RU2527673C2 - Способ обнаружения структурного дефекта в механическом узле, содержащем вращающийся элемент - Google Patents

Способ обнаружения структурного дефекта в механическом узле, содержащем вращающийся элемент Download PDF

Info

Publication number
RU2527673C2
RU2527673C2 RU2011147162/28A RU2011147162A RU2527673C2 RU 2527673 C2 RU2527673 C2 RU 2527673C2 RU 2011147162/28 A RU2011147162/28 A RU 2011147162/28A RU 2011147162 A RU2011147162 A RU 2011147162A RU 2527673 C2 RU2527673 C2 RU 2527673C2
Authority
RU
Russia
Prior art keywords
specified
defect
rotation
spectrum
amplitude
Prior art date
Application number
RU2011147162/28A
Other languages
English (en)
Other versions
RU2011147162A (ru
Inventor
Паскаль ДЕБЬОЛЬ
Мохамед ЭЛЬБАДАУИ
Оливье МЮЗИ
Дидье РЕМОН
Original Assignee
Нтн-Снр Рульман
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Нтн-Снр Рульман filed Critical Нтн-Снр Рульман
Publication of RU2011147162A publication Critical patent/RU2011147162A/ru
Application granted granted Critical
Publication of RU2527673C2 publication Critical patent/RU2527673C2/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/028Acoustic or vibration analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Изобретение относится к измерительной технике, в частности к способу выявления структурного дефекта в механическом узле, содержащем вращающийся элемент. Способ включает этап предварительного анализа для определения характеристической частоты появления дефекта за один оборот вращения указанного элемента, а также следующие повторяющиеся этапы: измерение мгновенной скорости вращения вращающегося элемента; угловую дискретизацию указанного измерения с получением дискретизированного сигнала, характеризующего мгновенную скорость вращения указанного элемента; пространственный гармонический анализ дискретизированного сигнала с получением спектра мгновенной скорости вращения указанного элемента; контроль амплитуды спектра для характеристической частоты, чтобы на основании указанной амплитуды выявить появление соответствующего дефекта. Технический результат заключается в упрощении средств измерений. 12 з.п. ф-лы, 1 ил.

Description

Изобретение относится к способу обнаружения структурного дефекта в механическом узле, содержащем вращающийся элемент, а также к применению такого способа при проведении бортовой диагностики автомобилей на предмет определения степени износа используемого в них механического узла, содержащего вращающийся элемент.
В частности изобретение можно использовать для обнаружения структурных дефектов во вращающемся элементе подшипника, а конкретнее во вращающемся кольце роликового подшипника, обеспечивающего направленное вращение механического узла. В других случаях его можно использовать для обнаружения структурных дефектов в каком-либо ином элементе, в том числе в неподвижном элементе механического узла, содержащего вращающийся элемент.
Упоминаемый в настоящей заявке механический узел может входить в состав коробки передач, редукторного двигателя, регулятора частоты вращения, автоматического стартера, турбины, реактора, трансмиссии, сцепления, а также шпинделя или шпиндельного держателя для станочной обработки.
Кроме того, благодаря предложенному способу обнаружения структурного дефекта удается наделить вращающийся элемент функцией сбора информации, в частности, для выполнения следующих задач:
- бортовой диагностики или контроля механических деталей автомобиля, в частности быстроизнашивающихся деталей, - например, для контроля коленчатого вала, диагностики подшипника качения или распределительной шестерни;
- разработки опытного образца какой-либо вращающейся динамической системы, например, стартера-альтернатора;
- контроля элементов различных машин, например, шпинделей станков, редукторов, трансмиссий ветряных турбин.
Согласно известному уровню техники структурные дефекты принято выявлять посредством вибрационного анализа, проводимого в отношении механического узла с использованием сигналов, вырабатываемых акселерометрами. Однако такой способ требует использования дорогих акселерометров, которые к тому же, обладают существенным недостатком, заключающимся в том, что их сложно сопрягать с механическими узлами, содержащими вращающийся элемент.
Таким образом, задача настоящего изобретения заключается в усовершенствовании решений известного уровня техники путем разработки способа обнаружения структурного дефекта в механическом узле, содержащем вращающийся элемент, для реализации которого не требовалось бы трудноустанавливаемых средств измерения и который был бы простым и надежным в применении, и в частности, не зависящим от скорости вращения вращающегося элемента и от внешних нагрузок, воздействующих на указанный узел.
В рамках решения поставленной задачи согласно первому аспекту изобретения предложен способ обнаружения структурного дефекта в механическом узле, содержащем вращающийся элемент, включающий этап предварительного анализа для определения характеристической частоты появления дефекта за один оборот вращения указанного элемента, а также следующие повторяющиеся этапы:
- измерение мгновенной скорости вращения вращающегося элемента;
- угловую дискретизацию указанного измерения с получением дискретизированного сигнала, характеризующего мгновенную скорость вращения указанного элемента;
- пространственный гармонический анализ дискретизированного сигнала с получением спектра мгновенной скорости вращения указанного элемента;
- контроль амплитуды спектра для характеристической частоты, чтобы на основании указанной амплитуды выявить появление соответствующего дефекта.
В соответствии со вторым аспектом изобретения предложено применять указанный способ для бортовой диагностики автомобилей на предмет определения степени износа используемого в них механического узла, содержащего вращающийся элемент.
Остальные задачи и преимущества изобретения становятся более понятными из ознакомления с нижеследующим описанием, изложенным со ссылками на прилагаемый график, который иллюстрирует принцип получения дискретизированного сигнала, характеризующего мгновенную скорость вращения вращающегося элемента.
Ниже приводится описание способа обнаружения структурного дефекта в механическом узле, содержащем подшипник качения, который состоит из вращающегося элемента, неподвижного элемента и по меньшей мере одного ряда тел качения, помещенных между указанными элементами для обеспечения возможности их относительного вращения. Описание ведется на примере подшипника, обеспечивающего направленное вращение механического узла, установленного на борту автомобиля, и в частности на примере вращающегося подшипника, предназначенного для направления вращения вала коробки передач.
Однако предлагаемое изобретение можно использовать и для обнаружения структурного дефекта в механических узлах иного типа, содержащих вращающий элемент, и/или в каких-либо других ситуациях, например в каком-либо статическом режиме, в частности в обрабатывающем станке, на котором закреплен вращающийся элемент.
Подлежащий обнаружению структурный дефект может возникнуть вследствие механических нагрузок, возникающих при вращении вращающегося элемента. Таким образом, предлагаемый способ позволяет диагностировать степень износа механического узла, с тем чтобы путем проведения превентивного ремонта можно было предотвратить поломку этого узла.
Так, например, в случае подшипника качения структурный дефект может выражаться в раскалывании дорожки качения на неподвижном элементе, раскалывании вращающегося элемента и/или тел качения. В случае механического узла, содержащего вращающийся вал (в частности, трансмиссии, коробки передач или двигателя), структурный дефект может возникнуть на зубе шестерни этого вала.
Предлагаемый способ предусматривает проведение предварительного анализа для определения характеристической частоты появления структурного дефекта за один оборот вращения вращающегося элемента. В частности такой анализ может быть осуществлен путем геометрического обследования механического узла, например, с использованием кинематических соотношений между различными механическими компонентами этого узла, с тем, чтобы локализовать частоту, определяющую каждый из потенциальных структурных дефектов, понятливо.
В случае подшипника качения определение характеристической частоты дефекта можно выполнить посредством вычисления частоты прохождения тела качения по указанному дефекту. Таким образом, характеристическая частота может соответствовать оценочному значению числа прохождений тела качения по дефекту за один оборот.
После определения характеристических частот потенциальных структурных дефектов предусматривается выполнение повторяющихся этапов обнаружения дефекта, соответствующего одной из этих характеристических частот. В альтернативном случае способ можно применять для обнаружения каждого из потенциальных дефектов.
Способ содержит этап измерения мгновенной скорости вращения вращающегося элемента, причем измерение можно выполнять на вращающемся элементе, подлежащем контролю, или на другом вращающемся элементе, который связан с ним в механическом узле.
В частности, измерение мгновенной скорости может быть осуществлено посредством узла «энкодер-датчик». Энкодер во время вращения составляет с вращающимся элементом единую часть. Он может представлять собой энкодер магнитного типа, имеющий многополюсную дорожку с чередующейся последовательностью северных и южных магнитных полюсов, имеющих одинаковую геометрию.
Например, энкодер может быть закреплен на вращающемся элементе или на каком-либо вращающемся компоненте, связанном при вращении с указанным вращающимся элементом. В случае подшипника качения энкодер может быть прикреплен к вращающемуся элементу, с тем, чтобы обеспечить возможность обнаружения структурного дефекта в указанном подшипнике, или во вращающемся узле, вращательное движение которого направляется этим подшипником.
Датчик является неподвижным и содержит по меньшей мере два чувствительных элемента, расположенных напротив многополюсной дорожки, на расстоянии считывания от нее. В соответствии с некоторыми вариантами изобретения чувствительные элементы представляют собой датчики Холла, магниторезистивные датчики или супермагниторезистивные датчики. В частности, датчик может включать в себя группу установленных по одной линии чувствительных элементов, например таких, что описаны в патенте FR 2792403.
Фиг.1 иллюстрирует работу датчика, выполненного с возможностью выдачи сигнала S, имеющего фронты Sf, следующие через постоянный угловой шаг. В частности, выдаваемый датчиком сигнал S может быть интерполирован таким образом, чтобы угловой шаг, на который отстоят друг от друга фронты Sf, был меньше углового расстояния между магнитными полюсами.
Кроме этого способ предусматривает угловую дискретизацию измерения мгновенной скорости вращения с получением дискретизированного сигнала, характеризующего указанную скорость. В соответствии с рассматриваемым вариантом изобретения измеряют время, прошедшее между двумя фронтами Sf, в частности, с помощью связанной с датчиком счетной платы.
Измерять время можно, в частности, путем подсчета числа импульсов Ni тактового генератора с высокой частотой f, которые разделяют два передних фронта Sf измеряемого сигнала S, что соответствует угловому шагу, задаваемому количеством фронтов Ni. Таким образом, на основе дискретизированного сигнала удается получить время, прошедшее между каждыми двумя соседними фронтами Sf измеряемого сигнала S, что позволяет определить реальную мгновенную скорость вращения ω с помощью выражения:
ω = у г о л в р е м я = 2 π f N f N i
Figure 00000001
В соответствии с одним из вариантов изобретения количество фронтов Nf измеряемого сигнала S составляет 2400 на оборот, причем указанные фронты получают с помощью энкодера, имеющего 60 пар полюсов, с интерполяцией в 40. Частота f высокочастотного тактового генератора равна 100 МГц.
После того как произведена дискретизация мгновенной скорости вращения, в соответствии с предлагаемым способом предусматривается проведение гармонического анализа дискретизированного сигнала для получения спектра мгновенной скорости вращения элемента. Согласно одному из вариантов изобретения пространственный гармонический анализ проводят путем пространственного преобразования Фурье дискретизированного сигнала.
Обратимся к фиг.1. Пространственное преобразование Фурье может быть осуществлено для измерения времени, прошедшего между каждыми двумя соседними передними фронтами Sf. Кроме того, измерение мгновенной скорости вращения вращающегося элемента или времени, прошедшего между каждыми двумя соседними фронтами, можно осуществлять за несколько оборотов, например примерно за тридцать. В этом случае гармонический анализ проводится для сигнала, подвергнутого угловой дискретизации, таким образом, что ограничивается влияние колебаний скорости вращения вращающегося элемента.
Далее в соответствии с предлагаемым способом предусматривается контроль амплитуды спектра для характеристической частоты, чтобы на основании указанной амплитуды определить появление соответствующего дефекта. Согласно альтернативному варианту изобретения контролируют несколько характеристических частот, чтобы выявить появление дефектов, определяемых с помощью каждой из этих частот.
Говоря конкретнее, частотное положение полос спектра не зависит от скорости вращения вращающегося элемента, поскольку мы имеем здесь дело с событиями, которые связаны с вращающимся элементом, а не с внешними нагрузками. Дело в том, что сигнал подвергается угловой дискретизации таким образом, что при получении сигналов, по сути, избавляются от колебаний скорости, с тем, чтобы можно было выполнить точное сравнение уровней разных частот в разных скоростных режимах.
Такой контроль можно выполнить в пределах окна, включающего в себя характеристическую частоту и/или по меньшей мере одну гармонику этой частоты. В частности, если требуется обнаружить несколько дефектов, каждый с помощью одной характеристической частоты, контролируемые частоты должны быть разными, что обеспечивает возможность распознавания каждого из этих дефектов.
Появление дефекта может быть обнаружено по значению амплитуды спектра, превышающему заданную пороговую величину. Кроме того, можно предусмотреть квантование дефекта в зависимости от амплитуды и/или формы спектра для характеристической частоты.
В соответствии с одним из вариантов изобретения предлагаемый способ дополнительно содержит этап предварительного определения свойственной энкодеру сигнатуры, причем указанную сигнатуру вычитают из сигнала мгновенной скорости для того, чтобы выполнить контроль амплитуды в полученном спектре. Это связано с тем, что технология выполнения магнитного энкодера предполагает наведение спектрального шума для всех целочисленных порядков, причем указанная сигнатура зависит также от присоединения энкодера к вращающемуся элементу. Такая фильтрация частот с целочисленными порядками особенно выгодна в тех случаях, когда контролируемая частота кратна скорости вращения.

Claims (13)

1. Способ обнаружения структурного дефекта в механическом узле, содержащем вращающийся элемент, включающий этап предварительного анализа для определения характеристической частоты появления дефекта за один оборот вращения указанного элемента, а также следующие повторяющиеся этапы:
- измерение мгновенной скорости вращения вращающегося элемента;
- угловую дискретизацию указанного измерения с получением дискретизированного сигнала, характеризующего мгновенную скорость вращения указанного элемента;
- пространственный гармонический анализ дискретизированного сигнала с получением спектра мгновенной скорости вращения указанного элемента;
- контроль амплитуды спектра для характеристической частоты, чтобы на основании указанной амплитуды выявить появление соответствующего дефекта.
2. Способ по п.1, отличающийся тем, что пространственный гармонический анализ выполняют путем пространственного преобразования Фурье дискретизированного сигнала.
3. Способ по п.1, отличающийся тем, что измерение мгновенной скорости осуществляют посредством:
- энкодера, вращаемого вместе с вращающимся элементом, причем указанный энкодер имеет многополюсную дорожку;
- неподвижного датчика, содержащего по меньшей мере два чувствительных элемента, расположенных напротив многополюсной дорожки и на расстоянии считывания от нее, причем указанный датчик выполнен с возможностью выдачи сигнала (S), имеющего фронты (Sf), следующие через постоянный угловой шаг.
4. Способ по п.3, отличающийся тем, что многополюсная дорожка содержит чередующуюся последовательность северных и южных магнитных полюсов.
5. Способ по п.4, отличающийся тем, что угловой шаг, на который отстоят друг от друга фронты (Sf), меньше углового расстояния между полюсами.
6. Способ по любому из пп.3-5, отличающийся тем, что он дополнительно предусматривает измерение времени, прошедшего между двумя фронтами (Sf), при этом время, прошедшее между каждыми двумя соседними фронтами (Sf) измеряемого сигнала (S), получают на основе дискретизированного сигнала, что позволяет определить мгновенную скорость вращения.
7. Способ по любому из пп.3-5, отличающийся тем, что он включает предварительное определение свойственной энкодеру сигнатуры, причем указанную сигнатуру вычитают из сигнала мгновенной скорости, чтобы выполнить контроль амплитуды в полученном спектре.
8. Способ по любому из пп.1-5, отличающийся тем, что мгновенную скорость вращения вращающегося элемента измеряют за несколько оборотов, причем указанный гармонический анализ проводят в отношении этого сигнала, подвергнутого угловой дискретизации.
9. Способ по любому из пп.1-5, отличающийся тем, что определение характеристической частоты выполняют путем геометрического обследования механического узла.
10. Способ по любому из пп.1-5, отличающийся тем, что появление дефекта обнаруживают по значению амплитуды спектра, превышающему заданную пороговую величину.
11. Способ по п.10, отличающийся тем, что он включает в себя квантование дефекта в зависимости от амплитуды и/или формы спектра для характеристической частоты.
12. Способ по любому из пп.1-5, отличающийся тем, что контроль выполняют на характеристической частоте и/или по меньшей мере на одной гармонике этой частоты.
13. Применение способа по любому из пп.1-12 для бортовой диагностики автомобилей на предмет определения степени износа механического узла, содержащего вращающийся элемент.
RU2011147162/28A 2009-04-23 2010-04-16 Способ обнаружения структурного дефекта в механическом узле, содержащем вращающийся элемент RU2527673C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0901988 2009-04-23
FR0901988A FR2944875B1 (fr) 2009-04-23 2009-04-23 Procede de detection d'un defaut structurel d'un ensemble mecanique comprenant un organe tournant
PCT/FR2010/000317 WO2010122240A1 (fr) 2009-04-23 2010-04-16 Procédé de détection d'un défaut structurel d'un ensemble mécanique comprenant un organe tournant

Publications (2)

Publication Number Publication Date
RU2011147162A RU2011147162A (ru) 2013-05-27
RU2527673C2 true RU2527673C2 (ru) 2014-09-10

Family

ID=41165221

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011147162/28A RU2527673C2 (ru) 2009-04-23 2010-04-16 Способ обнаружения структурного дефекта в механическом узле, содержащем вращающийся элемент

Country Status (8)

Country Link
EP (1) EP2422178B1 (ru)
JP (1) JP5757936B2 (ru)
KR (1) KR20120024635A (ru)
CN (1) CN102483368B (ru)
BR (1) BRPI1006573A2 (ru)
FR (1) FR2944875B1 (ru)
RU (1) RU2527673C2 (ru)
WO (1) WO2010122240A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11222487B2 (en) * 2017-06-29 2022-01-11 Hyundai Mobis Co., Ltd. Apparatus and method for detecting fault in in-wheel driving system of vehicle

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2977666B1 (fr) 2011-07-04 2014-02-07 Ntn Snr Roulements Module de surveillance d'au moins une grandeur physique caracteristique de l'etat d'un organe de guidage par contact, alimente par un generateur thermoelectrique
FR2977667B1 (fr) 2011-07-04 2014-02-07 Ntn Snr Roulements Module de surveillance d'au moins une grandeur physique caracteristique de l'etat d'un organe de guidage par contact
FR2977646B1 (fr) 2011-07-04 2014-05-16 Ntn Snr Roulements Boite de palier instrumentee avec un capteur d'emission acoustique
FR2993049B1 (fr) 2012-07-06 2015-05-29 Ntn Snr Roulements Diagnostic de l'etat structurel d'un organe cinematique rotatif a diagnostiquer d'une chaine cinematique d'un appareil, d'une machine ou d'un engin, en particulier un engin a roues.
FR2992935B1 (fr) 2012-07-06 2015-10-16 Ntn Snr Roulements Diagnostic de l'etat structurel d'unites de roulement d'un engin, incluant des moyens de calcul et d'analyse embarques sur l'engin.
FR2992936B1 (fr) 2012-07-06 2014-07-25 Ntn Snr Roulements Prediction de l'etat structurel d'un organe cinematique rotatif d'une chaine cinematique.
FR2992934B1 (fr) 2012-07-06 2015-12-25 Ntn Snr Roulements Diagnostic de l'etat structurel d'unites de roulement d'un engin, incluant des moyens de calcul et d'analyse dissocies structurellement de l'engin.
FR3000798B1 (fr) 2013-01-10 2015-04-17 Ntn Snr Roulements Systeme de diagnostic de l'etat structurel d'une unite de roulement d'un engin a roues.
FR3017460B1 (fr) * 2014-02-07 2016-03-04 Ntn Snr Roulements Station de diagnostic de roulement de roue de vehicule automobile
FR3041760B1 (fr) * 2015-09-30 2017-12-08 Ntn-Snr Roulements Procede de detection d'une defaillance transitoire de rotation d'un organe tournant
FR3047803B1 (fr) * 2016-02-12 2018-03-23 Ntn-Snr Roulements Procede de detection d’un etat vibratoire d’un ensemble mecanique comprenant un organe tournant
FR3051043B1 (fr) * 2016-05-09 2018-06-15 Ntn-Snr Roulements Procede de detection d’un etat de rotation d’un ensemble mecanique comprenant un organe tournant
KR101947880B1 (ko) * 2016-12-15 2019-05-13 현대자동차주식회사 차량의 인휠모터 제어방법 및 그 제어시스템
CN108593955B (zh) * 2018-04-04 2020-04-17 天津大学 用于转速周期性波动情况下瞬间转速测试方法
US10670385B2 (en) * 2018-05-07 2020-06-02 GM Global Technology Operations LLC Method and apparatus for monitoring a rotatable member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2814238A1 (fr) * 2000-09-15 2002-03-22 Dufournier Technologies S A S Procede et systeme ou centrale de surveillance de l'etat des pneumatiques, et de detection de presence de chaines ou ou clous a neige, sur un vehicule
US6993439B2 (en) * 2002-09-13 2006-01-31 Innovative Scientific Solutions, Inc. Motor based condition monitoring

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1605154A (ru) * 1965-12-16 1973-03-23
JP3339281B2 (ja) * 1996-01-16 2002-10-28 株式会社デンソー 回転体若しくは移動体の振動解析装置及び該振動解析装置を用いたタイヤ空気圧推定装置
FR2792380B1 (fr) * 1999-04-14 2001-05-25 Roulements Soc Nouvelle Roulement pourvu d'un dispositif de detection des impulsions magnetiques issues d'un codeur, ledit dispositif comprenant plusieurs elements sensibles alignes
US6802221B2 (en) * 2001-03-29 2004-10-12 General Electric Company System and method for conditioned-based monitoring of a bearing assembly
US6993449B2 (en) * 2004-01-31 2006-01-31 Continental Teves, Inc. Tire pressure loss detection
FR2872905B1 (fr) * 2004-07-06 2006-09-22 Snr Roulements Sa Procede de determination d'une condition de roulage par analyse harmonique spatiale de la vitesse

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2814238A1 (fr) * 2000-09-15 2002-03-22 Dufournier Technologies S A S Procede et systeme ou centrale de surveillance de l'etat des pneumatiques, et de detection de presence de chaines ou ou clous a neige, sur un vehicule
US6993439B2 (en) * 2002-09-13 2006-01-31 Innovative Scientific Solutions, Inc. Motor based condition monitoring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11222487B2 (en) * 2017-06-29 2022-01-11 Hyundai Mobis Co., Ltd. Apparatus and method for detecting fault in in-wheel driving system of vehicle

Also Published As

Publication number Publication date
KR20120024635A (ko) 2012-03-14
JP5757936B2 (ja) 2015-08-05
EP2422178A1 (fr) 2012-02-29
EP2422178B1 (fr) 2017-12-06
CN102483368A (zh) 2012-05-30
JP2012524895A (ja) 2012-10-18
BRPI1006573A2 (pt) 2016-02-10
FR2944875B1 (fr) 2011-06-24
CN102483368B (zh) 2015-05-13
FR2944875A1 (fr) 2010-10-29
RU2011147162A (ru) 2013-05-27
WO2010122240A1 (fr) 2010-10-28

Similar Documents

Publication Publication Date Title
RU2527673C2 (ru) Способ обнаружения структурного дефекта в механическом узле, содержащем вращающийся элемент
US7930111B2 (en) Synthesized synchronous sampling and acceleration enveloping for differential bearing damage signature
JPH09113416A (ja) ころがり軸受の損傷診断方法
CN110174281B (zh) 一种机电设备故障诊断方法及***
Lin et al. A review and strategy for the diagnosis of speed-varying machinery
Vogl et al. A defect-driven diagnostic method for machine tool spindles
Hu et al. Extraction of the largest amplitude impact transients for diagnosing rolling element defects in bearings
CN105651515A (zh) 航空发动机中介轴承故障检测方法及检测装置
JP5218614B2 (ja) 異常診断装置、回転装置、鉄道車両、自動車及び異常診断方法
Liang et al. Application of instantaneous rotational speed to detect gearbox faults based on double encoders
JP4848803B2 (ja) 異常診断装置、回転装置及び異常診断方法
JPH07311082A (ja) 回転機器の異常診断装置
CN115165345A (zh) 一种基于改进振动分离的非互质齿比行星轮故障检测方法
Geropp Envelope analysis-a signal analysis technique for early detection and isolation of machine faults
Bertoni et al. Comparison of incremental encoders in order to improve IAS based diagnosis
Thanagasundram et al. Autoregressive based diagnostics scheme for detection of bearing faults
CN112664379A (zh) 水轮机组故障预判方法及装置
Bourdon et al. Estimation of the size of a spall defect on a rolling bearing outer ring using Instantaneous Angular Speed measurements
Zamorano et al. Analysis in the time-frequency domain of different depths of a crack located in a change of section of a shaft
FR3047803A1 (fr) Procede de detection d’un etat vibratoire d’un ensemble mecanique comprenant un organe tournant
Bertoni et al. Characterization of incremental encoders by accelerometers mounted on the rotor
Randall et al. Bearing diagnostics in variable speed gearboxes
CN110569478A (zh) 用于编码器信号分析的改进变分模态分解方法
Sinitsin Roller bearing fault detection by applying wireless sensor of instantaneous accelerations of mechanisms moving elements
Azimi et al. Implementation of Shaft-Mounted Accelerometer in the Local Fault Diagnosis of Geared Systems

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210417