RU2544825C2 - Газовая теплонасосная установка - Google Patents

Газовая теплонасосная установка Download PDF

Info

Publication number
RU2544825C2
RU2544825C2 RU2013104311/12A RU2013104311A RU2544825C2 RU 2544825 C2 RU2544825 C2 RU 2544825C2 RU 2013104311/12 A RU2013104311/12 A RU 2013104311/12A RU 2013104311 A RU2013104311 A RU 2013104311A RU 2544825 C2 RU2544825 C2 RU 2544825C2
Authority
RU
Russia
Prior art keywords
gas
turbine
compressor
outlet
inlet
Prior art date
Application number
RU2013104311/12A
Other languages
English (en)
Other versions
RU2013104311A (ru
Inventor
Михаил Аркадьевич Верткин
Original Assignee
Михаил Аркадьевич Верткин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Михаил Аркадьевич Верткин filed Critical Михаил Аркадьевич Верткин
Priority to RU2013104311/12A priority Critical patent/RU2544825C2/ru
Publication of RU2013104311A publication Critical patent/RU2013104311A/ru
Application granted granted Critical
Publication of RU2544825C2 publication Critical patent/RU2544825C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к теплоэнергетике. Газовая теплонасосная установка содержит компрессор, газожидкостной теплообменник, сообщенный на входе по охлаждаемому газу с выходом компрессора по газу, турбину, сообщенную на входе по газу с выходом газожидкостного теплообменника по газу, приводное устройство, промежуточный газоохладитель, при этом компрессор выполнен двухвальным, состоящим из компрессоров низкого и высокого давления, сообщенных друг с другом по ходу газа через тракт промежуточного газоохладителя по газу, газожидкостной теплообменник и промежуточный газоохладитель включены по тракту охлаждающего теплоносителя в схему подогрева теплоносителя потребителя тепла, компрессор низкого давления установлен на валу приводного устройства и сообщен на входе по газу с источником охлаждаемого газа, компрессор высокого давления установлен на одном валу с турбиной, оснащенной системой влагоудаления, при этом турбина 3 на выходе по газу сообщена либо с атмосферой или потребителем охлажденного газа, либо газовая теплонасосная установка содержит турбину низкого давления, установленную на одном валу с компрессором низкого давления 6, оснащенную системой влагоудаления и сообщенную на выходе по газу с атмосферой или (и) потребителем охлажденного газа, а турбина на выходе по газу сообщена с входом турбины низкого давления по газу. Это позволяет повысить КПД преобразования механической энергии в тепловую, а также снизить металлоемкость устройства. 3 ил.

Description

Изобретение относится к теплоэнергетике и может быть применено в водогрейных котельных, теплоэлектроцентралях и на других объектах, где имеется выход дымовых газов, для утилизации тепла конденсации водяного пара, содержащегося в дымовых газах, на нужды теплоснабжения. Изобретение может также найти применение в системах вентиляции и кондиционирования воздуха в летний период для использования низкотемпературного тепла, отводимого в процессе охлаждения воздуха, на нагрев воды, подаваемой в систему горячего водоснабжения (ГВС).
Наибольший эффект ожидается от применения заявляемого устройства в отопительный сезон в ночные и другие периоды снижения внешнего электропотребления при использовании избыточной электроэнергии для привода теплонасосных установок.
Уровень техники
В сложившейся практике сетевую воду в системе теплоснабжения нагревают в водогрейных котлах или подогревателях сетевой воды, питаемых паром, подаваемым из теплофикационных отборов паровых турбин или редукционно-охладительных устройств.
Во избежание низкотемпературной коррозии поверхностей теплообмена минимальная температура воды на входе в стальной водогрейный или паровой газовый котел полного горения должна быть не ниже 70°C. Соответственно, температура уходящих газов из водогрейных газовых котлов составляет не ниже 110-130°C.
Известное техническое решение для утилизации тепла конденсации водяного пара, содержащегося в уходящих дымовых газах, основано на применении конденсоров, устанавливаемых на выходе дымовых газов из котла - котла-утилизатора (КУ) или котла полного горения. Конденсор - это теплообменный аппарат, поверхность теплообмена которого набирают из биметаллических оребренных теплопередающих элементов («Газовый конденсор для утилизации тепла дымовых газов. Энергосберегающая технология», http://www.ideasandmoney.ru/Ppt/Details/297537). Его недостаток состоит в чрезмерно большой площади поверхности теплообмена, набранной из дорогостоящего коррозионно-стойкого материала (из-за малого среднего температурного напора и ухудшенной теплоотдачи со стороны газа вследствие появления водяной пленки). Кроме того, глубина охлаждения дымовых газов и, соответственно, количество сконденсированного водяного пара находятся в зависимости от начальной температуры воды, подаваемой в конденсор. Температура же обратной сетевой воды по мере снижения температуры воздуха возрастает и в холодный период, как правило, оказывается выше точки росы дымовых газов, не позволяя использовать теплоту конденсации пара как раз в тот период, когда тепло наиболее востребовано.
Наиболее близким аналогом (прототипом) заявляемого устройства является газовая теплонасосная установка, примененная в термодинамическом накопителе энергии (www.cnrg.ru/about/presscenter/promotional%20material/SHELF-Thermodvnarnic-energy-storage.pdf «Термодинамический накопитель энергии как альтернатива ГАЭС». - ОАО «Группа Каспийская энергия», февраль 2012). Ее работа основана на использовании обратного закрытого цикла Брайтона. Данная газовая теплонасосная установка (ТНУ) предназначена для преобразования механической (электрической) энергии в высокотемпературное тепло и низкотемпературный холод и может быть использована для нагрева жидкого теплоносителя (например, сетевой воды) до требуемой температуры за счет передачи тепла, отводимого из холодного источника - дымовых газов или атмосферного воздуха - при значительно более низкой температуре, при которой происходит конденсация содержащегося в них водяного пара. Рабочим телом установки является воздух, или азот, или аргон, или любые другие газовые смеси доступных нейтральных газов.
Прототип содержит (там же, с.7): компрессор, газожидкостной теплообменник, сообщенный на входе по греющему газу с выходом компрессора по газу, турбину, сообщенную на входе по газу с выходом газожидкостного теплообменника по газу, и приводное устройство (электродвигатель). Прототип содержит также теплообменное оборудование, используемое для отвода тепла из холодного источника, и рекуператор, при этом турбина на входе по газу сообщена с выходом газожидкостного теплообменника по газу через тракт рекуператора по охлаждаемому газу. В рассматриваемой области применения (теплоснабжение, вентиляция, кондиционирование воздуха) рекуператор не требуется, а ТНУ должна также содержать конденсор или охладитель атмосферного воздуха и устройства подачи охлаждаемых дымовых газов или воздуха в указанные теплообменники - дымосос или вентилятор с приводным электродвигателем.
Недостатком прототипа в данной области применения является недостаточно высокий коэффициент преобразования механической энергии в тепло (отношения теплоты, переданной нагреваемому теплоносителю, к затратам энергии на привод компрессора и вспомогательного оборудования - дымососа или вентилятора и др.) и чрезмерно большая металлоемкость низкотемпературного теплообменного оборудования.
Раскрытие изобретения
Задачей, на решение которой направлено заявляемое изобретение, является повышение коэффициента преобразования механической энергии в тепло и снижение металлоемкости теплообменного оборудования газовой ТНУ.
Эта задача решена в заявляемой газовой ТНУ, содержащей компрессор, газожидкостной теплообменник, сообщенный на входе по охлаждаемому газу с выходом компрессора по газу, турбину, сообщенную на входе по газу с выходом газожидкостного теплообменника по газу, и приводное устройство. В отличие от прототипа заявляемая газовая ТНУ содержит промежуточный газоохладитель, компрессор выполнен двухвальным, состоящим из компрессоров низкого и высокого давления, сообщенных друг с другом по ходу газа через тракт промежуточного газоохладителя по газу, при этом газожидкостной теплообменник и промежуточный газоохладитель включены по тракту охлаждающего теплоносителя в схему теплоносителя потребителя тепла, компрессор низкого давления установлен на валу приводного устройства и сообщен на входе по газу с источником охлаждаемого газа, компрессор высокого давления установлен на одном валу с турбиной, оснащенной системой влагоудаления, при этом турбина на выходе по газу либо сообщена с атмосферой или (и) потребителем охлажденного газа, либо газовая ТНУ содержит турбину низкого давления, установленную на одном валу с компрессором низкого давления, оснащенную системой влагоудаления и сообщенную на выходе по газу с атмосферой или (и) потребителем охлажденного газа, а турбина на выходе по газу сообщена с входом турбины низкого давления по газу.
Описание чертежей
Сущность изобретения поясняется схематическими чертежами, на которых изображены:
на фиг.1 - газовая ТНУ, вариант с одной турбиной, пароприводным компрессором низкого давления и использованием уходящих дымовых газов парового котла в качестве охлаждаемого (греющего) газа;
на фиг.2 - газовая ТНУ, вариант с одной турбиной, электроприводным компрессором низкого давления и с использованием атмосферного воздуха в качестве охлаждаемого газа;
на фиг.3 - газовая ТНУ, вариант с двумя турбинами, электроприводным компрессором низкого давления и с использованием атмосферного воздуха в качестве охлаждаемого газа.
Осуществление изобретения
Приведенная на чертежах фиг.1, 2 и 3 газовая ТНУ содержит компрессор 1, газожидкостной теплообменник (ГЖТО) 2, сообщенный на входе по греющему газу с выходом компрессора 1 по газу, турбину 3, сообщенную на входе по газу с выходом ГЖТО 2 по газу, и приводное устройство 4. Согласно изобретению газовая ТНУ содержит промежуточный газоохладитель 5, компрессор выполнен двухвальным, состоящим из компрессоров низкого и высокого давления (КНД 6 и КВД 7), сообщенных друг с другом по ходу газа через тракт промежуточного газоохладителя 5 по газу, при этом ГЖТО 2 и промежуточный газоохладитель (ПГО) 5 включены по тракту охлаждающего теплоносителя в схему подогрева теплоносителя (воды) потребителя тепла 8, КНД 6 установлен на валу приводного устройства 4 и сообщен на входе по газу с источником охлаждаемого газа, КВД 7 установлен на одном валу с турбиной 3, оснащенной системой влагоудаления.
В варианте фиг.1 приводным устройством является паровая турбина 4, снабженная конденсатором - паровым подогревателем сетевой воды (ППСВ) 9, при этом ППСВ 9, ПГО 5 и ГЖТО 2 включены по тракту охлаждающего теплоносителя в схему подогрева сетевой воды для внешнего потребителя 8 последовательно в указанном порядке. Источником охлаждаемого газа является паровой котел 10, а охлаждаемым газом являются уходящие из котла 10 дымовые газы. Турбина 3 на выходе по газу сообщена с атмосферой или потребителем охлажденного газа. В вариантах, представленных на фиг.2 и 3, приводным устройством является электродвигатель 4, при этом ПГО 5 и ГЖТО 2 включены по тракту охлаждающего теплоносителя в схему подогрева воды для ГВС внешнего потребителя 8 параллельно. Источником охлаждаемого газа является окружающая среда (атмосфера), а охлаждаемым газом является атмосферный воздух.
В варианте фиг.2 турбина 3 на выходе по газу сообщена с атмосферой или (и) потребителем охлажденного газа - системой кондиционирования воздуха и вентиляции. В варианте фиг.3 заявляемая газовая ТНУ содержит турбину низкого давления (ТНД) 11, установленную на одном валу с КНД 6, оснащенную системой влагоудаления и сообщенную на выходе по газу с атмосферой или (и) вышеуказанным потребителем охлажденного воздуха, а турбина 3 на выходе по газу сообщена с входом ТНД 11 по газу.
Устройство работает следующим образом.
На вход КНД 6 по газу из внешнего источника подают охлаждаемый газ - уходящие из котла 10 дымовые газы или атмосферный воздух, при сжатии которого повышается его температура и температура точки росы (т.е. температура, ниже которой происходит конденсация водяных паров, содержащихся в газах). Сжатый газ из КНД 6 подают в ПГО 5, где газ охлаждают нагреваемой водой, затем газ дополнительно сжимают в КВД 1 и снова охлаждают в ГЖТО 2, передавая подведенную в процессе сжатия газа теплоту нагреваемой воде. Далее, охлажденный в ГЖТО 2 газ подают в турбину 3, где газ расширяется и совершает работу по приводу КВД 7.
В вариантах фиг.1 и 2 газ в турбине 3 расширяется примерно до атмосферного давления, охлаждаясь до низкой температуры. При наличии в охлаждаемом газе водяного пара он весь или его большая часть конденсируется не в ПГО 5 и ГЖТО 2 (как в конденсоре), а в турбине 3, при этом выделяемая теплота конденсации водяного пара замедляет снижение температуры рабочего тела (газовой фазы) в процессе его расширения и тем самым повышает мощность турбины 3. Работа, совершаемая охлажденным газом в турбине 3 в вариантах газовой ТНУ с одной газовой турбиной (фиг.1 и фиг.2), расходуется только на привод КВД 7.
В варианте фиг.3 газ из турбины 3 подают в ТНД 11, работа расширения охлажденного газа в этом варианте распределена между валами КВД 7 и КНД 6 таким образом, чтобы при оптимальном (достаточно малом) уровне степени сжатия в КНД 6 температуры газа за КНД 6 и КВД 7 были бы примерно одинаковы. В этом случае установка ТНД 11 на валу КНД 6 обеспечивает дополнительное повышение коэффициента преобразования подводимой механической энергии в теплоту.
Отвод конденсата из проточной части турбины (турбин) и из потока влажного газа за турбиной (турбинами) производится через известные из технического уровня системы влагоудаления - устройства улавливания, сепарации и удаления влаги из проточной части турбины и за турбиной, широко применяемые во влажнопаровых турбинах (А.В. Щегляев. Паровые турбины. Книга 1. - М.: Энергоатомиздат, 1993, с.335-338).
Таким образом, в заявляемой газовой ТНУ реализован открытый цикл Брайтона с промежуточным охлаждением сжимаемого газа, а при наличии водяного пара в составе газа - и с подогревом рабочего тела в процессе его расширения теплом конденсации водяного пара. Необходимый прирост температуры в компрессорах меньше, чем в прототипе, на величину температурных напоров в низкотемпературных теплообменниках. В результате обеспечивается значительный прирост коэффициента преобразования механической энергии в теплоту по сравнению с прототипом.
Отсутствие низкотемпературного теплообменного и сопутствующего вспомогательного оборудования обеспечивает значительное снижение металлоемкости заявляемой газовой ТНУ по сравнению с прототипом.
Приведенные на фиг.1, 2 и 3 примеры представлены для иллюстрации заявляемого изобретения в наиболее наглядном виде с обоими альтернативными отличительными признаками (с одной или двумя турбинами), разными источниками охлаждаемого (греющего) газа и не исчерпывают всех возможных вариантов его реализации. В частности, источником дымовых газов может быть не только обычный котел, но и газотурбинная установка, газопоршневой двигатель, котел-утилизатор, дымовая труба, коллектор дымовых газов группы котлов и т.п. В варианте фиг.1 в КНД 6 может подаваться не весь поток уходящих газов источника, а лишь часть его, при этом ПГО 5 и ГЖТО 2 могут быть включены в схему нагрева сетевой воды не последовательно, а параллельно, и не за, а перед ППСВ 9 (при достаточно высокой температуре обратной сетевой воды). Приводным устройством 4 может быть не только паровая турбина или электродвигатель, но и любой другой двигатель (газовая турбина, газопоршневой двигатель), и т.д. и т.п.

Claims (1)

  1. Газовая теплонасосная установка, содержащая компрессор, газожидкостной теплообменник, сообщенный на входе по охлаждаемому газу с выходом компрессора по газу, турбину, сообщенную на входе по газу с выходом газожидкостного теплообменника по газу, и приводное устройство, отличающаяся тем, что заявляемая газовая теплонасосная установка содержит промежуточный газоохладитель, компрессор выполнен двухвальным, состоящим из компрессоров низкого и высокого давления, сообщенных друг с другом по ходу газа через тракт промежуточного газоохладителя по газу, при этом газожидкостной теплообменник и промежуточный газоохладитель включены по тракту охлаждающего теплоносителя в схему подогрева теплоносителя потребителя тепла, компрессор низкого давления установлен на валу приводного устройства и сообщен на входе по газу с источником охлаждаемого газа, компрессор высокого давления установлен на одном валу с турбиной, оснащенной системой влагоудаления, при этом турбина на выходе по газу сообщена либо с атмосферой или (и) потребителем охлажденного газа, либо газовая теплонасосная установка содержит турбину низкого давления, установленную на одном валу с компрессором низкого давления, оснащенную системой влагоудаления и сообщенную на выходе по газу с атмосферой или (и) потребителем охлажденного газа, а турбина на выходе по газу сообщена с входом турбины низкого давления по газу.
RU2013104311/12A 2013-01-23 2013-01-23 Газовая теплонасосная установка RU2544825C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013104311/12A RU2544825C2 (ru) 2013-01-23 2013-01-23 Газовая теплонасосная установка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013104311/12A RU2544825C2 (ru) 2013-01-23 2013-01-23 Газовая теплонасосная установка

Publications (2)

Publication Number Publication Date
RU2013104311A RU2013104311A (ru) 2014-07-27
RU2544825C2 true RU2544825C2 (ru) 2015-03-20

Family

ID=51264762

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013104311/12A RU2544825C2 (ru) 2013-01-23 2013-01-23 Газовая теплонасосная установка

Country Status (1)

Country Link
RU (1) RU2544825C2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114198804B (zh) * 2021-11-25 2023-02-28 广西电网有限责任公司电力科学研究院 一种二次加热的汽轮发电机组抽汽供热***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2199083A (en) * 1986-12-19 1988-06-29 Rolls Royce Plc Gas turbine engine
US5193337A (en) * 1988-07-25 1993-03-16 Abb Stal Ab Method for operating gas turbine unit for combined production of electricity and heat
RU2094636C1 (ru) * 1993-02-24 1997-10-27 Виктор Исаакович Особов Способ работы газотурбинной установки (варианты) и газотурбинная установка
RU2134807C1 (ru) * 1996-06-07 1999-08-20 Особов Виктор Исаакович Способ работы газотурбинной установки и газотурбинная установка
RU99106713A (ru) * 1999-03-30 2001-01-10 Василий Иванович Мазий Вентиляционно-отопительное устройство шахт и способ его работы (воуш)
RU2168114C2 (ru) * 1999-03-30 2001-05-27 Мазий Василий Иванович Вентиляционно-отопительное устройство шахт
WO2002053894A2 (en) * 2001-01-04 2002-07-11 Turboconsult B.V. Installation for the generation of energy
WO2012058277A1 (en) * 2010-10-26 2012-05-03 Icr Tubine Engine Corporation Utilizing heat discarded from a gas turbine engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2199083A (en) * 1986-12-19 1988-06-29 Rolls Royce Plc Gas turbine engine
US5193337A (en) * 1988-07-25 1993-03-16 Abb Stal Ab Method for operating gas turbine unit for combined production of electricity and heat
RU2094636C1 (ru) * 1993-02-24 1997-10-27 Виктор Исаакович Особов Способ работы газотурбинной установки (варианты) и газотурбинная установка
RU2134807C1 (ru) * 1996-06-07 1999-08-20 Особов Виктор Исаакович Способ работы газотурбинной установки и газотурбинная установка
RU99106713A (ru) * 1999-03-30 2001-01-10 Василий Иванович Мазий Вентиляционно-отопительное устройство шахт и способ его работы (воуш)
RU2168114C2 (ru) * 1999-03-30 2001-05-27 Мазий Василий Иванович Вентиляционно-отопительное устройство шахт
WO2002053894A2 (en) * 2001-01-04 2002-07-11 Turboconsult B.V. Installation for the generation of energy
WO2012058277A1 (en) * 2010-10-26 2012-05-03 Icr Tubine Engine Corporation Utilizing heat discarded from a gas turbine engine

Also Published As

Publication number Publication date
RU2013104311A (ru) 2014-07-27

Similar Documents

Publication Publication Date Title
EP3064841B1 (en) Gas steam combined cycle central heating device
Jradi et al. Experimental investigation of a biomass-fuelled micro-scale tri-generation system with an organic Rankine cycle and liquid desiccant cooling unit
KR100975276B1 (ko) 흡수식 히트펌프를 이용한 지역난방수 공급 시스템
US9534509B2 (en) Cogeneration device including hydrocondenser
CN103244214A (zh) 基于有机朗肯循环的烟气冷凝热回收热电联供***
EA011442B1 (ru) Конденсационный модуль для котла
SI24856A (sl) Metoda in naprava za izrabo nizkotemperaturnih virov kogeneracijskih sistemov z visokotemperaturno toplotno črpalko po konceptu voda/voda
CN202808553U (zh) 一种利用工业废气的污泥干燥能量综合利用***
CN108758584B (zh) 一种余热组合驱动的冷热储联供燃煤电站空冷***及其运行调控方法
RU2489643C1 (ru) Конденсационная котельная установка (варианты)
SU1309918A3 (ru) Установка дл утилизации вне цикла компрессии низкопотенциального отработанного тепла от компрессорной станции
CN201302291Y (zh) 组合式锅炉冷凝器
KR101397621B1 (ko) 가스 화력 발전소의 에너지 효율 향상 시스템
RU2755501C1 (ru) Способ теплохладоснабжения с применением абсорбционного термотрансформатора с двухступенчатой абсорбцией
CN204003103U (zh) 一种采用天然气和太阳能联合循环的分布式供能设备
RU2544825C2 (ru) Газовая теплонасосная установка
RU2530971C1 (ru) Тригенерационная установка с использованием парогазового цикла для производства электроэнергии и парокомпрессорного теплонасосного цикла для производства тепла и холода
CN104406186A (zh) 烟气水回收***
CN203704427U (zh) 二段式烟气热水单双效复合型溴化锂吸收式冷水机组
RU2392555C1 (ru) Воздушно-охладительная установка для охлаждения оборотной воды
US10221726B2 (en) Condensing heat recovery steam generator
RU2606296C2 (ru) Способ глубокой утилизации тепла дымовых газов
CN204987420U (zh) 一种燃料转化***与热泵及自然冷却装置复合的***
RU2315914C1 (ru) Система теплоснабжения
RU2607437C2 (ru) Тепловая электрическая станция

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170124