RU2536792C2 - Автономный детекторный модуль как строительный блок для масштабируемых систем pet и spect - Google Patents

Автономный детекторный модуль как строительный блок для масштабируемых систем pet и spect Download PDF

Info

Publication number
RU2536792C2
RU2536792C2 RU2011128368/28A RU2011128368A RU2536792C2 RU 2536792 C2 RU2536792 C2 RU 2536792C2 RU 2011128368/28 A RU2011128368/28 A RU 2011128368/28A RU 2011128368 A RU2011128368 A RU 2011128368A RU 2536792 C2 RU2536792 C2 RU 2536792C2
Authority
RU
Russia
Prior art keywords
scintillation
adm
detector
events
module
Prior art date
Application number
RU2011128368/28A
Other languages
English (en)
Other versions
RU2011128368A (ru
Inventor
Карстен ДЕГЕНХАРДТ
Томас ФРАХ
Гордиан ПРЕШЕР
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2011128368A publication Critical patent/RU2011128368A/ru
Application granted granted Critical
Publication of RU2536792C2 publication Critical patent/RU2536792C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1644Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using an array of optically separate scintillation elements permitting direct location of scintillations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1645Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using electron optical imaging means, e.g. image intensifier tubes, coordinate photomultiplier tubes, image converter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Изобретение относится к системам формирования ядерного изображений. При детектировании событий сцинтилляции в системе формирования ядерного изображения процесс обработки установки временной метки и стробирования энергии внедряют в автономные детекторные модули (ADM) (14) для уменьшения объема последующей обработки. Каждый ADM (14) съемно установлен на неподвижно закрепленной детали (13) детектора и содержит массив (66) сцинтилляционных кристаллов и ассоциированный(ые) светоприемник(и) (64), такой(ие) как кремниевый фотоумножитель или тому подобное. Светоприемник(и) (64) соединен(ы) с модулем (62) обработки в или на одном из ADM (14), который выполняет стробирование энергии и установку временной метки. Технический результат - уменьшение объема обработки служебных данных. 6 н. и 13 з.п. ф-лы, 5 ил.

Description

Настоящее изобретение находит конкретное применение в системах формирования ядерного изображения, в частности, использующих формирование изображений на основе позитронно-эмиссионной томографии (PET) и/или формирование изображений на основе однофотонной эмиссионной компьютерной томографии (SPECT), но также может найти применение в других системах формирования ядерного изображения и т.п. Однако следует понимать, что описанные технологии также могут найти применение в других системах формирования изображений, других сценариях формирования изображений, других технологиях анализа изображения и т.п.
Детекторы излучения для систем PET и SPECT основаны либо на комбинациях сцинтиллятора/фотодетектора, либо на использовании материалов прямого преобразования. В обоих случаях требуется выполнять существенную обработку при снятии записываемых показаний энергии для получения значения энергии и временной метки события сцинтилляции. Например, множество гамма-лучей подвергаются комптоновскому рассеянию и распределяют свою энергию по множеству элементов детектирования. Отдельные регистрации энергии собирают с помощью электронных средств считывания для формирования получаемого в результате события, и в PET временную метку прикрепляют к так называемому "одиночному" событию (например, кластеризации энергии и установке временной метки). После кластеризации энергии и стробирования энергии событие может быть назначено элементу детектирования в качестве наиболее вероятного первого элемента взаимодействия. В случае детектора SPECT это событие может непосредственно использоваться для реконструкции, тогда как для PET полное соответствие между двумя элементами находят перед использованием пары событий для реконструкции.
В классических сканерах PET и SPECT обработку данных выполняют централизованным способом. Выход комбинации сцинтиллятора/фотодетектора обрабатывают с помощью электронных блоков (например, остеков, в которых размещены электронные средства обработки), выполняющих дискриминацию энергии, кластеризацию события, стробирование энергии, идентификацию пикселя и установку временной метки. В детекторах, в которых используются твердотельные светоприемники или прямые преобразователи, применяют большее количество электронных средств считывания, сконцентрированных близко к детектору, используя специализированные входные электронные преобразователи (например, ASIC, такие как предварительные усилители и аналогово-цифровые преобразователи).
Однако в классических решениях не интегрируется достаточное количество электронных средств в одном детекторном модуле для обеспечения возможности его работы в качестве автономных, масштабируемых строительных блоков всей системы. Обычно это приводит к получению электронных средств считывания, которые подогнаны к точной конфигурации рассматриваемых систем PET или SPECT. Поэтому даже небольшие изменения конфигурации могут оказаться трудными для воплощения без изменения большей части электронных средств считывания. Кроме того, поздняя кластеризация отдельных событий приводит к высоким скоростям передачи данных, которые должны быть обработаны электронными средствами считывания, поскольку стробирование энергии может применяться только до цепи обработки.
В настоящем изобретении предусмотрены новые и улучшенные системы и способы для включения электронных средств обработки в модуль ядерного детектора для обеспечения масштабируемой архитектуры ядерного детектора, которые преодолевают описанные выше и другие проблемы.
В соответствии с одним аспектом система детектора ядерного сканирования включает в себя ядерный сканер, содержащий множество ядерных детекторов, и множество автономных детекторных модулей (ADM), съемно закрепленных на каждом детекторе. Каждый ADM включает в себя массив сцинтилляционных кристаллов, содержащий один или больше сцинтилляционных кристаллов, один или больше светоприемников для детектирования событий сцинтилляции в массиве сцинтилляционных кристаллов и модуль обработки, который устанавливает временную метку для каждого детектируемого события сцинтилляции, выполняет протокол стробирования энергии для различения гамма-лучей, для которых произошло комптоновское рассеяние, и выводит информацию о событии сцинтилляции с временной меткой и после стробирования энергии.
В соответствии с другим аспектом способ уменьшения потребности в последующей обработке данных в системе формирования ядерного изображения включает в себя этапы, на которых: детектируют события сцинтилляции в одном или больше автономных детекторных модулях (ADM), устанавливают временную метку для событий сцинтилляции на уровне модуля в каждом ADM и выполняют технологию стробирования энергии для событий сцинтилляции на уровне модуля; выводят информацию о событии сцинтилляции с временной меткой и после стробирования энергии. Способ дополнительно включает в себя обработку и реконструкцию информации о событии в объеме 3D изображения.
В соответствии с другим аспектом автономный детекторный модуль (ADM) включает в себя массив сцинтилляционных кристаллов, по меньшей мере, один светоприемник, который детектирует событие сцинтилляции во всем или на участке массива сцинтилляционных кристаллов, и модуль обработки, который устанавливает временные метки для детектированных событий сцинтилляции, выполняет технологию стробирования энергии для детектированных событий сцинтилляции и выводит информацию о событии сцинтилляции с временной меткой и после стробирования энергии. По меньшей мере, один светоприемник соединен со всем или с частью массива сцинтилляционных кристаллов на первой стороне и с разъемом на второй стороне. Такой разъем съемно соединяет, по меньшей мере, один светоприемник с печатной платой (PCB), которая соединена с модулем обработки.
Одно преимущество состоит в том, что уменьшается объем последующей обработки служебных данных.
Другое преимущество состоит в масштабируемости архитектуры детектора с использованием заменяемых и взаимозаменяемых детекторных модулей.
Также еще одно преимущество изобретения будет понятно для специалистов в данной области техники после прочтения следующего подробного описания изобретения.
Настоящее изобретение может быть выполнено в форме различных компонентов и компоновок компонентов и с помощью различных этапов и сочетаний этапов. Единственное назначение чертежей представляет собой только иллюстрацию различных аспектов, и их не следует рассматривать как ограничение изобретения.
На фиг. 1 иллюстрируется система формирования ядерного изображения, содержащая ядерный сканер (например, сканер PET или SPECT) с множеством детекторов, каждый из которых включает в себя массив автономных детекторных модулей (ADM), в который встроены все электронные средства, необходимые для генерирования или детектирования одиночных событий сцинтилляции после стробирования энергии.
На фиг. 2 показана иллюстрация ADM и различных его компонентов в соответствии с одним или больше аспектами, описанными здесь.
На фиг. 3 иллюстрируется график, который представляет зависимость детектированных одиночных событий по размеру модуля.
На фиг. 4 иллюстрируется возможная архитектура системы PET, формированию которой способствует использование ADM, в соответствии с одним или больше описанными здесь аспектами.
На фиг. 5 иллюстрируется способ выполнения установки временной метки события сцинтилляции и стробирования энергии на уровне детекторного модуля, а не в ходе последующей обработки детектируемых событий сцинтилляции для снижения требований к последующей обработке данных в соответствии с одним или больше аспектами, описанными здесь.
На фиг. 1 иллюстрируется система 10 формирования ядерного изображения, содержащая ядерный сканер 12 (например, сканер типа PET или SPECT) с множеством механических неподвижно закрепленных деталей (например, головок детектора) 13 детектора, каждая из которых включает в себя массив автономных детекторных модулей (ADM) 14, в который встроены все электронные средства обработки, необходимые для генерирования или детектирования одиночных событий сцинтилляции, после стробирования энергии. ADM способствует получению полномасштабной архитектуры ядерного сканера, которая упрощает конструкцию системы и способствует простому воплощению разных конфигураций сканера. Кроме того, ADM способствует снижению скорости передачи данных в последующих электронных средствах обработки, делая систему особенно применимой для вариантов применения с высоким уровнем подсчета.
Множество неподвижно закрепленных деталей 13 детектора расположено вокруг анализируемой области сканера 12 для формирования изображения субъекта или пациента 16, который расположен на опоре 18 для субъекта. Каждый ADM 14 включает в себя множество выводов или разъемов входа/выхода (I/O), включающих в себя разъем 20 питания для подачи питания в ADM, разъем 22 синхронизатора, который способствует генерированию временной метки, разъем 24 конфигурации, через который выполняют конфигурацию ADM, и выходной разъем 26, через который выводят данные события сцинтилляции. В одном варианте осуществления разъемы I/O соединены в единый разъем или шину. Таким образом, ADM включает в себя полный набор электронных средств обработки для генерирования или детектирования одиночных событий сцинтилляции в корпусе детектора. Это способствует предоставлению автономного модуля, который получает питание от источника питания, включает в себя порт синхронизатора системы и конфигурации и который выводит одиночные события сцинтилляции после стробирования энергии. Таким образом, ADM обеспечивает масштабируемый строительный блок для детекторов 13 PET и SPECT.
При формировании изображений SPECT представление проецируемого изображения определяют по данным излучения, принимаемым в каждой координате на детекторе. При формировании изображений SPECT коллиматор определяет лучи, вдоль которых принимают излучение. При формировании изображений PET выходные сигналы детектора отслеживают на предмет событий совпадения излучения на двух детекторах. По положению и ориентации детекторов и по местоположению, на которое обращен детектор, в котором было принято совпадающее излучение, рассчитывают луч или линию отклика (LOR) между точками детектирования события совпадения. Такой луч определяет линию, вдоль которой возникло событие излучения. В обоих способах PET и SPECT данные излучения из множества угловых ориентаций детекторов сохраняют в запоминающем устройстве 30 данных и реконструируют с помощью процессора 32 реконструкции, получая представление объемного изображения области, представляющей интерес, которое сохраняют в запоминающем устройстве объема изображения.
PET событиям сцинтилляции (например, взаимодействие гамма-лучей с одним или более сцинтилляционными кристаллами), детектируемым ADM 14, назначают временные метки, и для них выполняют стробирование энергии (например, для дискриминации гамма-лучей, которые прошли комптоновское рассеяние в исследуемом субъекте и т.д.) и выводят в компонент 28 детектирования совпадения, который анализирует информацию о событии сцинтилляции с временными метками для идентификации пар события сцинтилляции, которые соответствуют событию общей аннигиляции в субъекте 16 во время ядерного сканирования. В запоминающем устройстве 30 данных сохраняется необработанная информация о событии сцинтилляции, информация о временной метке и/или другие полученные данные ядерного сканирования, а также информация о детектировании совпадения и т.п. Процессор 32 реконструкции реконструирует данные ядерного сканирования в одном или больше ядерных изображений, которые сохраняют в запоминающем устройстве 34 изображения и воспроизводят в интерфейсе 36 пользователя. Интерфейс пользователя включает в себя один или больше процессоров 38 (например, процессоров данных, видеопроцессоров, графических процессоров и т.д.) и запоминающее устройство 40, которые способствуют выводу данных ядерного изображения на дисплей 42 для пользователя, а также приему и/или обработке входных команд пользователя.
Каждый ADM 14 включает в себя массив сцинтилляторов и фотодетекторов (не показан на фиг. 1) вместе с соответствующими схемами для выполнения части обработки информации. В частности, функции стробирования окна энергии и установки временной метки для детектированных событий сцинтилляции выполняют в каждом ADM. Это имеет преимущество над отбраковкой событий, когда гамма-лучи проходят одно или больше комптоновских рассеяний внутри исследуемого объекта. Поскольку такую отбраковку выполняют на уровне модуля, она значительно уменьшает количество событий с временной меткой, которые передают по линиям шины для дальнейшей обработки. Такая особенность существенно уменьшает нагрузку на обработку в последующих компонентах. В частности, последующие компоненты могут быть упорядочены так, чтобы они включали в себя детектирование и реконструкцию совпадений, без необходимости в последующей обработке временной метки и/или стробирования.
В одном варианте осуществления схема обработки ADM включает в себя схему коррекции для комптоновского рассеяния в пределах массива сцинтиллятора. Поскольку материалы сцинтиллятора имеют конечную энергию остановки для гамма-излучения, гамма-лучи иногда передают свою энергию в несколько сцинтилляционных кристаллов. Если модуль слишком мал, существенный участок излучения комптоновского рассеяния может откладываться частично в двух или больше разных модулях и может быть потерян вследствие того, что стробирование энергии осуществляется на уровне модуля. В соответствии с этим размер модуля составляет компромисс между размером модуля и фракцией событий, которые можно позволить себе потерять. Размер зависит от плотности или энергии остановки радиации сцинтилляторов, используемых в нем. Приблизительно 97% излучения комптоновского рассеяния может быть восстановлено в модуле размером 7×7 см2 с лютеций-иттриевым ортосиликатом (LYSO) или лютециевым ортосиликатом (LSO) или его вариантами (например, варианты, легированные церием и т.д.). Менее плотный сцинтиллятор, такой как бромид-лантановый (LaBr), можно использовать в более крупном модуле, таком как модуль размером 10×10 см2. Сцинтиллятор более высокой плотности, такой как сцинтиллятор на основе германата висмута (BGO) может использовать меньший массив элементов, такой как модуль размером 4×4 см2. Обычно чем меньше модуль, тем меньшая мощность обработки необходима для каждого модуля, но тем больше данных может быть потеряно.
В одном варианте осуществления ADM 14 может быть разделен на меньшие эффективные модули, такие как модули размером 2×2 или 4×4. Комбинация сцинтиллятора/детектора может содержать конфигурации Anger-логики, включающей в себя световод или взаимно однозначное соединение между сцинтилляторами и детекторами. В другом варианте осуществления каждый ADM включает в себя компоновки сцинтилляторов и диодов и бортовую схему обработки для измерения глубины взаимодействия. В еще одном варианте осуществления схема в модуле включает в себя флэш-память, которая может хранить таблицы коррекции данных, данные буфера или тому подобное. В еще одном другом варианте осуществления элементы детектора и электронные средства обработки совместно используют две стороны одной и той же PCB.
Использование стандартизированных ADM обеспечивает возможность замены модуля детектора предварительно калиброванным ADM, который устраняет необходимость повторной калибровки сканера. Например, если определяют неисправность ADM (например, на основе плохих или отсутствующих сигналов из ADM или тому подобное), тогда сигналы неисправности передают для предупреждения техника или другого лица о неисправном ADM, который техник затем заменяет новым, предварительно калиброванным ADM. Кроме того, использование стандартизированных ADM способствует построению сканера. Это также способствует развитию модулей с разными размерами сцинтилляторов и детекторов для получения разной чувствительности и пространственного разрешения. Стандартизированный модульный подход обеспечивает возможность использования модулей с разными размерами в одном сканере. Аналогично, модули в сканере могут быть заменены без повторной калибровки для изменения их разрешения.
На фиг. 2 показана иллюстрация ADM 14 и различных их компонентов в соответствии с одним или больше аспектами, описанными здесь. ADM включает в себя модуль 60 обработки (например, один или больше процессоров и ассоциированное запоминающее устройство) на печатной плате (PCB) 62. В модуле 60 обработки хранится одна или больше программируемых пользователем вентильных матриц (FPGA) или тому подобное для установки временных меток и для стробирования детектированных событий сцинтилляции. Кроме того, или в качестве альтернативы, модуль обработки имеет одну или больше специализированных микросхем (ASIC) для установки временной метки и стробирования детектированных событий сцинтилляции. Кроме того, или в качестве альтернативы, схема установки временной метки интегрирована в светоприемник, который выводит цифровые значения для временной метки и энергии гамма-частицы, попавшей в электронное средство обработки.
Множество твердотельных светоприемников 64, таких как матрица или мозаичные структуры кремниевых фотоумножителей (SiPM), лавинных фотодиодов (APD) или тому подобное, соединены с соответствующими участками массива 66 сцинтилляционных кристаллов. На фиг. 2 каждый светоприемник соединен с сектором размером 8×8 из кристаллов, и четыре показанные элемента мозаики комбинируют для формирования массива 66 кристаллов размером 16×16. Каждый светоприемник 64 также соединен с разъемом 68, который соединяет светоприемник 64 с PCB 62 и, таким образом, с модулем 60 обработки, содержащим одну или больше из множества ASIC и/или FPGA. В качестве альтернативы, элементы детектора и электронное средство обработки совместно используют две стороны одной и той же PCB. Сцинтиллятор, обращенный к стороне каждого элемента мозаики, заполнен настолько близко к кромкам, насколько это возможно, с SiPM или APD. Таким образом, элементы мозаики могут быть плотно упакованы при поддержании согласованного размера пикселя и периодичности в мозаике. Хотя здесь показана мозаика в виде прямоугольной решетки, элементы мозаики могут быть смещены, например смещены строки или столбцы.
Поскольку кластеризацию энергии (например, детектирование и агрегирование множества событий сцинтилляции из одного гамма-фотона) выполняют на уровне модуля, стробирование энергии выполняют также на уровне модуля. В зависимости от размера пациента или субъекта это способствует уменьшению скорости передачи данных, которые должны быть обработаны последующими электронными средствами в соотношении 5 к 10. Данные, выводимые модулем, предоставляют полную информацию для характеризации события, включая в себя идентичность кристалла взаимодействия (например, идентичность или координаты одного или больше кристаллов, в которых было детектировано событие сцинтилляции), энергию и информацию о временной метке. Поэтому выход всех отдельных ADM может быть вставлен в одну схему детектирования совпадения (например, для PET) или может непосредственно использоваться для реконструкции (например, для SPECT).
В одном варианте осуществления отдельные светоприемники 64 (и их ассоциированные сектора массива 66 кристаллов модуля) могут быть заменены индивидуально в пределах ADM 14. Например, разъем 68 может обеспечивать как электрическое соединение с модулем 60 обработки через PCB 62, так и механическое соединение с PCB для того, чтобы сделать светоприемник 64 съемным для замены, в случае неисправности светоприемника 64. Кроме того, или в качестве альтернативы, каждый ADM 14 съемно соединен с его детектором 13 (фиг. 1) таким образом, что конкретный ADM может быть удален и заменен для обеспечения функциональности всех ADM в массиве ADM на детекторе.
В другом варианте осуществления ADM c другими размерами используют в данном детекторе для того, чтобы способствовать формированию поверхности детектора с изменяемой конфигурацией и/или чувствительностью.
В другом варианте осуществления результаты считывания из отдельных модулей предоставляют в электронное средство детектирования совпадения (не показано). Модули обработки соседних ADM могут использовать ближайший соседний тип протокола передачи данных для определения, какой из модулей обработки обрабатывает данные комптоновского типа, когда модули достаточно малы (например, массив кристаллов 8×8 или с некоторым другим относительно малым размером массива), так что комптоновские события могут быть детектированы в двух или больше соседних модулях.
В еще одном варианте осуществления каждый модуль 60 обработки включает в себя флэш-память (не показана) с одной или больше таблицами коррекции, сохраненными в ней для обработки данных события сцинтилляции. Таблицы коррекции способствуют учету комптоновского рассеяния и т.п.
На фиг. 3 показан график 80, который представляет зависимость детектированных одиночных событий от размера массива модуля. На графике показан процент детектированных событий сцинтилляции на пиксель, отмеченный как функция области считывания пикселя для массива сцинтилляционных кристаллов LYSO с пикселем размером 4×4 мм2 с шагом 4,1 мм. Для меньших модулей комптоновское рассеяние в соседние модули приводит к потере чувствительности детектирования одиночного события. Для размера массива модуля 16×16 кристаллов только 3% всех одиночных событий теряется в результате комптоновского рассеяния в соседние модули, что составляет соответствующий размер модуля приблизительно 7×7 см2.
Поскольку в ADM выполняют стробирование энергии, желательно обеспечить, чтобы комптоновское рассеяние в соседние модули не приводило к потере чувствительности системы. График 80 моделирования системы представляет, что для размеров модуля 16×16 кристаллов (например, каждый из которых имеет размер 4×4 мм2) теряются только приблизительно 3% всех одиночных событий из-за комптоновского рассеяния в соседние модули. Это иллюстрирует, что размер модуля 7×7 см2 представляет соответствующий размер модуля.
В общем, размер модуля представляет собой функцию плотности материала сцинтилляции. Например, при использовании материала сцинтилляции LYSO или LSO может использоваться массив кристаллов 16×16. При использовании материала сцинтилляции LaBr может использоваться массив кристаллов 24×24. В другом примере используется массив кристаллов 8×8, когда используется материал сцинтилляции BGO. Следует понимать, что описанные выше примеры размера массива кристаллов являются иллюстративными по своей природе и предназначены для иллюстрации того, что по мере увеличения плотности сцинтилляции выбранный размер модуля может быть уменьшен.
На фиг. 4 иллюстрируется возможная архитектура 100 системы PET, которой способствует использование ADM, в соответствии с одним или больше аспектами, описанными здесь. Схема 28 детектирования совпадения принимает данные одиночного события после стробирования энергии из множества детекторных модулей 14. Поскольку стробирование энергии выполняют на уровне модуля, частоту данных, вводимых в схему детектирования совпадения, уменьшают в соотношении 5 к 10 (в зависимости от размера пациента) по сравнению с классической архитектурой. Как только детектирование совпадения будет выполнено, данные пар событий сцинтилляции после стробирования энергии предоставляют в процессор 32 реконструкции, который реконструирует анатомическое изображение для отображения для пользователя.
На фиг. 5 представлен способ выполнения установки временной метки времени события сцинтилляции и стробирования энергии на уровне детекторного модуля, вместо последующей обработки детектированных событий сцинтилляции для уменьшения требований к последующей обработке данных в соответствии с одним или больше аспектами, описанными здесь. На этапе 90 события сцинтилляции детектируют в ADM 14. На этапе 92 для информации о событии сцинтилляции устанавливают временную метку на уровне модуля, например, с помощью схемы установки временной метки, включенной в модуль процессора в ADM. На этапе 94 события сцинтилляции подвергают стробированию по энергии на уровне модуля (например, с помощью ADM, в котором детектируют события сцинтилляции). На этапе 96 информацию о событии сцинтилляции с установленной временной меткой и после стробирования энергии выводят для обработки и/или реконструкции. С помощью информации о событии сцинтилляции с временной меткой и после стробирования энергии в ADM такие действия обработки удаляют из рабочего потока последующей обработки, что, таким образом, повышает скорость реконструкции. На этапе 98 информацию о событии сцинтилляции с временной меткой и после стробирования энергии реконструируют в объеме 3D изображения.
В одном варианте осуществления способ дополнительно включает в себя этап, на котором выполняют алгоритм детектирования совпадения для выходной информации о событии сцинтилляции, для идентификации соответствующих пар событий сцинтилляции перед реконструкцией объема 3D изображения.
В другом варианте осуществления способ включает в себя этапы, на которых определяют, что ADM является неисправным (например, при детектировании отсутствия сигнала из него, или любым другим соответствующим способом), и передают сигнал неисправности, который предупреждает техника об одном или больше неисправных ADM. Техник может затем заменять неисправный ADM новым, предварительно откалиброванным ADM.
Описанные системы и способы можно применять для детекторов PET и SPECT. Полностью масштабируемая архитектура обеспечивает возможность упрощенной конструкции системы и способствует свободе в выборе конфигурации при конструировании сканера. Это, в свою очередь, приводит к существенному снижению скорости передачи данных, которые должны быть обработаны последующими электронными средствами. В частности, для применений с большой величиной подсчета описанные системы и способы уменьшают потребность в использовании электронных средств широкополосной обработки.
Кроме того, описанные способы могут быть сохранены на машиночитаемом носителе информации как исполняемые компьютером инструкции, которые исполняются с помощью процессора или процессоров.
Изобретение было описано со ссылкой на несколько вариантов осуществления. Модификации и изменения могут возникнуть у других лиц после прочтения и понимания предыдущего подробного описания изобретения. Предполагается, что изобретение следует рассматривать как включающее в себя все такие модификации и изменения, если они находятся в пределах объема приложенной формулы изобретения или ее эквивалентов.

Claims (19)

1. Система (10) детектора ядерного сканирования, включающая в себя:
ядерный сканер (12), содержащий множество неподвижно закрепленных деталей (13) ядерного детектора;
один или больше автономных детекторных модулей (ADM) (14), съемно закрепленных на каждой из неподвижно закрепленных деталей (13) детектора, каждый ADM (14) включает в себя:
сцинтилляционный кристалл или массив (66) сцинтилляционных кристаллов;
один или более светоприемников (64) для детектирования событий сцинтилляции в соответствующих секторах массива (66) сцинтилляционных кристаллов;
разъем (20) питания, через который ADM (14) принимает питание;
разъем (22) синхронизатора, через который ADM (14) принимает информацию о синхронизации из главных часов для установки временной метки в детектированных событиях сцинтилляции;
разъем (24) конфигурации, через который ADM (14) конфигурируется во время установки; и
выходной разъем (26), через который ADM (14) передает информацию о событии сцинтилляции с временной меткой и после стробирования энергии;
причем разъемы (20, 22, 24, 26) и соответствующие разъемы на гентри имеют взаимосвязь вилка-розетка,
модуль (60) обработки, который устанавливает временную
метку для каждого детектируемого события сцинтилляции, выполняет протокол стробирования энергии для идентификации событий комптоновского рассеяния и выводит информацию о событии сцинтилляции с временной меткой и после стробирования энергии.
2. Система по п.1, дополнительно содержащая:
компонент (28) детектирования совпадения, который принимает информацию о событии сцинтилляции с временной меткой и после стробирования энергии из множества ADM (14) и идентифицирует пары детектированных событий сцинтилляции, которые соответствуют одиночному событию аннигиляции в субъекте.
3. Система по п.2, дополнительно содержащая:
процессор (32) реконструкции, который реконструирует объем изображения субъекта из идентифицированных пар событий сцинтилляции;
запоминающее устройство (34) изображения, которое хранит реконструированный объем изображения; и
дисплей (42), на котором отображается объем изображения для зрителя.
4. Система по п.1, в которой массив (66) сцинтилляционных кристаллов имеет размер в диапазоне от приблизительно 3×3 см2 до приблизительно 16×16 см2.
5. Система по п.4, в которой кристаллы сцинтилляции сформированы из одного из:
германата висмута (BGO) с массивом (66) сцинтилляционных кристаллов, имеющим размеры в диапазоне от приблизительно 3×3 см2 до приблизительно 6×6 см2; или
по меньшей мере, одного из лютеций-иттриевого ортосиликата
(LYSO) или лютециевого ортосиликата (LSO) с массивом (66) сцинтилляционных кристаллов, имеющим размеры в диапазоне от приблизительно 3×3 см2 до приблизительно 8×8 см2; или
бромида лантана (LaBr) с массивом (66) сцинтилляционных кристаллов, имеющим размеры в диапазоне от приблизительно 6×6 см2 до приблизительно 12×12 см2.
6. Система по п.1, в которой каждый из светоприемников (64) включает в себя множество светочувствительных элементов, расположенных в виде мозаики, причем каждый элемент мозаики имеет светочувствительные элементы, соответствующие множеству пикселей детектора, светочувствительные элементы, по существу, закрывают всю мозаику в пределах областей с минимальной кромкой так, чтобы обеспечить установку элементов мозаики с примыканием друг к другу и поддержание ими соответствующей периодичности пикселя детектора.
7. Система по п.6, в которой элементы мозаики являются прямоугольными и каждый модуль включает в себя, по меньшей мере, четыре элемента мозаики в плотно упакованной взаимосвязи.
8. Система по п.1, в которой модуль (60) обработки включает в себя флэш-память, которая хранит справочную таблицу, включающую в себя информацию о коррекции, используемую модулем обработки, для компенсации рассеяния комптоновского типа.
9. Система по п.1, в которой модуль (60) обработки включает в себя, по меньшей мере, одну из программируемых пользователем вентильных матриц (FPGA) и специализированных интегральных схем (ASIC) для установки временной метки и стробирования энергии для детектированных событий сцинтилляции.
10. Система по п.1, в которой модуль (60) обработки включает в себя, по меньшей мере, одну программируемую пользователем вентильную матрицу (FPGA), которая принимает информацию о временной метке из модуля установки временной метки, интегрированного в светоприемник (64).
11. Способ уменьшения потребности в последующей обработке данных в системе формирования ядерного изображения, включающий в себя этапы, на которых:
детектируют события сцинтилляции в одном или более автономных детекторных модулях (ADM) (14);
устанавливают временную метку для событий сцинтилляции на уровне модуля в каждом ADM (14), используя информацию о синхронизации, получаемую из главных часов;
конфигурируют каждый ADM (14) во время установки временной метки;
выполняют технологию стробирования энергии для событий сцинтилляции на уровне модуля;
выводят информацию о событии сцинтилляции с временной меткой и после стробирования энергии; и
обрабатывают и реконструируют информацию о событии в объеме 3D изображения.
12. Способ по п.11, дополнительно включающий в себя этап, на котором:
выполняют алгоритм детектирования совпадения для выводимой информации о событии сцинтилляции для идентификации соответствующих пар событий сцинтилляции.
13. Способ по п.11, дополнительно включающий в себя этапы,
на которых:
определяют, что один или больше ADM (14) является неисправным;
передают сигнал неисправности, который предупреждает техника об одном или больше неисправных ADM (14); и
заменяют один или больше неисправных ADM (14) новым предварительно откалиброванным ADM.
14. Машиночитаемый носитель (34) информации, который содержит сохраненные на нем исполняемые компьютером инструкции для выполнения способа по п.11.
15. Автономный детекторный модуль (АБМ) (14), включающий в себя:
массив (66) сцинтилляционных кристаллов;
по меньшей мере, один светоприемник (64), детектирующий событие сцинтилляции во всем или на участке массива (66) сцинтилляционных кристаллов;
разъем (20) питания, через который ADM (14) принимает питание; разъем (22) синхронизатора, через который ADM (14) принимает информацию о синхронизации из главных часов для установки временной метки для детектированных событий сцинтилляции;
разъем (24) конфигурации, через который ADM (14) конфигурируется во время установки; и
выходной разъем (26), через который ADM (14) передает информацию о событии сцинтилляции с временной меткой и после стробирования энергии;
причем разъемы (20, 22, 24, 26) и соответствующие разъемы на гентри имеют взаимосвязь вилка-розетка,
модуль (60) обработки, устанавливающий временные метки для детектированных событий сцинтилляции или принимающий временную метку и информацию энергии из схемы, интегрированной в светоприемник, выполняющий технологию стробирования энергии для детектированных событий сцинтилляции и выводящий информацию о событии сцинтилляции с временной меткой и после стробирования энергии.
16. Автономный детекторный модуль (АБМ) (14) по п.15,
в котором, по меньшей мере, один светоприемник (64) соединен со всем или с частью массива (66) сцинтилляционных кристаллов на первой стороне и с разъемом (68) на второй стороне; и
в котором разъем (68) съемно соединен, по меньшей мере, с одним из светоприемников (64) с печатной платой (РСВ) (62), которая соединена с модулем (60) обработки.
17. Автономный детекторный модуль (ADM) (14) по п.15,
в котором, по меньшей мере, один светоприемник (64) соединен со всем или участком массива (66) сцинтилляционных кристаллов на первой стороне и с печатной платой (РСВ) (62) на второй стороне, причем печатная плата дополнительно соединена с модулем (60) обработки.
18. Система формирования изображений на основе позитронно-эмиссионной томографии (РЕТ), включающая в себя множество ADM (14) по п.15.
19. Автономный детекторный модуль (ADM), содержащий:
множество элементов мозаики, расположенных в виде плотно упакованного массива, причем каждый элемент мозаики включает в себя:
множество светочувствительных элементов, соответствующих множеству пикселей детектора со светочувствительными элементами, по существу, покрывающими элементы мозаики в областях с минимальной кромкой, и
по меньшей мере, один сцинтиллятор, оптически соединенный со светочувствительными элементами;
в котором элементы мозаики установлены с примыканием друг к другу так, чтобы светочувствительные элементы одного элемента мозаики находились, по существу, рядом со светочувствительными элементами соседнего элемента мозаики так, чтобы поддерживать соответствующую периодичность пикселя детектора во множестве элементов мозаики, и
разъем питания, через который ADM принимает питание;
разъем синхронизатора, через который ADM принимает информацию о синхронизации из главных часов для установки временной метки для детектированных событий сцинтилляции;
разъем конфигурации, через который ADM конфигурируется во время установки; и
выходной разъем, через который ADM передает информацию о событии сцинтилляции с временной меткой и после стробирования энергии;
причем разъемы и соответствующие разъемы на гентри имеют взаимосвязь вилка-розетка.
RU2011128368/28A 2008-12-10 2009-11-16 Автономный детекторный модуль как строительный блок для масштабируемых систем pet и spect RU2536792C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12122508P 2008-12-10 2008-12-10
US61/121,225 2008-12-10
PCT/IB2009/055107 WO2010067220A2 (en) 2008-12-10 2009-11-16 Autonomous detector module as a building block for scalable pet and spect systems

Publications (2)

Publication Number Publication Date
RU2011128368A RU2011128368A (ru) 2013-01-27
RU2536792C2 true RU2536792C2 (ru) 2014-12-27

Family

ID=42243129

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011128368/28A RU2536792C2 (ru) 2008-12-10 2009-11-16 Автономный детекторный модуль как строительный блок для масштабируемых систем pet и spect

Country Status (6)

Country Link
US (1) US9995829B2 (ru)
EP (1) EP2376940B1 (ru)
JP (1) JP2012511717A (ru)
CN (2) CN102246057A (ru)
RU (1) RU2536792C2 (ru)
WO (1) WO2010067220A2 (ru)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011080201A1 (de) * 2011-08-01 2013-02-07 Siemens Aktiengesellschaft Flachbilddetektor und Röntgengerät
JP6209532B2 (ja) 2011-12-27 2017-10-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Pet検出器のためのタイルの取り付け
CN104285161B (zh) * 2012-05-08 2017-08-01 皇家飞利浦有限公司 Spect/pet成像***
US10371836B2 (en) 2012-06-27 2019-08-06 Koninklijke Philips N.V. Digital positron emission tomography (DPET) energy calibration method
CN102783964B (zh) 2012-07-02 2014-03-05 苏州瑞派宁科技有限公司 Pet成像中单事件列表式数据的同步方法及***
CN102843139B (zh) * 2012-09-20 2015-10-28 苏州瑞派宁科技有限公司 一种闪烁脉冲数字化的方法及装置
CN103099639B (zh) * 2013-03-01 2014-12-24 江苏中惠医疗科技股份有限公司 Pet成像***的环形拓扑结构及其实现方法
CN104252005A (zh) * 2013-06-26 2014-12-31 北京大基康明医疗设备有限公司 一种pet探测器模块
US9229115B2 (en) 2013-12-20 2016-01-05 Koninklijke Philips N.V. Temperature stability for a digital positron emission tomography (PET) detector
WO2015092630A1 (en) * 2013-12-20 2015-06-25 Koninklijke Philips N.V. Improved temperature stability for a digital positron emission tomography (pet) detector
GB201322940D0 (en) * 2013-12-23 2014-02-12 Johnson Matthey Plc Radiation detection apparatus and method
CN104155673B (zh) * 2014-07-21 2017-04-12 北京永新医疗设备有限公司 伽马射线成像探测器及具有它的***
CN105655435B (zh) * 2014-11-14 2018-08-07 苏州瑞派宁科技有限公司 光电转换器、探测器及扫描设备
US9709686B2 (en) 2014-12-30 2017-07-18 General Electric Company Modular positron emission tomography (PET) gantry
CN104820452B (zh) * 2015-02-13 2018-11-13 湖北锐世数字医学影像科技有限公司 一种探测器智能控制***及控制方法
US9606245B1 (en) 2015-03-24 2017-03-28 The Research Foundation For The State University Of New York Autonomous gamma, X-ray, and particle detector
TWI599790B (zh) * 2016-06-29 2017-09-21 長庚醫療財團法人林口長庚紀念醫院 加馬光子偵測成像裝置與方法
JP6737154B2 (ja) * 2016-12-02 2020-08-05 株式会社島津製作所 放射線検出装置
KR101866947B1 (ko) * 2016-12-09 2018-06-14 한국원자력연구원 컴프턴 산란 영상 노이즈 제거가 가능한 방사선 투과 영상 장치 및 컴프턴 산란 영상 노이즈 제거 방법
CN107507164B (zh) * 2017-07-11 2019-11-05 北京永新医疗设备有限公司 双层晶***置查找表的获取方法
EP3701290A4 (en) * 2017-10-24 2021-08-18 Saint-Gobain Ceramics & Plastics Inc. RADIATION DETECTION DEVICE INCLUDING AN ANALYZER INSIDE A BOX
EP3746816A1 (en) * 2018-02-02 2020-12-09 Viken Detection Corporation System and kit for x-ray backscatter imaging with removable detector
JP7080332B6 (ja) * 2018-03-05 2022-06-23 コーニンクレッカ フィリップス エヌ ヴェ 汎用pet検出器
WO2020113167A1 (en) 2018-11-30 2020-06-04 Saint-Gobain Ceramics & Plastics, Inc. Radiation detection apparatus having a reflector
US11701065B2 (en) * 2019-05-22 2023-07-18 Redlen Technologies, Inc. Compton scattering correction methods for pixellated radiation detector arrays
CN110680370B (zh) * 2019-09-30 2023-02-28 东软医疗***股份有限公司 图像重建方法、装置、控制台设备及pet***
CN111505699B (zh) * 2020-04-24 2022-05-10 上海联影医疗科技股份有限公司 康普顿散射事例恢复方法、pet***及计算机可读存储介质
US11647973B2 (en) * 2021-05-04 2023-05-16 Siemens Medical Solutions Usa, Inc. Three-dimensional tileable gamma ray detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2264635C2 (ru) * 2003-12-15 2005-11-20 Государственное научно-исследовательское учреждение Всероссийский научно-исследовательский институт сельскохозяйственного использования мелиорированных земель (ГНИУ ВНИИМЗ) Детектор гамма-излучения
US7157014B1 (en) * 2001-10-05 2007-01-02 Cit Pet Systems, Inc. Method for producing a high resolution detector array
EP1328827B1 (en) * 2000-10-11 2008-08-27 Symetrica Limited Gamma-ray spectrometry

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395635A (en) * 1981-01-26 1983-07-26 The United States Of America As Represented By The Department Of Health And Human Services Gamma ray coincidence analysis system
JPS6168580A (ja) 1984-09-12 1986-04-08 Hitachi Ltd 放射線二次元分布検出装置
BR9510290A (pt) * 1994-12-23 1997-11-11 Digirad Câmera de raios gama semicondutores e sistema médico de formação de imagens
GB2305096B (en) * 1995-08-29 1997-09-10 Simage Oy Imaging system and method
US5677536A (en) * 1996-06-19 1997-10-14 Smv America Gamma camera with on the fly calibration for PMT drift
US5751000A (en) * 1997-01-08 1998-05-12 Smv America, Inc. Prefilter collimator for PET gamma camera
US6288399B1 (en) * 1997-11-12 2001-09-11 Cti Pet Systems, Inc. Depth of interaction detector block for high resolution positron emission tomography
US6396898B1 (en) 1999-12-24 2002-05-28 Kabushiki Kaisha Toshiba Radiation detector and x-ray CT apparatus
JP4659962B2 (ja) * 2000-10-04 2011-03-30 株式会社東芝 核医学診断装置
US6449331B1 (en) * 2001-01-09 2002-09-10 Cti, Inc. Combined PET and CT detector and method for using same
US6590215B2 (en) * 2001-04-05 2003-07-08 Toshiba Corporation Readout circuit for a charge detector
US6803579B2 (en) 2001-09-28 2004-10-12 General Electric Company Technique for removal of picket fence effect in PET imaging systems
WO2003065074A1 (en) * 2002-02-01 2003-08-07 Board Of Regents, The University Of Texas System Asymmetrically placed cross-coupled scintillation crystals
US20040164249A1 (en) * 2003-02-26 2004-08-26 Crosetto Dario B. Method and apparatus for determining depth of interactions in a detector for three-dimensional complete body screening
US6917664B2 (en) * 2002-10-03 2005-07-12 Koninklijke Philips Electronics N.V. Symmetrical multiple-slice computed tomography data management system
EP1852716A3 (en) 2002-10-07 2007-11-14 Hitachi, Ltd. Radiation detector, radiation detector element, and radiation imaging apparatus
JP4582022B2 (ja) * 2002-10-07 2010-11-17 株式会社日立製作所 放射線検出器,放射線検出素子及び放射線撮像装置
JP4093013B2 (ja) 2002-10-23 2008-05-28 株式会社日立製作所 放射線検査装置
US6903344B2 (en) 2003-03-25 2005-06-07 Cti Pet Systems, Inc. Baseline correction in PET utilizing continuous sampling ADCs to compensate for DC and count rate errors
US7238946B2 (en) * 2003-06-27 2007-07-03 Siemens Medical Solutions Usa, Inc. Nuclear imaging system using scintillation bar detectors and method for event position calculation using the same
US20050023473A1 (en) * 2003-08-01 2005-02-03 Burr Kent Charles System and method for reducing optical crosstalk in multi-anode photomultiplier tube
JP3717122B2 (ja) * 2003-09-29 2005-11-16 株式会社日立製作所 γ線の検出時刻決定方法、γ線の同時計数方法、及び核医学診断装置
JP3863872B2 (ja) 2003-09-30 2006-12-27 株式会社日立製作所 陽電子放出型断層撮影装置
DE10352012B4 (de) * 2003-11-07 2007-10-04 Siemens Ag Detektormodul für die CT- und/oder PET- und/oder SPECT-Tomographie
US7564367B2 (en) * 2004-04-29 2009-07-21 Airport Mechanical Services, Inc. Aircraft door detector/warning device
JP2005106804A (ja) * 2004-07-02 2005-04-21 Hitachi Ltd 陽電子放出型断層撮影装置
JP2008506945A (ja) 2004-07-14 2008-03-06 オーボテック メディカル ソリューションズ リミティド 放射線検出器ヘッド
PT103200B (pt) * 2004-09-30 2006-08-24 Taguspark-Soc. Prom.Desenv.Parq.Ci.Tec.Area Lisboa Sistema de tomografia por emissão de positrões (pet)
US8242453B2 (en) * 2004-10-15 2012-08-14 Koninklijke Philips Electronics N.V. Imaging system for nuclear medicine
EP1853161A4 (en) 2004-12-29 2011-03-23 Siemens Medical Solutions COMBINED PET / MR SYSTEM AND APD-BASED PET DETECTOR FOR USE IN SIMULTANEOUS PET / MR PRESENTATION
BRPI0610720B1 (pt) * 2005-04-22 2018-01-16 Koninklijke Philips N. V. “pixel detector para uso em conjunto com um cintilador que converte uma partícula de radiação para uma rajada de luz, detector de radiação, sistema de geração de imagem de tomografia por emissão de pósitron de duração de trajetória (tof-pet), 5 método executado em conjunto com um cintilador que converte uma partícula de radiação para uma rajada de luz, e detector de radiação que inclui um cintilador e circuitos”
EP1913422B1 (en) 2005-08-04 2015-05-13 Koninklijke Philips N.V. Modular signal processing backbone for pet
CN101278206B (zh) * 2005-10-06 2012-09-05 皇家飞利浦电子股份有限公司 具有光纤连接的mr线圈
JP2007107995A (ja) * 2005-10-13 2007-04-26 Toshiba Corp 核医学イメージング装置及び画像データ生成方法
DE102006021046B4 (de) 2006-05-05 2013-06-06 Siemens Aktiengesellschaft Röntgendetektor
US7579598B2 (en) * 2006-06-06 2009-08-25 Siemens Medical Solutions Usa, Inc. Realtime line of response position confidence measurement
US20080011953A1 (en) * 2006-07-11 2008-01-17 General Electric Company Scintillator composition, article, and associated method
JP4877766B2 (ja) * 2006-08-25 2012-02-15 独立行政法人放射線医学総合研究所 陽電子放射断層撮像装置及び放射線検出器
US20080073542A1 (en) * 2006-09-22 2008-03-27 Stefan Siegel Light guide having a tapered geometrical configuration for improving light collection in a radiation detector
US20080075342A1 (en) 2006-09-27 2008-03-27 Lazuka David M Pet scanner with digital trigger
JP4909847B2 (ja) 2006-09-29 2012-04-04 株式会社日立製作所 核医学診断装置
US7847552B2 (en) * 2007-01-10 2010-12-07 General Electric Company Exclusion of compromised PET data during simultaneous PET-MR acquisition
JP2008190901A (ja) * 2007-02-01 2008-08-21 Hitachi Ltd 陽電子放出型断層撮影装置
US7915578B2 (en) * 2007-05-10 2011-03-29 Cardiovascular Imaging Technologies L.L.C. Method and apparatus for correcting scattering in SPECT imaging
US9118635B2 (en) * 2007-11-02 2015-08-25 General Electric Company Medical imaging system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1328827B1 (en) * 2000-10-11 2008-08-27 Symetrica Limited Gamma-ray spectrometry
US7157014B1 (en) * 2001-10-05 2007-01-02 Cit Pet Systems, Inc. Method for producing a high resolution detector array
RU2264635C2 (ru) * 2003-12-15 2005-11-20 Государственное научно-исследовательское учреждение Всероссийский научно-исследовательский институт сельскохозяйственного использования мелиорированных земель (ГНИУ ВНИИМЗ) Детектор гамма-излучения

Also Published As

Publication number Publication date
EP2376940B1 (en) 2017-05-17
US20110240864A1 (en) 2011-10-06
CN107102348B (zh) 2020-12-22
WO2010067220A3 (en) 2011-03-31
RU2011128368A (ru) 2013-01-27
CN107102348A (zh) 2017-08-29
EP2376940A2 (en) 2011-10-19
WO2010067220A2 (en) 2010-06-17
CN102246057A (zh) 2011-11-16
JP2012511717A (ja) 2012-05-24
US9995829B2 (en) 2018-06-12

Similar Documents

Publication Publication Date Title
RU2536792C2 (ru) Автономный детекторный модуль как строительный блок для масштабируемых систем pet и spect
CN102449504B (zh) 具有改进的量化能力的pet探测器***
US8923588B2 (en) Method and system for improved TOF PET reconstruction
CN103083028B (zh) 用于成像***的检测器模块和制造方法
JP6339596B2 (ja) 陽電子放出断層撮影および/または単一光子放出断層撮影検出器
US9322940B2 (en) Method and system for synchronizing positron emission tomography (PET) detector modules
US8063377B2 (en) Crystal identification for high resolution nuclear imaging
US7301153B2 (en) Photo sensor panel for high resolution PET
EP3123203B1 (en) Dead pixel identification in positron emission tomography (pet)
US10520613B2 (en) Histogram smoothing in positron emission tomography (PET) energy histograms
CN107110980B (zh) 低成本的数字式pet设计
Schug et al. First evaluations of the neighbor logic of the digital SiPM tile
KR101241821B1 (ko) 컴프턴 현상을 이용한 양전자 단층 촬영 장치, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 매체
JP4843346B2 (ja) マンモグラフィ装置
Sarasola et al. PET demonstrator for a human brain scanner based on monolithic detector blocks
JP2017512997A (ja) 陽電子放射断層撮影(pet)における欠落画素の補償
CN115244428A (zh) 用于识别和定位辐射事件的计算机实现的方法以及用于执行该方法的像素化辐射检测器
CN105487099A (zh) 一种放射性光电探测器及其探测方法
CN203673073U (zh) 一种放射性光电探测器
JP2008082937A (ja) 放射線検出器及び放射線撮像装置
Venialgo et al. Small-animal and endoscopic PET detector modules based on multichannel digital silicon photomultipliers
Barber et al. PSAPD gamma camera for SPECT imaging
US7915593B2 (en) Image channel coding
JP2017166863A (ja) 放射線検出器およびそれを備えたtof−pet装置
US20060097179A1 (en) Method and apparatus to recover a deal pixel in digital imaging systems