружного воздуха меняется температура наружной поверхности последнего по ходу дымовых газов теплообменника теплоутилизатора и степень осушения уходящих дымовых газов (предпочтительно в осенне-весенний и зимний периоды), что приводит к саморегулируемости процесса.
Также заявлена установка для осуществления указанного выше способа утилизации тепла и осушения дымовых газов, которая содержит, систему газоводяных теплообменников, напорный вентилятор, газоходы, щелевой эжектор, трубопроводы и насос. В целях увеличения скорости омывания дымовыми газами поверхностей нагрева газоводяных теплообменников теплоутилизатора и увеличения коэффициента теплопередачи предлагается выполнять установку таким образом, что уходящие дымовые газы в установке теплоутилизатора после прохождения их через систему теплообменников будут разделяться на два потока, большой и малый. Причем в целях увеличения динамического напора малого потока установка содержит напорный вентилятор, после прохождения которого малый поток увеличивает свой динамический напор и поступает в сопло щелевого эжектора, где в щелевом эжекторе большой и малый потоки смешиваются, что приводит к увеличению динамического напора общего потока, одновременно решается техническая задача компенсации аэродинамических потерь на сопротивление уходящих дымовых газов в теплоутилизаторе и потери самотяги в дымовой трубе в результате снижения температуры уходящих газов.
При этом конструктивная компоновка установки теплоутилизатора выполнена одним изделием, позволяющим устанавливать его над или под газоходом путем врезки в существующий газоход, а байпас уходящих дымовых газов и его регулирование производится непосредственно в установке теплоутилизатора.
В целях регулирования соотношения большого/малого потока дымовых газов в установке теплоутилизатора может быть установлена регулировочная направляющая пластина.
В целях предотвращения ледообразования на наружных поверхностях последнего по ходу движения газов теплообменника теплоутилизатора на контуре теплоносителя предпочтительна установка линии рециркуляции, которая включается после достижения теплоносителем (незамерзающей водосодержащей жидкостью) критической температуры.
Последний по ходу движения газов теплообменник теплоутилизатора рекомендуется выполнять с возможностью временного отключения от выносной секции, слива из нее водосодержащей незамерзающей жидкости и переключения ее на параллельный подогрев воды совместно со вторым или первым теплообменником, которые могут работать как в параллельном, так и в последовательном режиме, а также и самостоятельно каждый по отдельному контуру.
Шибер на линии байпаса дымовых газов может быть выполнен из двух частей разной площади живого сечения, где при его открытии сначала открывается меньшая часть, а потом большая.
Краткое описание чертежей
Изобретение поясняется далее более подробно на конкретных примерах его осуществления со ссылкой на прилагаемые чертежи, на которых изображено:
- на фиг.1 - устройство, схема работы теплоутилизатора и осушителя дымовых газов,
- на фиг.2 - сечение А-А устройства теплоутилизатора и осушителя дымовых газов.
Осуществление изобретения
Предлагаемое устройство теплоутилизатора уходящих дымовых газов схематично изображено на фиг.1 и 2. Особенности различного конструктивного исполнения теплоутилизатора позволяют устанавливать его как над газоходом, так и под ним, а поставка на монтажную площадку может осуществляться одним блоком полной заводской готовности.
Устройство работает следующим образом. В целях эффективности теплообмена, длительной и надежной работы теплообменники теплоутилизатора выполнены из оребренных коррозионно-стойких металлических труб, расположенных горизонтально в 2-4 ряда в каждом теплообменнике, по ходу движения газов, причем ряды расположены вертикально.
Уходящие дымовые газы из хвостовой части котла по газоходу 1 (см. фиг.1) через шибер 2 поступают во входной патрубок 3 теплоутилизатра, проходят через три теплообменника 4-6, где происходит значительная утилизация тепла уходящих газов за счет нагрева циркулирующей воды и незамерзающей водосодержащей жидкости. Основная часть утилизированной теплоты уходящих дымовых газов приходится на скрытую теплоту парообразования при конденсации водяных паров на наружных поверхностях теплообменников, где образовавшийся конденсат стекает в сборник конденсата 7 и выводится через гидрозатвор по трубопроводу 8 за пределы теплоутилизатора. При этом скорость уходящих дымовых газов, проходящих через теплообменники, выбирается с таким расчетом, чтобы не было уноса капель конденсата за пределы последнего теплообменника. За теплообменниками в патрубках 9, 10 охлажденные и осушенные дымовые газы разделяются на два потока: большой и малый, при этом регулирование соотношения большой/малый поток осуществляется регулировочной пластиной 11.
Малый поток после разделения поступает в выходной патрубок малого потока 9 и поступает в напорный вентилятор 12 и, значительно увеличив свой динамический напор, поступает в щелевое сопло эжектора 13. Большой поток поступает в выходной патрубок 10 и в камеру смешения щелевого эжектор 14, в котором также увеличивается его динамический напор. В щелевом эжекторе 14 оба потока смешиваются, и, за счет увеличения их динамического напора реализуется техническая задача увеличения скорости дымовых газов в теплоутилизаторе и компенсация аэродинамических потерь уходящих дымовых газов в теплоутилизаторе и потери самотяги в дымовой трубе.
В целях регулирования расхода (пропуска) части уходящих дымовых газов мимо теплоутилизатора, в т.ч. и для полного его отключения, во врезном газоходе установлен шибер байпаса 15, который помимо основной заслонки 16 имеет и независимую регулировочную заслонку 17.
Для решения задачи осушения уходящих дымовых газов и сведения образования конденсата в газоходах и дымовой трубе до допустимых значений в тепловой схеме теплоутилизатора предусмотрен выносной теплообменник 18, который включен в тепловую схему калорифера приточной вентиляции 19 как ее первая ступень. Выносной теплообменник 18 работает в паре с последним теплообменником теплоутилизатора 6, где за счет работы циркуляционного насоса 20 по его контуру циркулирует незамерзающая жидкость. Таким образом, реализуется одна из основных целей предлагаемого устройства - обеспечение саморегулирования процесса осушения уходящих дымовых газов в зависимости от температуры наружного воздуха. В тепловой схеме теплоутилизатора, на линии рециркуляции незамерзающей жидкости по контуру выход/вход последнего теплообменника, установлен насос 21, который включается в случае достижения критической температуры незамерзающей водосодержащей жидкости. За счет утилизированного тепла уходящих дымовых газов дополнительно подогретый воздух в приточной вентиляции участвует в тепловом балансе котельной установки как полезно используемое тепло, тем самым повышая КПД котельной установки. Со стороны воды и незамерзающей водосодержащей жидкости предусмотрена группа вентилей, которая позволяет трем теплообменникам теплоутилизатора применять различные схемы включения по контурам (параллельная, последовательная, параллельно-последовательная), а также возможность отключения выносного теплообменника в летний период и слива незамерзающего теплоносителя из последнего теплообменника и включения его в тепловую схему подогрева воды. Шибера 2 предназначены для полного отключения теплоутилизатора от газохода.
Следует указать, что работа предлагаемого устройства возможна лишь при сжигании природного газа или сжиженного газа. При сжигании мазута, в случае перехода на резервное топливо, теплоутилизатор должен быть отключен со стороны уходящих дымовых газов.
Заявленное устройство обладает следующими важными характеристиками:
- заявленный способ обеспечивают повышение эффективности теплообмена в теплоутилизаторе и саморегулирование процесса осушения уходящих ДГ в зависимости от температуры наружного воздуха;
- предлагаемая установка позволяет увеличить скорость омывания дымовыми газами (далее по тексту ДГ) поверхностей нагрева газоводяных теплообменников теплоутилизатора и увеличить коэффициент теплопередачи, одновременно решается техническая задача компенсации аэродинамических потерь на сопротивление уходящих дымовых газов в теплоутилизаторе и потери самотяги в дымовой трубе в результате снижения температуры уходящих газов;
- при выполнении теплообменников теплоутилизатора из оребренных коррозионно-стойких металлических труб, расположенных горизонтально в 2-4 ряда в каждом теплообменнике по ходу газов, и расположении ребер (рядов) вертикально, нагреваемый теплоноситель движется по 2- или 3-ходовой схеме, по ходу ДГ, в результате чего повышается эффективность теплообмена;
- система теплообменников позволяет подключать их по 2- или 3-контурной схеме нагревания теплоносителя, где один или два контура работают на нагрев воды по последовательной или параллельной схеме, в зависимости от потребности (нагрев сетевой воды, подпиточной после ХВО, ГВС),
- эффективность работы теплоутилизатора и степень осушения ДГ повышается с понижением температура наружного воздуха, а дополнительно нагретый воздух в приточной вентиляции участвует в общем тепловом балансе котельной как полезно используемое тепло, так как воздух для сжигания газа обычно берется непосредственно из помещения котельной. Подогретый воздух также необходим и для осуществления воздухообмена в помещении котельных по требованиям санитарных норм и правил безопасной эксплуатации газоиспользующих установок;
- при достаточно низких температурах наружного воздуха, в целях предотвращения ледообразования на наружных поверхностях последнего по ходу ДГ теплообменника теплоутилизатора, на контуре теплоносителя установлена линия рециркуляции, которая включается после достижения критической температуры незамерзающей водосодержащей жидкости (критическая температура определяется в процессе наладки);
- в летний период при высокой температуре наружного воздуха третий (последний по ходу ДГ) теплообменник теплоутилизатора имеет возможность временного отключения от выносной секции, слива из нее незамерзающей водосодержащей жидкости и переключения ее на последовательный подогрев воды совместно со вторым или первым теплообменником или отдельным контуром подогрева воды;
- задача повышения степени заводской готовности достигается различной конструктивной компоновкой и организацией байпаса в теплоутилизаторе, позволяющей устанавливать его над или под газоходам путем врезки в газоход.

Claims (7)

1. Способ утилизации тепла и осушения уходящих дымовых газов, согласно которому уходящие дымовые газы в теплообменниках за счет охлаждения исходных дымовых газов и конденсации водяных паров по схеме противотока без регулирования расхода газов нагревают воздух и воду, которые используются для отопления и покрытия потребности процесса горения, отличающийся тем, что осушение дымовых газов производится в системе газоводяных теплообменников теплоутилизатора, где один теплообменник теплоутилизатора выполнен выносным и установлен на входе, по ходу воздуха, калорифера приточной вентиляции котельной и работает как его первая ступень, причем теплоносителем по этому контуру является незамерзающая водосодержащая жидкость, а последний по ходу дымовых газов теплообменник работает в паре с выносным так, что в зависимости от температуры наружного воздуха меняется температура наружной поверхности последнего по ходу дымовых газов теплообменника теплоутилизатора и степень осушения уходящих дымовых газов.
2. Установка для утилизации тепла и осушения дымовых газов, содержащая теплообменники, напорный вентилятор, газоходы, щелевой эжектор, трубопроводы и насос, отличающаяся тем, что в установке теплоутилизатора после прохождения через теплообменники поток дымовых газов разделяется на два потока: большой и малый, где на малом потоке установка содержит напорный вентилятор, после прохождения которого малый поток увеличивает свой динамический напор и поступает в сопло щелевого эжектора, где большой и малый потоки смешиваются.
3. Установка для утилизации тепла и осушения дымовых газов по п.2, отличающаяся тем, что выполнена одним изделием, позволяющим установить ее над или под газоходом путем врезки в существующий газоход, а байпас уходящих дымовых газов и его регулирование производится непосредственно в установке теплоутилизатора.
4. Установка для утилизации тепла и осушения дымовых газов по п.2, отличающаяся тем, что в установке теплоутилизатора имеется регулировочная направляющая пластина.
5. Установка для утилизации тепла и осушения дымовых газов по п.2, отличающаяся тем, что на контуре теплоносителя установлена линия рециркуляции, которая включается после достижения критической температуры теплоносителя.
6. Установка для утилизации тепла и осушения дымовых газов по п.2, отличающаяся тем, что последний по ходу движения газов теплообменник теплоутилизатора выполнен с возможностью временного отключения от выносной секции, слива из нее незамерзающей жидкости и переключения ее на параллельный подогрев воды совместно со вторым или первым теплообменником, которые могут работать как в параллельном, так и в последовательном режиме, а также и самостоятельно каждый по отдельному контуру.
7. Установка для утилизации тепла и осушения дымовых газов по п.2, отличающаяся тем, что шибер на линии байпаса дымовых газов состоит из двух частей разной площади живого сечения, где при его открытии сначала открывается меньшая часть, а потом большая.
RU2014114391/06A 2014-04-11 2014-04-11 Способ утилизации тепла и осушения дымовых газов и устройство для его осуществления RU2561812C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014114391/06A RU2561812C1 (ru) 2014-04-11 2014-04-11 Способ утилизации тепла и осушения дымовых газов и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014114391/06A RU2561812C1 (ru) 2014-04-11 2014-04-11 Способ утилизации тепла и осушения дымовых газов и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2561812C1 true RU2561812C1 (ru) 2015-09-10

Family

ID=54073398

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014114391/06A RU2561812C1 (ru) 2014-04-11 2014-04-11 Способ утилизации тепла и осушения дымовых газов и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2561812C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2752333C1 (ru) * 2020-11-02 2021-07-26 Акционерное общество "НИПИгазпереработка" (АО "НИПИГАЗ") Способ утилизации тепла конденсата водяного пара и теплообменный аппарат для его осуществления (варианты)
RU2758850C1 (ru) * 2020-10-28 2021-11-02 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Устройство для очистки дымовых газов от водяных паров
RU2773215C2 (ru) * 2020-11-25 2022-05-31 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Устройство для удаления водяных паров и других примесей из дымовых газов

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1583808A (en) * 1976-12-20 1981-02-04 Electric Power Res Inst Convective heat transfer steam boiler for fuels of low energy and ash content
SU1263972A1 (ru) * 1985-04-01 1986-10-15 Научно-Исследовательский Институт Санитарной Техники И Оборудования Зданий И Сооружений Теплова установка
RU2193727C1 (ru) * 2001-04-20 2002-11-27 Ульяновский государственный технический университет Установка для утилизации тепла дымовых газов
RU2262037C2 (ru) * 2002-04-12 2005-10-10 ЗАО "СибКОТЭС" Установка глубокой утилизации тепла уходящих газов и способ предотвращения конденсации в хвостовых элементах газового тракта
RU2323384C1 (ru) * 2006-08-30 2008-04-27 Сергей Леонидович Торопов Теплоутилизатор

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1583808A (en) * 1976-12-20 1981-02-04 Electric Power Res Inst Convective heat transfer steam boiler for fuels of low energy and ash content
SU1263972A1 (ru) * 1985-04-01 1986-10-15 Научно-Исследовательский Институт Санитарной Техники И Оборудования Зданий И Сооружений Теплова установка
RU2193727C1 (ru) * 2001-04-20 2002-11-27 Ульяновский государственный технический университет Установка для утилизации тепла дымовых газов
RU2262037C2 (ru) * 2002-04-12 2005-10-10 ЗАО "СибКОТЭС" Установка глубокой утилизации тепла уходящих газов и способ предотвращения конденсации в хвостовых элементах газового тракта
RU2323384C1 (ru) * 2006-08-30 2008-04-27 Сергей Леонидович Торопов Теплоутилизатор

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2758850C1 (ru) * 2020-10-28 2021-11-02 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Устройство для очистки дымовых газов от водяных паров
RU2752333C1 (ru) * 2020-11-02 2021-07-26 Акционерное общество "НИПИгазпереработка" (АО "НИПИГАЗ") Способ утилизации тепла конденсата водяного пара и теплообменный аппарат для его осуществления (варианты)
RU2773215C2 (ru) * 2020-11-25 2022-05-31 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Устройство для удаления водяных паров и других примесей из дымовых газов

Similar Documents

Publication Publication Date Title
CN107120714B (zh) 一种全年化综合利用节能***
CN106979530B (zh) 一种用于湿法脱硫***的节能节水***
RU2436011C1 (ru) Устройство утилизации тепла дымовых газов и способ его работы
CN107905897A (zh) 燃气轮机循环烟气余热回收与进气冷却联合***及方法
RU2440538C1 (ru) Конденсационный котел наружного размещения
CN203375426U (zh) 可避免锅炉低温空气预热器发生低温腐蚀的锅炉尾部结构
CN104676622A (zh) 一种基于氟塑料换热器的烟气处理***和再热烟气方法
CN201715544U (zh) 烟气余热回收***
RU2561812C1 (ru) Способ утилизации тепла и осушения дымовых газов и устройство для его осуществления
RU2323384C1 (ru) Теплоутилизатор
CN2417388Y (zh) 无低温腐蚀空气预热器
CN207081212U (zh) 一种深度冷凝壁挂炉***
CN205607235U (zh) 热媒水管式换热器控制***
CN104279573A (zh) 一种热量自动平衡型水媒烟气-烟气换热wggh***
CN103638784A (zh) 一种外置加热式湿烟气除湿方法及除湿***
RU2659644C1 (ru) Конденсационный теплоутилизатор
CN103334802B (zh) 基于空冷装置的热电耦合式能量综合利用***及工作方法
RU2606296C2 (ru) Способ глубокой утилизации тепла дымовых газов
RU2735042C1 (ru) Конденсационный теплоутилизатор
CN112097287B (zh) 一种锅炉节能与烟气脱白***、工艺、应用
CN211781352U (zh) 一种近零能耗的供热机组全热回收***
RU156854U1 (ru) Узел глубокой утилизации тепла отходящих газов
CN205191617U (zh) 一种基于相变换热和氟塑料技术的烟气再热***
CN111237839B (zh) 一种近零能耗的供热机组全热回收***及其供热控制方法
RU2083919C1 (ru) Установка утилизации тепла в блоке теплогенератора с системой очистки газов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160412