RU2544348C1 - Устройство для совмещенного механического и термического расширения скважин - Google Patents

Устройство для совмещенного механического и термического расширения скважин Download PDF

Info

Publication number
RU2544348C1
RU2544348C1 RU2013142735/03A RU2013142735A RU2544348C1 RU 2544348 C1 RU2544348 C1 RU 2544348C1 RU 2013142735/03 A RU2013142735/03 A RU 2013142735/03A RU 2013142735 A RU2013142735 A RU 2013142735A RU 2544348 C1 RU2544348 C1 RU 2544348C1
Authority
RU
Russia
Prior art keywords
wall
cylinder
adsorber
heat
smaller cylinder
Prior art date
Application number
RU2013142735/03A
Other languages
English (en)
Other versions
RU2013142735A (ru
Inventor
Николай Сергеевич Кобелев
Сергей Геннадьевич Емельянов
Денис Станиславович Забанов
Константин Игоревич Сначёв
Анатолий Платонович Дубяга
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority to RU2013142735/03A priority Critical patent/RU2544348C1/ru
Application granted granted Critical
Publication of RU2544348C1 publication Critical patent/RU2544348C1/ru
Publication of RU2013142735A publication Critical patent/RU2013142735A/ru

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Thermal Insulation (AREA)

Abstract

Изобретение относится к горной промышленности, в частности к бурению скважин. Устройство для совмещенного механического и термического расширения скважин содержит буровой став с породоразрушающими элементами, размещенную в торце става горелку с магистралями подвода горючего и воздуха, установку пылегазоподавления с встроенной трубой для отвода горячего парогазового потока в окружающую среду, пульт управления, электронагреватели с адсорбером, который имеет вид двух вставленных один в другой и ограниченных поверхностями цилиндров разного диаметра для размещения адсорбента между внутренней стенкой большего цилиндра и внешней стенкой меньшего цилиндра, а внутренней стенкой он насажен на внешнюю поверхность трубы для отвода парогазовой смеси в атмосферу. Меньший цилиндр выполнен из биметалла. Внутренняя стенка меньшего цилиндра имеет коэффициент теплопроводности, в 2,5-3,0 раза превышающий коэффициент теплопроводности внешней его стенки. Внутренняя поверхность большего цилиндра покрыта теплоизолирующим и теплоаккумулирующим тонковолокнистым базальтовым материалом, причем тонковолокнистый базальтовый материал расположен продольно растянутым по высоте адсорбера. Обеспечивается снижение энергозатрат при длительной эксплуатации адсорбера. 2 ил.

Description

Изобретение относится к горной промышленности, в частности к бурению скважин.
Известно устройство для совмещенного механического и термического расширения скважин (см. патент РФ №2168597, МПК E21B 7/14, 2001), включающее буровой став с породоразрушающими элементами, размещенную в торце става горелку с магистралями подвода горючего и воздуха, установку пылеподавления с встроенной трубой для отвода горячего парогазового потока в окружающую среду, пульт управления, электронагреватели с адсорбером, которые последовательно установлены в магистрали подвода воздуха, при этом адсорбер выполнен в виде двух вставленных один в другой и ограниченных поверхностями цилиндров разного диаметра, причем адсорбер внутренней стенкой меньшего цилиндра плотно насажен на внешнюю поверхность трубы для отвода парогазовой смеси в атмосферу, адсорбер размещен в подпружиненной кассете, свободно перемещаются в вертикальном направлении между внутренней поверхностью большого цилиндра и внешней поверхностью меньшего цилиндра, при этом в верхней части на внутренней поверхности большего цилиндра укреплен золотник, а в нижней ее части выполнено золотниковое отверстие.
Недостатком данного устройства является невозможность увеличения температурного градиента в условиях бурения при изменяющейся твердости пород взрывных скважин, что обусловлено прямоточностью движения огневого потока и соответственно постоянством теплового напряжения в зоне действия факела.
Известно устройство для совмещенного механического и термического расширения скважин (см. патент РФ №2349729, МПК E21B 7/14, 2009, Бюл. №8), включающее буровой став с породоразрушающими элементами, размещенную в торце става горелку с магистралями подвода горючего и воздуха, установку пылегазоподавления с встроенной трубой для отвода горячего парогазового потока в окружающую среду, пульт управления, электронагреватели с адсорбером, который имеет вид двух вставленных один в другой и ограниченных поверхностями цилиндров разного диаметра для размещения адсорбента между внутренней стенкой большего цилиндра и внешней стенкой меньшего цилиндра, а внутренней стенкой он насажен на внешнюю поверхность трубы для отвода парогазовой смеси в атмосферу, при этом меньший цилиндр выполнен из биметалла, причем внутренняя стенка меньшего цилиндра имеет коэффициент теплопроводности, в 2,5-3,0 раза превышающий коэффициент теплопроводности внешней его стенки.
Недостатком являются энергозатраты, обусловленные необходимостью поддерживания нормированной поглощающей способности адсорбирующего вещества по всему объему адсорбера, что должно достигаться равномерностью распределения теплоты десорбции как в зоне внешней поверхности меньшего цилиндра, так и в зоне внутренней поверхности большего цилиндра адсорбера, однако наблюдаются потери теплоты адсорбции и десорбции через стену большого цилиндра в окружающую сферу, например кузовное помещение, где размещены адсорберы, что приводит не только к нарушению температурного режима процесса десорбции, но и требует дополнительных энергозатрат на нагрев воздуха регенерации, проходящего в зоне контакта адсорбирующего вещества с внутренней поверхностью стенки большего цилиндра, куда не доходит в достаточном количестве теплота от трубы для отвода парогазовой смеси в атмосферу.
Технической задачей предлагаемого изобретения является снижение энергозатрат при длительной эксплуатации адсорбера устройства для совмещенного механического и термического расширения скважин, обусловленных устранением теплопотерь через наружную стенку большего цилиндра, контактирующую с окружающей средой, путем покрытия ее внутренней поверхности теплоизолирующим и теплоаккумулирующим тонковолокнистым базальтовым материалом, волокна которого продольно вытянуты и в виде пучков расположены по высоте адсорбера.
Технический результат предлагаемого изобретения достигается тем, что в устройстве для совмещенного механического и термического расширения скважин, включающем буровой став с породоразрушающими элементами, размещенную в торце става горелку с магистралями подвода горючего и воздуха, установку пылегазоподавления с встроенной трубой для отвода горячего парогазового потока в окружающую среду, пульт управления, электронагреватели с адсорбером, который имеет вид двух вставленных один в другой и ограниченных поверхностями цилиндров разного диаметра для размещения адсорбента между внутренней стенкой большего цилиндра и внешней стенкой меньшего цилиндра, а внутренней стенкой он насажен на внешнюю поверхность трубы для отвода парогазовой смеси в атмосферу, при этом меньший цилиндр выполнен из биметалла, причем внутренняя стенка меньшего цилиндра имеет коэффициент теплопроводности, в 2,5-3,0 раза превышающий коэффициент теплопроводности внешней его стенки, согласно изобретению внутренняя поверхность большего цилиндра покрыта теплоизолирующим и теплоаккумулирующим тонковолокнистым базальтовым материалом, причем тонковолокнистый базальтовый материал расположен продольно растянутым по высоте адсорбера.
На фиг.1 изображено устройство, общий вид; на фиг.2 - узел 8 на фиг.1 (адсорбер).
Устройство для совмещенного механического и термического расширения скважин содержит горелку с породоразрушающими элементами 1, магистраль для подвода воздушного окислителя (воздуха) 2, магистраль для подвода горючего 3, установку пылегазоподавления 4, трубу для отвода горячего парогазового потока 5, пульт управления 6, электронагреватели 7, адсорбер 8, представляющий собой два вставленных один в другой и ограниченных поверхностями цилиндра разного диаметра, для размещения адсорбента 9 между внутренней стенкой 10 большего цилиндра 11 и внешней стенкой 12 меньшего цилиндра 13. Внутренней стенкой 14 меньший цилиндр 13 насажен на внешнюю поверхность 15 трубы 5. При этом меньший цилиндр 13 выполнен из биметалла таким образом, что материал на внутренней стенке 14 имеет коэффициент теплопроводности, в 2,5-3,0 раза превышающий коэффициент теплопроводности материала внешней его стенки 12 со стороны адсорбента 9. Внутренняя поверхность 16 большего цилиндра 11 покрыта теплоизолирующим и теплоаккумулирующим базальтовым материалом 17, причем тонковолокнистый базальтовый материал 17 расположен продольно растянутым по высоте адсорбера 8.
Устройство для совмещенного механического и термического расширения скважин работает следующим образом.
Известно, что в процессе осушки воздуха выделяется теплота адсорбции (см., например, Серпионова Е.Н. Промышленная адсорбция паров и газов. М.: Химия, 682 с.; ил.), которая в виде теплового потока теплопроводностью через стенку большего цилиндра (наружное ограждение корпуса) адсорбера 8 рассеивается в окружающую среду, нарушая температурный режим адсорбции и, соответственно, качество осушки воздуха. Для устранения воздействия на адсорбцию тепловых потерь через наружную стенку адсорбера 8 осуществляют корректировку температуры осушаемого воздуха до нормированных значений, что требует дополнительных энергозатрат. Особенно существенно влияние потери тепла в окружающую среду через стенку большого цилиндра 11 в процессе десорбции, когда тепловой поток перемещается от внешней поверхности 12 меньшего цилиндра 13, контактирующего с трубой 5 для отвода парогазовой смеси в атмосферу, к внутренней поверхности 16 стенки большего цилиндра 11. При этом тепловой поток процесса десорбции от внешней поверхности 12 меньшего цилиндра 13 распространяется в виде концентрических окружностей теплопроводностью по зернам адсорбента на разных уровнях по высоте адсорбера 8, что связано с процессом охлаждения парогазового потока, перемещающегося по трубе 5 для выброса в атмосферу (см., например, стр.82 В.П. Исаченко и др. Теплопередача. М.: Энергоиздат, 1981. - 416 с., ил.).
В результате в зоне контакта адсорбирующего вещества (зерен адсорбента 9) с внутренней поверхностью 16 большего цилиндра 11 наблюдается недостаток поступления теплоты десорбции, обусловленный как затуханием потока тепла, передаваемого теплопроводностью от внешней поверхности 12 меньшего цилиндра 13, так и разноуровневым количеством тепла по высоте адсорбера с непрерывностью потерь тепла в окружающую среду стенкой большего цилиндра 11. Все это приводит к ухудшению процесса регенерации адсорбента и, соответственно, снижению качества последующей осушки воздуха или энергозатратам для дополнительного нагрева регенерирующего воздуха, т.е. осуществлению нормированной десорбции в зоне контакта адсорбирующего вещества с внутренней поверхностью 16 большего цилиндра 11 путем введения дополнительной теплоты, равной количественно теплоте, теряемой в окружающую среду, например в кузовное помещение бурового станка.
При покрытии внутренней поверхности 16 большего цилиндра 11 адсорбера 8 слоем тонковолокнистого теплоизоляционного и теплоаккумулирующего базальтового материала 17 (см., например, Волокнистые материалы из базальтов. Украина. Киев: Изд. «Техника», 1971. - 76 с.; ил.), теплота адсорбции, выделяемая при контакте осушаемого воздуха с зернами адсорбента 9, передается слою тонковолокнистого теплоизоляционного и теплоаккумулирующего базальтового материала 17, где аккумулируется и по мере перемещения осушаемого воздуха накапливается в базальтовом материале 17, расположенном продольно растянутым по высоте адсорбера 8. В результате теплоизолирующей теплоаккумулирующей способности базальтового материала 17, расположенного на внутренней поверхности 16 большего цилиндра 11, поддерживается нормированный температурный режим адсорбции и осуществляется процесс осушки воздуха без дополнительных энергозатрат путем корректировки температуры осушки.
В процессе десорбции, когда тепловой поток от трубы 5 для отвода горячего парогазового потока и, соответственно, от внешней поверхности 12 меньшего цилиндра в виде концентрических окружностей теплопроводностью перемещается к внутренней поверхности 17 большего цилиндра 11, осуществляется возврат с аккумулированной тонковолокнистым теплоизолирующим и теплоаккумулирующим базальтовым материалом 17 теплоты адсорбции, причем теплота поступает из него по мере перемещения регенерирующего воздуха. В результате поддерживается нормированный режим десорбции по всему объему адсорбера 8, без дополнительных энергозатрат на регенерацию зерен адсорбента 9 в зоне контакта с внутренней поверхностью 16 большего цилиндра 11, покрытого теплоизолирующим и теплоаккумулирующим тонковолокнистым базальтовым материалом 17.
При включении переключателя на пульте 6 управления процессом бурения в режим термического разрушения горных пород воздушный окислитель (воздух) от компрессора (не показан) по магистрали 2 подвода воздушного окислителя через выключенный электронагреватель 7 поступает к адсорберу 8, где осушается и направляется в горелку 1 с породоразрушающими элементами, куда одновременно подается горючее по магистрали 3.
Выполнение внутренней стенки 14 меньшего цилиндра 13 из биметалла таким образом, что ее коэффициент теплопроводности в 2,5-3,0 раза больше коэффициента теплопроводности внешней стенки 12, сокращает переход теплоты адсорбции в более металлоемкую конструкцию трубы 5 по сравнению с объемом цилиндров 11 и 13 адсорбера 8, тем самым поддерживая оптимальный температурный режим осушки воздуха, используемого в качестве окислителя, что снижает энергоемкость процесса бурения.
При включении переключателя на пульте управления 6 процессом бурения в режим продувки скважины смесь парогазового потока с выбуренной массой твердых частиц из скважины поступает в установку 4 пылегазоподавления, где отделяется от твердых частиц, а очищенный горячий парогазовый поток по трубе 5 для отвода горячего парогазового потока выбрасывается в атмосферу. Теплота от движущегося парогазового потока по трубе 5 теплопроводностью передается к ее внешней поверхности 15 и далее к внутренней стенке 14 меньшего цилиндра 13.
В связи с тем что меньший цилиндр 13 выполнен из биметалла, то тепловой поток интенсивно проходит внутреннюю стенку 14, так как ее коэффициент теплопроводности в 2,5-3,0 раза выше коэффициента теплопроводности внешней стенки 12, постепенно распределяется по ней, осуществляя равномерное возрастание температурного поля в зоне контакта адсорбента 9 с внешней стенкой 12. Наблюдается возникновение равномерной эпюры температурного процесса прогрева зерен адсорбента 9 по всему объему адсорбера 8 до температуры регенерации. Одновременно сжатый воздух от компрессора (не показан) через выключенные электронагреватели 7, находящиеся в магистрали для подвода воздуха 2, направляется на зерна адсорбента 9, находящиеся в адсорбере 8, в результате осуществляется процесс регенерации и воздух, насыщенной влагой десорбции, поступают в горелку 2, увеличивая массу парогазового потока в скважине.
В случае не обеспечения режима регенерации зерен адсорбента 9 в адсорбере 8 (недостаточно длителен процесс прохождения горячего парогазового потока по трубе 5) пульт 6 управления подает команду на включение электронагревателей 7, которые дополнительно подогревают регенерирующий воздух, обеспечивающий процесс десорбции в заданном режиме.
Оригинальность предлагаемого технического решения заключается в том, что снижение энергозатрат термического расширения скважин достигается повышением эффективности работы адсорбера путем устранения тепловых потерь в окружающую среду как в процессе адсорбции, так и десорбции зерен адсорбента за счет покрытия внутренней поверхности большего цилиндра слоем тонковолокнистого базальта. При этом расположение тонковолокнистого базальтового материала в виде пучков вытянутых волокон по внутренней поверхности большего цилиндра и расположение их пучками по высоте адсорбера обеспечивает не только теплоизоляцию, но и теплоаккумулирование, что приводит к поддержанию нормированного температурного режима адсорбции и десорбции, т.е. качественной осушке воздуха, используемого в пневмоуправлении устройства для совмещенного механического и термического расширения скважин.

Claims (1)

  1. Устройство для совмещенного механического и термического расширения скважин, включающее буровой став с породоразрушающими элементами, размещенную в торце става горелку с магистралями подвода горючего и воздуха, установку пылегазоподавления с встроенной трубой для отвода горячего парогазового потока в окружающую среду, пульт управления, электронагреватели с адсорбером, который имеет вид двух вставленных один в другой и ограниченных поверхностями цилиндров разного диаметра для размещения адсорбента между внутренней стенкой большего цилиндра и внешней стенкой меньшего цилиндра, а внутренней стенкой он насажен на внешнюю поверхность трубы для отвода парогазовой смеси в атмосферу, при этом меньший цилиндр выполнен из биметалла, причем внутренняя стенка меньшего цилиндра имеет коэффициент теплопроводности, в 2,5-3,0 раза превышающий коэффициент теплопроводности внешней его стенки, отличающееся тем, что внутренняя поверхность большего цилиндра покрыта теплоизолирующим и теплоаккумулирующим тонковолокнистым базальтовым материалом, причем тонковолокнистый базальтовый материал расположен продольно растянутым по высоте адсорбера.
RU2013142735/03A 2013-09-19 2013-09-19 Устройство для совмещенного механического и термического расширения скважин RU2544348C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013142735/03A RU2544348C1 (ru) 2013-09-19 2013-09-19 Устройство для совмещенного механического и термического расширения скважин

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013142735/03A RU2544348C1 (ru) 2013-09-19 2013-09-19 Устройство для совмещенного механического и термического расширения скважин

Publications (2)

Publication Number Publication Date
RU2544348C1 true RU2544348C1 (ru) 2015-03-20
RU2013142735A RU2013142735A (ru) 2015-03-27

Family

ID=53286505

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013142735/03A RU2544348C1 (ru) 2013-09-19 2013-09-19 Устройство для совмещенного механического и термического расширения скважин

Country Status (1)

Country Link
RU (1) RU2544348C1 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1268710A1 (ru) * 1985-04-04 1986-11-07 Курский Политехнический Институт Устройство дл совмещенного механического бурени и термического расширени скважин
FR2667111A1 (fr) * 1990-09-26 1992-03-27 Spie Batignolles Procede et dispositif pour traiter des produits de forage.
RU2115793C1 (ru) * 1996-07-16 1998-07-20 Курский государственный технический университет Устройство для совмещенного механического и термического расширения скважин
RU34399U1 (ru) * 2003-08-19 2003-12-10 Кузнецов Леонид Григорьевич Устройство для осушки и очистки сжатого газа
RU52575U1 (ru) * 2005-11-15 2006-04-10 Леонид Григорьевич Кузнецов Адсорбер
UA18640U (en) * 2006-05-22 2006-11-15 Mariupol I Metallurgical Works Method for steel producing
RU2349729C2 (ru) * 2007-05-15 2009-03-20 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" КурскГТУ Устройство для совмещенного механического и термического расширения скважин
EP2192261A1 (de) * 2008-11-27 2010-06-02 HILTI Aktiengesellschaft Verfahren zum Verankern eines Befestigungselements

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1268710A1 (ru) * 1985-04-04 1986-11-07 Курский Политехнический Институт Устройство дл совмещенного механического бурени и термического расширени скважин
FR2667111A1 (fr) * 1990-09-26 1992-03-27 Spie Batignolles Procede et dispositif pour traiter des produits de forage.
RU2115793C1 (ru) * 1996-07-16 1998-07-20 Курский государственный технический университет Устройство для совмещенного механического и термического расширения скважин
RU34399U1 (ru) * 2003-08-19 2003-12-10 Кузнецов Леонид Григорьевич Устройство для осушки и очистки сжатого газа
RU52575U1 (ru) * 2005-11-15 2006-04-10 Леонид Григорьевич Кузнецов Адсорбер
UA18640U (en) * 2006-05-22 2006-11-15 Mariupol I Metallurgical Works Method for steel producing
RU2349729C2 (ru) * 2007-05-15 2009-03-20 Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" КурскГТУ Устройство для совмещенного механического и термического расширения скважин
EP2192261A1 (de) * 2008-11-27 2010-06-02 HILTI Aktiengesellschaft Verfahren zum Verankern eines Befestigungselements

Also Published As

Publication number Publication date
RU2013142735A (ru) 2015-03-27

Similar Documents

Publication Publication Date Title
CA2696777C (en) Article for extracting a component from a fluid stream, methods and systems including same
KR100701218B1 (ko) 흡착식 제습시스템의 재생/제습공정 절환장치
CN107670455A (zh) 印刷行业废气处理与活性炭再生方法
CN1961184A (zh) 用于传热的方法、装置和***
TW202045237A (zh) 吸附材料模組、氣體過濾結構及氣體過濾面罩
RU2544348C1 (ru) Устройство для совмещенного механического и термического расширения скважин
CN102205200A (zh) 一种气体干燥***及方法
RU160212U1 (ru) Устройство для совмещенного механического и термического расширения скважин
KR101266920B1 (ko) 온실가스 연소장치
RU2349729C2 (ru) Устройство для совмещенного механического и термического расширения скважин
CN207913462U (zh) 吸附剂脱附再生回收装置
KR100436449B1 (ko) 도장부스용 휘발성유기화합물 흡탈착장치 및 과포화증기를이용한 활성탄필터의 재생방법
RU2401379C2 (ru) Устройство для совмещенного механического и термического расширения скважин
CN104916278B (zh) 一种用于吸附式干燥器的***
CN208082155U (zh) 热回收高分子管式膜干燥***
KR101284178B1 (ko) 슬러지 처리 장치
RU2554588C2 (ru) Адсорбер
RU2499119C2 (ru) Устройство для совмещенного механического и термического расширения скважин
RU2168597C1 (ru) Устройство для совмещенного механического и термического расширения скважин
RU2115793C1 (ru) Устройство для совмещенного механического и термического расширения скважин
RU2212509C1 (ru) Устройство для совмещенного механического и термического расширения скважин
CN209924180U (zh) 一种绿色建筑节能复合墙体
RU2477363C1 (ru) Устройство для совмещенного механического и термического расширения скважин
CN207025005U (zh) 高效率高湿度有机废气处理***
CN104162346B (zh) 电加热吸附干燥装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150920