RU2548868C1 - Способ изготовления материала для получения магнитного клина - Google Patents

Способ изготовления материала для получения магнитного клина Download PDF

Info

Publication number
RU2548868C1
RU2548868C1 RU2013144999/02A RU2013144999A RU2548868C1 RU 2548868 C1 RU2548868 C1 RU 2548868C1 RU 2013144999/02 A RU2013144999/02 A RU 2013144999/02A RU 2013144999 A RU2013144999 A RU 2013144999A RU 2548868 C1 RU2548868 C1 RU 2548868C1
Authority
RU
Russia
Prior art keywords
magnetic
magnetic field
ferromagnetic component
mass
epoxy resin
Prior art date
Application number
RU2013144999/02A
Other languages
English (en)
Other versions
RU2013144999A (ru
Inventor
Илья Игоревич Шустов
Аскольд Рафаилович Бекетов
Михаил Владимирович Баранов
Анатолий Трофимович Пластун
Виктор Иванович Денисенко
Владимир Евгеньевич Недзельский
Павел Григорьевич Зыков
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" filed Critical Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority to RU2013144999/02A priority Critical patent/RU2548868C1/ru
Application granted granted Critical
Publication of RU2548868C1 publication Critical patent/RU2548868C1/ru
Publication of RU2013144999A publication Critical patent/RU2013144999A/ru

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

Изобретение относится к области электромашиностроения и может быть использовано для получения магнитодиэлектрического материала в виде листов или плит для изготовления магнитного клина электрических машин. Осуществляют смешивание ферромагнитного компонента, эпоксидной смолы и отвердителя, заливку полученной массы в пресс-форму, в которой размещен армирующий элемент в виде стекловолокнистой ткани, и последующую обработку магнитным полем при прессовании. Ферромагнитный компонент вводят в виде наночастиц магнетита размером до 100 нм и воздействуют магнитным полем с напряженностью не менее 800 эрстед на магнитодиэлектрическую массу с предварительно определенной степенью отверждения не более 30%. Обеспечивается получение материала для изготовления магнитного клина, позволяющего уменьшить добавочные потери двигателя и обладающего требуемой магнитной проницаемостью. 2 ил., 2 пр.

Description

Изобретение относится к области электромашиностроения и может быть использовано для изготовления материала для получения магнитного клина электрических машин.
Известен состав и способ получения магнитодиэлектрического материала (авт. св-во №57966, опубликованное 30.04.80 г., бюлл.№16), состоящего из ферромагнитного наполнителя в виде магнетита, фурановоэпоксидной смолы, отвердителя и стеклонити. Компоненты тщательно перемешивают, магнитодиэлектрическую массу вакуумируют и используют для формования магнитных клиньев с последующим отверждением. Для упрочнения в магнитодиэлектрическую массу добавляют стекловолокно. После отверждения магнитные клинья должны пройти термообработку при температуре 100-120°C.
Компоненты магнитодиэлектрической массы тщательно перемешивают, тем самым равномерно по объему распределяется ферромагнитный материал.
При равномерном распределении ферромагнитного компонента по объему магнитного клина снижается эффективность его работы в электрических машинах, так как на характеристики магнитного поля в воздушном зазоре между статором и ротором существенное влияние оказывает число слоев с различной магнитной проницаемостью (ферромагнитный и диэлектрические слои) в материале магнитного клина, а также геометрические размеры этих участков. Послойная структура материала магнитного клина ограничивает магнитные потоки пазового рассеяния, замыкающегося через клин, что, в конечном счете, влияет на кратность пускового и максимального моментов электрической машины, уменьшение добавочных потерь до 30%, повышение КПД на 0,4-0,6%.
Введение стеклонитей не является лучшим вариантом для повышения механических характеристик магнитодиэлектрического материала магнитных клиньев.
Перемешивание эпоксидной смолы с ферромагнетиком, отвердителем и стеклонитью, как правило, не позволяет добиться равномерного распределения стеклонити по объему материала. Отдельные стеклонити замыкаются друг на друге и в местах, где происходит контактирование стеклонитей, образуются участки, незаполненные связующим. Возникают структурные дефекты, которые являются концентраторами напряжений и приводят к ухудшению механических характеристик материала.
Недостатком также является применение связующего в виде смолы, которая при полимеризации подвергается вакуумированию и термообработке при 100-120°C.
Сегодня известны эпоксидные смолы типа ЭА-5, ЭА-10, которые не требуют выполнения указанных технологических операций для получения магнитодиэлектрического материала.
Наиболее близким к предлагаемому является способ приготовления материала для изготовления магнитных клиньев (авт. св-во №493810, опубликованное 30.11.75 г., бюлл. №44), который и выбран в качестве прототипа.
Ферромагнитный материал смешивают со связующим и перед заливкой массы в пресс-форму в последнюю вводят магнитомягкую проволоку в виде ориентированной сетки с немагнитопроводящим утком, после заливки массы осуществляют прессование плит, совмещенное с вибрацией, обеспечивающей выделение из магнитодиэлектрической массы изоляционной пленки, обволакивающей сетку, при этом производят магнитное ориентирование частиц железа в заданном направлении.
Указанный способ имеет следующие недостатки.
Для упрочнения магнитодиэлектрического материала в виде листов или плит перед заливкой массы в пресс-форму вводят магнитомягкую проволоку в виде ориентированной сетки с немагнитопроводящим утком. Магнитомягкую проволоку используют в качестве армирующего элемента для повышения механической прочности материала магнитных клиньев. Решая задачу повышения прочностных характеристик, магнитомягкая металлическая сетка блокирует внешнее магнитное поле, которое используется только для ориентации зерен ферромагнетика в пространстве. Снижается эффективность действия магнитного поля на ориентацию частиц ферромагнетика в вязкой среде отверждаемой магнитодиэлектрической массы.
Дополнительно магнитодиэлектрический материал армируется стекловолокном. Отдельные стеклонити замыкаются уже не только друг на друга, образуя дефекты, которые являются концентраторами напряжений, но они также замыкаются на металлическую сетку. Повышается вероятность образования участков, плохо пропитанных органическим связующим, что обязательно будет снижать прочностные характеристики материала.
Использование магнитомягкой проволоки в виде сетки с немагнитным утком требует удаления немагнитного утка за счет виброобработки магнитодиэлектрической массы в пресс-форме. Авторы вынужденно вводят дополнительную операцию, без которой нельзя рассчитывать на межфазное взаимодействие между проволокой и связующим. Однако из-за высокой адгезионной способности связующего полное удаление изолирующего утка будет весьма затруднительным.
Задачей изобретения является создание материала магнитного клина, позволяющего уменьшить добавочные потери двигателя за счет ограничения потока пазового рассеяния.
Указанная задача решается тем, что способ изготовления материала для получения магнитного клина в виде листов и плит включает смешение ферромагнитного компонента с эпоксидной смолой, отверждение и заливку получаемой массы в пресс-форму, где помещен армирующий элемент в виде стекловолокнистой ткани, и последующую обработку магнитным полем при прессовании, отличающийся тем, что ферромагнитный компонент вводят в виде наночастиц магнетита размером до 100 нм и воздействуют магнитным полем с напряженностью не менее 800 эрстед на магнитодиэлектрическую массу с предварительно определенной степенью отверждения не более 30%.
При введении частиц большего размера за счет снижения подвижности в вязкой среде эпоксидного связующего нельзя рассчитывать на формирование слоистой структуры без пересечения отдельных участков ферромагнитных слоев и снижения эффективности воздействия магнитного клина на электромагнитный поток пазового рассеяния и уменьшение добавочных потерь двигателя. К такому же результату приводит использование наночастиц магнетика и магнитной обработки напряженностью 300 эрстед.
Введение наночастиц магнетита обеспечивает высокую подвижность частиц в вязкой среде эпоксидного связующего при прессовании магнитодиэлектрической массы с армирующим элементом в виде стекловолокнистой ткани, что позволяет формировать слоистую структуру материала магнитного клина с четким разделением межфазной границы получения плотной структуры в пределах слоя ферромагнетика. В этом случае ферромагнитный слой работает в условиях воздействия магнитного поля как единая частица, что обеспечивает требуемую магнитную проницаемость материала.
Кроме того, ферромагнитный наполнитель с размером частиц до 100 нм не снижает прочностных характеристик отвержденной эпоксидной смолы.
Степень полимеризации эпоксидной смолы предварительно определяется, и магнитная обработка производится при степени отверждения не более 30% от полного.
Пример 1
Смесь ферромагнетика в виде магнетита с размером частиц от 10 до 100 нм, эпоксидной смолы марки К-153, отвердителя, взятых в соотношении: 25 масс.% магнетита, остальное - эпоксидная смола и 10 масс.% отвердителя, тщательно перемешивают и заливают в пресс-форму, в которую предварительно помещают армирующую сетку в виде стекловолокнистой ткани, далее накладывают магнитное поле напряженностью 800 эрстед. Предварительно определяют степень полимеризации магнитодиэлектрической массы и магнитную обработку начинают при степени полимеризации не более 30%.
Металлографический анализ отвержденного материала показывает, что ферромагнитный компонент образует замыкающиеся слои с неравномерным распределением по объему материала. На рис.1 показано распределение ферромагнитного компонента в отвержденной эпоксидной смоле после обработки магнитным полем напряженностью 300 эрстед: 1 - отвержденная эпоксидная смола, 2 - ферромагнитный компонент.
Применение магнитных клиньев, изготовленных из материала подобной структуры, показало, что асинхронный двигатель марки ДМ, по результатам испытаний согласно ГОСТ 25941-83, имел снижение добавочных потерь на 10%.
Пример 2
Смесь ферромагнетика в виде магнетита с размером частиц до 100 нм, эпоксидной смолы марки ЭП-10, отвердителя, взятых в соотношении: 25 вес.% магнетита, остальное - эпоксидная смола и 1-2% отвердителя, тщательно перемешивают и заливают в пресс-форму, в которую предварительно помещают армирующую сетку в виде стекловолокнистой ткани, далее накладывают магнитное поле напряженностью 800 эрстед. Предварительно определяют степень отверждения магнитодиэлектрической массы и магнитную обработку начинают при степени полимеризации не более 30%. Металлографический анализ отвержденного материала показывает, что материал имеет слоистую чередующуюся структуру из слоев отвержденного полимера и ферромагнитного наполнителя. Слои ферромагнитного компонента не замыкаются друг на друге. Слой ферромагнитного компонента имеет высокоплотную структуру, что обеспечивает высокую магнитную проницаемость слоя. На рис.2 показано распределение ферромагнитного компонента в отвержденной эпоксидной смоле после обработки магнитным полем напряженностью 800 эрстед: 1 - отвержденная эпоксидная смола; 2 - ферромагнитный компонент.
Применение магнитных клиньев, изготовленных из материала, показало, что асинхронный двигатель марки ДМ, по результатам испытаний согласно ГОСТ 25941-83, имел снижение вредных потерь на 30%, что подтверждает технический результат предлагаемого изобретения.

Claims (1)

  1. Способ получения магнитодиэлектрического материала в виде листов или плит для изготовления магнитного клина электрических машин, включающий смешивание ферромагнитного компонента, эпоксидной смолы и отвердителя, заливку полученной массы в пресс-форму, в которой размещен армирующий элемент в виде стекловолокнистой ткани, и последующую обработку магнитным полем при прессовании, отличающийся тем, что ферромагнитный компонент вводят в виде наночастиц магнетита размером до 100 нм и воздействуют магнитным полем с напряженностью не менее 800 эрстед на магнитодиэлектрическую массу с предварительно определенной степенью отверждения не более 30%.
RU2013144999/02A 2013-10-09 2013-10-09 Способ изготовления материала для получения магнитного клина RU2548868C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013144999/02A RU2548868C1 (ru) 2013-10-09 2013-10-09 Способ изготовления материала для получения магнитного клина

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013144999/02A RU2548868C1 (ru) 2013-10-09 2013-10-09 Способ изготовления материала для получения магнитного клина

Publications (2)

Publication Number Publication Date
RU2548868C1 true RU2548868C1 (ru) 2015-04-20
RU2013144999A RU2013144999A (ru) 2015-04-20

Family

ID=53282599

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013144999/02A RU2548868C1 (ru) 2013-10-09 2013-10-09 Способ изготовления материала для получения магнитного клина

Country Status (1)

Country Link
RU (1) RU2548868C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU493810A1 (ru) * 1972-04-30 1975-11-28 Харьковский авиационный институт Способ получени магнитодиэлектрического материала в виде листов и плит
SU579661A1 (ru) * 1972-09-25 1977-11-05 Всесоюзный Научно-Исследовательский И Проектный Институт По Очистке Технологических Газов, Сточных Вод И Использованию Вторичных Энергоресурсов Предприятий Черной Металлургии Внипичерметэнергоочистка Магнитодиэлектрическа масса
SU1046019A1 (ru) * 1982-01-04 1983-10-07 Харьковский Ордена Ленина Авиационный Институт Им.Н.Е.Жуковского Способ изготовлени магнитодиэлектрического материала
EP1333451A2 (en) * 2002-01-31 2003-08-06 Meiji University Legal Person Fine spinel-type ferrimagnetic particles containing Fe-Co-Ni and process for producing the same
US20130130026A1 (en) * 2003-11-14 2013-05-23 Tundra Composites, LLC Magnetic composite

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU493810A1 (ru) * 1972-04-30 1975-11-28 Харьковский авиационный институт Способ получени магнитодиэлектрического материала в виде листов и плит
SU579661A1 (ru) * 1972-09-25 1977-11-05 Всесоюзный Научно-Исследовательский И Проектный Институт По Очистке Технологических Газов, Сточных Вод И Использованию Вторичных Энергоресурсов Предприятий Черной Металлургии Внипичерметэнергоочистка Магнитодиэлектрическа масса
SU1046019A1 (ru) * 1982-01-04 1983-10-07 Харьковский Ордена Ленина Авиационный Институт Им.Н.Е.Жуковского Способ изготовлени магнитодиэлектрического материала
EP1333451A2 (en) * 2002-01-31 2003-08-06 Meiji University Legal Person Fine spinel-type ferrimagnetic particles containing Fe-Co-Ni and process for producing the same
US20130130026A1 (en) * 2003-11-14 2013-05-23 Tundra Composites, LLC Magnetic composite

Also Published As

Publication number Publication date
RU2013144999A (ru) 2015-04-20

Similar Documents

Publication Publication Date Title
CN104051104B (zh) 钕铁硼永磁磁体及其制备方法
JP2003534656A (ja) 誘導部品とその製造方法
US20180241260A1 (en) Fixtures and methods for forming aligned magnetic cores
CN111886779B (zh) 电动机及励磁元件
RU2492050C2 (ru) Магнитомягкий индуктивный элемент на основе порошка и способ и устройство для его получения
CN111986866A (zh) 一种高频低磁损的功率型软磁复合材料及其制备方法
US3976902A (en) Magnetic wedge and the process of making said wedge
KR102454806B1 (ko) 이방성 본드 자석 및 그 제조 방법
RU2548868C1 (ru) Способ изготовления материала для получения магнитного клина
KR102126062B1 (ko) 연자성 복합 재료 및 그 제조방법
KR101806448B1 (ko) 연자성복합체의 제조방법
WO2010029642A1 (ja) 希土類異方性ボンド磁石の製造方法、磁石成形体の配向処理方法および磁場中成形装置
EP3113195A1 (en) Manufacturing method for magnet and magnet
US11121599B2 (en) Slot sealing compound, slot seal, and method for producing a slot seal
JP6403444B2 (ja) マイカテープ及び固定子コイル
CN110194841A (zh) 介电梯度材料的制备方法及电子元器件的灌封方法
CN101034608A (zh) 一种绝缘高磁性能的复合稀土永磁材料
US20130154148A1 (en) Electronic Device And Method Of Making
JPS6110937A (ja) 磁性楔
JP5412172B2 (ja) 希土類系永久磁石およびその製造方法
KR102487771B1 (ko) 이방성 본드 자석 및 그 제조 방법
JPH0629114A (ja) 圧粉磁心及びその製造方法
WO2024028989A1 (ja) 予成形体、予成形方法および圧縮ボンド磁石の製造方法
JP7461852B2 (ja) ボンド磁石の製造方法
SU493810A1 (ru) Способ получени магнитодиэлектрического материала в виде листов и плит

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151010