RU2510270C2 - Производное бензохинона е3330 в комбинации с химиотерапевтическими агентами для лечения рака и ангиогенеза - Google Patents

Производное бензохинона е3330 в комбинации с химиотерапевтическими агентами для лечения рака и ангиогенеза Download PDF

Info

Publication number
RU2510270C2
RU2510270C2 RU2010113569/15A RU2010113569A RU2510270C2 RU 2510270 C2 RU2510270 C2 RU 2510270C2 RU 2010113569/15 A RU2010113569/15 A RU 2010113569/15A RU 2010113569 A RU2010113569 A RU 2010113569A RU 2510270 C2 RU2510270 C2 RU 2510270C2
Authority
RU
Russia
Prior art keywords
cells
specified
macular degeneration
retinopathy
combination
Prior art date
Application number
RU2010113569/15A
Other languages
English (en)
Other versions
RU2010113569A (ru
Inventor
Марк Р. КЕЛЛИ
Original Assignee
Индиана Юниверсити Рисёч Энд Текнолоджи Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Индиана Юниверсити Рисёч Энд Текнолоджи Корпорейшн filed Critical Индиана Юниверсити Рисёч Энд Текнолоджи Корпорейшн
Publication of RU2010113569A publication Critical patent/RU2010113569A/ru
Application granted granted Critical
Publication of RU2510270C2 publication Critical patent/RU2510270C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • A61K31/122Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/201Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having one or two double bonds, e.g. oleic, linoleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid, pantothenic acid
    • A61K31/198Alpha-aminoacids, e.g. alanine, edetic acids [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/203Retinoic acids ; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Abstract

Предложен способ подавления физиологических нарушений, связанных с измененным ангиогенезом, выбранных из ретинопатии, диабетической ретинопатии, макулярной дегенерации, ретролентальной фиброплазии, возрастной макулярной дегенерации, опухоли поджелудочной железы и глиомы, включающий введение эффективного количества 3-[(5-(2,3-диметокси-6-метил-1,4-бензохинонил)]-2-нонил-2-пропеновой кислоты (Е3330) или ее фармацевтически приемлемых солей или сольватов. Показано снижение количества VGEF и пролиферации эндотелиальных клеток сетчатки под действием Е3330 даже в присутствии фактора роста фибробластов, как в условиях нормоксии, так и гипоксии за счет ингибирования окислительно-восстановительной активности Ape1/Ref-1. Последнее, а также снижение активности HIF-1α, NFκβ, АР-1 под действием Е3330 и подавление за счет этого роста, выживаемости, миграции и метастазирования опухолевых клеток сопровождалось отсутствием существенного подавления роста нормальных клеток (гемопоэтических эмбриональных клеток или CD34+ прогениторных клеток человека). Кроме того, Е3330 усиливал терапевтический эффект других цитотоксических препаратов. 11 з.п. ф-лы, 36 ил.

Description

ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ
По данной заявке испрашивается приоритет на основании предварительной заявки США 60/989,566, поданной 21 ноября 2007, и предварительной заявки США 60/975,396, поданной 26 сентября 2007, которые включены сюда во всей полноте путем ссылки.
ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Данное изобретение в общем относится к областям молекулярной биологии, биохимии и патологии. В частности, в определенных аспектах изобретение касается применения ингибиторов окислительно-восстановительной активности Ape1/Ref-1 для лечения рака и для подавления ангиогенеза.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Апуриновая/апиримидиновая эндонуклеаза (Аре1), также известная под названием окислительно-восстановительного фактора (от англ. redox effector factor, Ref-1) (далее обозначаемая Ape1/Ref-1) представляет собой фермент, выполняющий двойную функцию. Кроме способности к эксцизионной репарации оснований ДНК (ЭРО), Ape1/Ref-1 также выполняет функцию окислительно-восстановительного эффектора, поддерживая активное восстановленное состояние транскрипционных факторов (см. Фиг.1).
Было показано, что Ape1/Ref-1 стимулирует ДНК-связывающую активность ряда транскрипционных факторов, таких как HIF-1α, NFкβ, АР-1 и р53 и других известных и неизвестных факторов, имеющих отношение к жизнеспособности и прогрессированию опухоли (Evans et al., Mutat Res 2000, 461, 83). Было показано нарушение экспрессии Ape1/Ref-1 при разных формах рака, включая рак молочной железы, рак шейки матки, герминогенные опухоли, глиомы у взрослых и детей, остеосаркомы, рабдомиосаркомы, немелкоклеточный рак легких и множественную миелому (Puglisi et al., Oncol Rep 2002, 9, 11; Thomson et al., Am J Pediatr Hematol Oncol 2001, 23, 234; Roberston et al., Cancer Res 2001, 61, 2220; Puglisi et al., Anticancer Res 2001, 21, 4041; Koukourakis et al., Int J Radiat Oncol Biol Phys 2001, 50, 27; Kakolyris et al., Br J Cancer 1998, 77, 1169; Bobola et al., Clin Cancer Res 2001, 7, 3510). Была также обнаружена корреляция повышенной экспрессии Ape1/Ref-1 с неблагоприятным исходом химио- и радиотерапии, неудовлетворительным ответом на лечение, более коротким временным промежутком до возникновения локального рецидива, более низкой выживаемостью и усиленным ангиогенезом (Koukourakis et al., Int J Radiat Oncol Biol Phys 2001, 50, 27; Kakolyris et al., Br J Cancer 1998, 77, 1169; Bobola et al., Clin Cancer Res 2001, 7, 3510).
Ангиогенез является важным компонентом опухолевого роста, выживаемости, миграции опухолевых клеток и метастазирования. Новые кровеносные сосуды, образующиеся в месте раковой опухоли, служат источником питательных веществ для усиленного роста и распространения опухоли, а также облегчают поступление опухолевых клеток в кровоток и распространение по другим частям тела. Таким образом, успешное подавление ангиогенеза представляет собой эффективный механизм замедления или предотвращения роста и распространения опухоли. Повышенная активность Ape1/Ref-1 связана с ангиогенезом. Фактор роста сосудистого эндотелия (от англ. Vascular endothelial growth factor, VEGF) является важным сигнальным белком, участвующим как в васкулогенезе, так и в ангиогенезе. Ape1/Ref-1 представляет собой компонент транскрипционного комплекса, индуцируемого гипоксией, формирующегося на отвечающем за гипоксию элементе гена VEGF (Ziel et al., Faseb J 2004, 18, 986).
Кроме онкологических заболеваний, изменение ангиогенеза вносит вклад в патологические состояния, относящиеся, в том числе, к сердечно-сосудистым заболеваниям, хроническим воспалительным заболеваниям, ревматоидному артриту, диабетической ретинопатии, макулярной дегенерации, ретролентальной фиброплазии, идиопатическому фиброзу легких, острому респираторному дистресс-синдрому взрослых, астме, эндометриозу, псориазу, келоидам и системному склерозу. Подавление ангиогенеза представляет собой благоприятный клинический исход, способствующий облегчению или предотвращению заболеваний, при которых отмечается усиленный ангиогенез.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Прицельное ингибирование окислительно-восстановительной активности Ape1/Ref-1 представляет собой новый подход для лечения рака и подавления ангиогенеза. В одном воплощении данное изобретение касается применения противоопухолевых терапевтических агентов, ингибирующих окислительно-восстановительную активность Ape1/Ref-1. В другом воплощении данное изобретение касается антиангиогенных агентов, ингибирующих окислительно-восстановительную активность Ape1/Ref-1.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Фигура 1. Роль окислительно-восстановительной активности Ape1/Ref-1 в регуляции транскрипционных факторов, важных для выживаемости опухоли.
Фигура 2. Определение VEGF при помощи иммуно-ферментного анализа (ИФА).
Фигура 3А-3В. Определение VEGF при помощи ИФА.
Фигура 4А-4В. Определение VEGF при помощи ИФА.
Фигура 5. Определение VEGF при помощи ИФА.
Фигура 6. Определение VEGF при помощи ИФА.
Фигура 7. Определение VEGF при помощи ИФА.
Фигура 8. Тест на формирование капиллярных трубок с использованием эндотелиальных колониеформирующих клеток пуповинной крови (CB-ECFC), посаженных на матригель.
Фигура 9. Тест с предельным разведением.
Фигура 10. Оценка пролиферации эндотелиальных клеток сетчатки в присутствии или в отсутствии основного фактора роста фибробластов (от англ. basic fibroblast growth factor, bFGF) при помощи MTS-теста.
Фигура 11. Эффект Е3330 (RN3-3) на пролиферацию клеток RVEC (эндотелиальных клеток сосудов сетчатки) дикого типа, инфицированныхsv40.
Фигура 12. MTS-тест с использованием опухолевых клеток MCF-7, полученных из ткани аденокарциномы молочной железы человека. Для анализа выживаемости/роста клеток применяли тест с 3-(4-5-диметилтиазол-2-ил)-5-(3-карбоксиметоксифенил)-2-(4-сульфофенил)-2Н-тетразолиевой солью (MTS-тест).
Фигура 13. MTS-тест с использованием опухолевых клеток OVCAR-3, полученных из ткани аденокарциномы яичников человека.
Фигура 14A-14D. Эффект Е3330 (RN3-3) в сочетании с химиотерапевтическим препаратом мелфалан на клетки множественной миеломы.
Фигура 15. Эффект Е3330 (RN3-3) в сочетании с химиотерапевтическим препаратом мелфалан на клетки множественной миеломы в MTS-тесте через 72 часа.
Фигура 16. Эффект Е3330 (RN3-3) и гемцитабина (0,25 мкмоль) на клетки опухоли поджелудочной железы через 24 и 48 часов.
Фигура 17. MTS-тест на жизнеспособность клеток.
Фигура 18. MTS-тест на жизнеспособность клеток.
Фигура 19. Вес тела мышей-самцов, которым вводили Е3330 (RN3-3) (0-50 мг/кг).
Фигура 20. Данные по выживаемости мышей, получавших RN3-3 (Е3330) в различных дозировках и наблюдавшихся на 2, 3, 4 или 5 день после лечения.
Фигура 21A-21D. Данные по фармакокинетике Е3330 (RN3-3) в ходе 24-часового эксперимента.
Фигура 22. Данные по фармакокинетике Е3330 (RN3-3).
Фигура 23. Эффект Е3330 (RN3-3) и ретиноевой кислоты на усиление дифференцировки клеток.
Фигура 24. Исследование апоптоза клеток HL-60, обработанных как описано на Фиг.23, при помощи теста с аннексином/иодидом пропидия.
Фигура 25. Эффект RN3-3 (Е3330) и различных концентраций ретиноевой кислоты.
Фигура 26. Эффект Е3330 (RN3-3) и ретиноевой кислоты на клетки HL-60 в стадии апоптоза (тест с аннексином/иодидом пропидия).
Фигура 27A-27D. Эффект Е3330 (RN3-3) в сочетании с низкомолекулярным метоксиамином на клетки множественной миеломы.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Данное изобретение направлено на применение противоопухолевых и анти-ангиогенных агентов, селективно ингибирующих окислительно-восстановительную активность Ape1/Ref-1. Подобное селективное ингибирование включает специфическое ингибирование или, другими словами, отсутствие эффекта или отсутствие заметного эффекта на ЭРО-активность APE1/Ref-1, а также преобладающее влияние на окислительно-восстановительную активность, по отношению к ЭРО-активности. Изобретение также включает применение подобных агентов в сочетании с дополнительными химиотерапевтическими/ терапевтическими агентами. Желательно, чтобы другие агенты воздействовали на субъекта иным образом, чем агенты, селективно ингибирующие окислительно-восстановительную активность Ape1/Ref1.
Физиологические нарушения, связанные с изменением ангиогенеза, включают такие нарушения, связанные с неадекватным ангиогенезом, которые прямо или косвенно оказывают на субъекта вредное воздействие. Изменение ангиогенеза вносит вклад в патологические состояния, относящиеся, в том числе, к онкологическим заболеваниям (включая рост, выживаемость, миграцию опухолевых клеток, их микроокружение и метастазирование), сердечно-сосудистым заболеваниям, хроническим воспалительным заболеваниям, ревматоидному артриту, диабетической ретинопатии, макулярной дегенерации, ретролентальной фиброплазии, идиопатическому фиброзу легких, острому респираторному дистресс-синдрому взрослых, астме, эндометриозу, псориазу, келоидам и системному склерозу.
Термин «субъект» включает позвоночных животных и предпочтительно обозначает человека. Термин «ингибировать» и его производные включает его общепринятое значение, включающее препятствование, предотвращение, ограничение и замедление, остановку прогрессирования или выраженности, или их обратное развитие. Данные способы включают как медицинское терапевтическое, так и профилактическое введение, соответственно. Что касается применений в целях терапии по данному изобретению, субъектом, нуждающимся в этих способах введения считается тот, у которого выявлена необходимость или потребность в медицинских вмешательствах. Эффективное количество является таким количеством агента, которое необходимо для подавления патологического заболевания и нарушений, описанных здесь. В случае, когда субъекту вводят по меньшей мере один дополнительный терапевтический агент, агенты могут вводиться последовательно, одновременно или совместно, для получения благоприятного эффекта агентов.
Было обнаружено, что окислительно-восстановительная активность Ape1/Ref-1 селективно ингибируется 3-[(5-(2,3-диметокси-6-метил-1,4-бензохинолинил)]-2-нонил-2-пропеноевой кислотой, изображенной ниже (в данной заявке далее обозначаемой "Е3330", а также обозначаемой "RN3-3").
Figure 00000001
Более подробную информацию по ЕЗЗЗО можно найти у Abe et al., в патенте США 5,210,239, включенном сюда во всей полноте путем ссылки. В частности, в нем описаны процедуры приготовления, формулы и фармацевтически приемлемые соли.
Исследования, выполненные авторами изобретения, показали, что селективное блокирование окислительно-восстановительной активности Ape1/Ref-1 не вызывает апоптоза вообще или не вызывает сколько-нибудь заметного апоптоза в нормальных клетках. Можно предположить, что селективное блокирование, приводящее к усилению апоптоза в раковых клетках, будет также отражаться на нормальных клетках. Однако, этого не было обнаружено авторами изобретения.
В тех случаях, когда предполагается осуществлять введение у субъектов, особенно у человека, будет необходимо изготовлять фармацевтическую композицию в форме, подходящей для соответствующего введения. Как правило, это подразумевает изготовление композиций, практически не содержащих примесей, которые могут нанести вред субъекту.
Введение агентов может осуществляться орально, внутривенно, внутримышечно, внутриплеврально или интраперитонеально в дозировках, рассчитанных в зависимости от веса тела и степени прогрессирования заболевания у субъекта, и может производиться один, два или даже четыре раза в сутки.
Как правило, желательно использовать соответствующие соли и буферы для стабилизации агентов и обеспечения их поглощения клетками-мишенями. Водные растворы по данному изобретению включают эффективное количество агента, растворенного или диспергированного в фармацевтически приемлемом носителе или водной среде. Подобные композиции также обозначаются нетоксичными. Словосочетание «фармацевтически» или «фармакологически приемлемый» относится к молекулярным формам и композициям, не вызывающим побочных, аллергических или иных неблагоприятных реакций при введении субъекту. Здесь, фармацевтически приемлемый носитель включает любые и всевозможные растворители, дисперсные среды, покрытия, антибактериальные и противогрибковые агенты, изотонические и замедляющие абсорбцию агенты и т.п. Применение таких сред и агентов с фармацевтически активными веществами известно в данной области техники. В состав композиций также могут входить дополнительные активные ингредиенты.
Композиции для применения в данном изобретении могут включать традиционные фармацевтические препараты. Введение этих композиций согласно данному изобретению будет осуществляться посредством любого общепринятого способа, пока они не достигнут ткани-мишени. Сюда относится оральное, назальное, трансбуккальное, ректальное, вагинальное или локальное введение.
Кроме того, может проводиться ортотопическое, интрадермальное, подкожное, внутримышечное, интраперитонеальное или внутривенное введение. Такие композиции, как правило, вводят в виде фармацевтически приемлемых композиций, описанных выше.
Например, компоненты могут быть смешаны с общепринятыми наполнителями, дилюентами или носителями и сформированы в таблетки, капсулы, суспензии, порошки и тому подобное. Примеры наполнителей, дилюентов и носителей, подходящих для таких композиций, включают следующее: наполнители и добавки, такие как крахмал, сахара, маннитол и кремниевые производные; связывающие агенты, такие как карбоксиметилцеллюлозу и другие производные целлюлозы, альгинаты, желатин и поливинил пирролидон; смачивающие агенты, такие как глицерин; дезинтегрирующие агенты, такие как карбонат кальция и бикарбонат натрия; агенты для замедления растворения, такие как парафин; ускорители резорбции, такие как соединения четырехвалентного аммония; поверхностно активные агенты, такие как цетиловый спирт, моностеарат глицерина; адсобрирующие носители, такие как каолин и бентонит; и любриканты, такие как тальк, стеарат кальция и магния и твердые полиэтиленгликоли.
Активные компоненты можно также вводить парентерально или интраперитонеально. Растворы активных компонентов в виде свободных оснований или фармацевтически приемлемых солей могут быть приготовлены в воде, соответствующим образом смешанной с сурфактантом, таким как гидроксипропилцеллюлозой. Дисперсии могут также быть приготовлены в глицерине, жидких полиэтиленгликолях и их смесях, а также в маслах. При обычных условиях хранения и применения такие препараты содержат консервант для предотвращения роста микроорганизмов.
Лекарственные формы, подходящие для инъекций, включают стерильные водные растворы или дисперсии и стерильные порошки, для экстемпорального приготовления стерильных растворов для инъекций или дисперсий. Во всех случаях лекарственная форма должна быть стерильной и жидкой для обеспечения легкого введения при помощи шприца. Она должна быть стабильна в условиях производства и хранения и должна быть защищена от контаминирующего действия микроорганизмов, таких как бактерии и грибы. Носитель может быть растворителем или дисперсной средой, содержащей, например, воду, этанол, полиол (например, глицерол, пропилен гликоль и жидкий полиэтиленгликоль и т.п.), их подходящие смеси и растительные масла. Необходимая текучесть может поддерживаться, например, при помощи покрытия, такого как лецитин, за счет поддержания необходимого размера частиц в случае дисперсии и за счет применения поверхностно активных веществ. Предотвратить воздействие микроорганизмов можно при помощи различных антибактериальных и противогрибковых агентов, например, парабенов, хлоробутанола, фенола, сорбиновой кислоты, тимерозала и т.п. Во многих случаях желательно включать изотонические агенты, например, сахара или хлорид натрия. Пролонгированной абсорбции вводимых композиций можно добиться за счет применения в композициях агентов, замедляющих абсорбцию, например, моностеарата алюминия и желатина.
Стерильные растворы для инъекций готовят путем включения активных компонентов в требуемое количество соответствующего растворителя с различными другими ингредиентами, перечисленными выше, согласно требованиям, с последующей стерилизацией фильтрованием. Как правило, дисперсии готовят путем включения различных стерильных активных ингредиентов в стерильный носитель, содержащий основную дисперсную среду и другие необходимые ингредиенты из тех, что перечислены выше. В случае стерильных порошков для приготовления стерильных растворов для инъекций, предпочтительными способами приготовления являются методы вакуумной сушки и лиофилизации, позволяющие получить порошок активного ингредиента вместе с любым дополнительным желательным ингредиентом из их раствора, предварительного простерилизованного фильтрацией.
Агенты по данному изобретению для орального применения могут быть смешаны с эксципиентами и применяться в форме эликсиров для полоскания рта и паст. Эликсир для полоскания рта можно приготовить при помощи включения активного ингредиента в требуемое количество соответствующего растворителя, такого как раствор бората натрия (раствор Добелла). Кроме того, активный ингредиент можно включить в антисептический эликсир, содержащий борат натрия, глицерин и бикарбонат калия. Активный ингредиент может также быть диспергирован в зубных пастах, включая гели, пасты, порошки и суспензии. Активный ингредиент можно добавлять в терапевтически активном количестве к зубной пасте, которая может содержать воду, связующие вещества, абразивы, ароматизаторы, пенящиеся агенты и увлажняющие агенты.
Композиции для применения в данном изобретении могут быть приготовлены в нейтральной форме или форме соли. Фармацевтически приемлемые соли включают кислые аддитивные соли (образованные при участии свободных аминогрупп белка), образованные при участии неорганических кислот, таких как, например, соляная или фосфорная кислоты, или таких органических кислот, как уксусная, щавелевая, винная, миндальная и т.п. Соли, образованные при участии свободной карбоксильной группировки, могут также быть получены из неорганического основания, такого как, например, гидроксид натрия, калия, аммония, кальция или железа и таких органических оснований, как изопропиламин, триметиламин, гистидин, прокаин и т.п.
После изготовления растворы будут вводить способом, соответствующим типу композиции, в таком количестве, которое является терапевтически эффективным. Композиции легко вводятся в различных лекарственных формах, таких как растворы для инъекций, капсулы, выделяющие лекарства и т.п. Например, для парентерального введения в виде водного раствора, раствор должен быть при необходимости забуферен соответствующим образом, и жидкий растворитель вначале доведен до изотонической концентрации при помощи достаточного количества физиологического раствора или глюкозы. Эти определенные водные растворы особенно подходят для внутривенного, внутримышечного, подкожного и интраперитонеального введения. Стерильные водные среды, которые могут использоваться в связи с данным изобретением, известны специалистам. Например, она доза может быть растворена в 1 мл изотонического раствора NaCl и либо добавлена к 1000 мл жидкости для подкожного введения, либо использована для инъекции в предполагаемом участке (см, например, "Remington′s Pharmaceutical Sciences", 15 издание, страницы 1035-1038 и 1570-1580). В зависимости от состояния субъекта, получающего лечение, будут непременно возникать некоторые вариации в дозировках. Ответственный за введение человек будет, в любом случае, определять соответствующую дозировку для отдельного субъекта. Более того, для введения человеку препараты должны соответствовать стандартам стерильности, общей безопасности и чистоты, в соответствии с требованиями FDA и аналогичных зарубежных агентств.
Было показано, что ингибирование окислительно-востановительной активности Ape1/Ref-1 снижает секрецию VEGF, нарушает формирование капиллярных трубок и ингибирует рост колоний с большим количеством клеток, что указывает на антиангиогенный эффект. Следующие ниже примеры являются иллюстративными и не ограничивают рамок данного изобретения.
Ингибирование секреции VEGF. Определение VEGF при помощи иммуно-ферментного анализа (ИФА). Различные клеточные линии опухолевых клеток сажали на 24-луночные плашки в дупликатах и инкубировали в течение 24 ч в условиях нормоксии (около 21% кислорода) или гипоксии (около 2% кислорода). Клеточные супернатанты собирали и проводили иммуно-ферментный анализ с помощью набора, специфичного для человеческого VEGF, согласно инструкции производителя (R&D Systems, Minneapolis, MN). Результаты ИФА-определения VEGF считывали при помощи ридера для 96-луночных плашек путем измерения поглощения при 450 нм с поправкой при 540 нм. Гипоксия вызывала увеличение секреции VEGF (Фиг.2). (Для Фиг.2-7, черные столбики = нормоксия; серые столбики = гипоксия).
Определение VEGF при помощи иммуно-ферментного анализа. Клетки линий Неу-С2 (рак яичника), SKOV-3X (рак яичника), Panel (рак поджелудочной железы), РаСа-2 (поджелудочной железы) и Igrov (рак яичника) сажали в 24-луночные плашки в дупликатах и инкубировали с различными концентрациями Е3330 (RN3-3e) в течение 24 ч в условиях нормоксии (около 21% кислорода) или гипоксии (около 2% кислорода). Клеточные супернатанты собирали и проводили проводили иммуно-ферментный анализ с помощью набора, специфичного для человеческого VEGF, согласно инструкции производителя (R&D Systems, Minneapolis, MN). Результаты ИФА-определения VEGF считывали при помощи ридера для 96-луночных плашек путем измерения поглощения при 450 нм с поправкой при 540 нм. ЕЗЗЗО (RN3-3e) снижал количество VEGF, секретируемого клетками как в условиях нормоксии, так и гипоксии за счет ингибирования окислительно-восстановительной активности Ape1/Ref-1 (Фиг.2-7).
Ингибирование формирования капилляроподобных трубок. Формирование капилляроподобных трубок проводили с использованием эндотелиальных колониеформирующих клеток пуповинной крови (CB-ECFC), посаженных на матригель (Matrigel) и инкубируемых в присутствии Е3330 или контрольной среды. Эндотелиальные колониеформирующие клетки (ECFC) выращивали, как описано ранее (Blood, 1 November 2004, Vol.104, No.9, pp.2752-2760). Колонии ECFC появлялись между 5 и 22 днем культивирования. Количество колоний подсчитывали при визуальной оценке при помощи инвертированного микроскопа (Olympus, Lake Success, NY) при увеличении ×40. Пассажи клеток проводили, как описано ранее (Blood, 1 November 2004, Vol.104, No.9, pp.2752-2760.)
Тест на формирование трубок проводили, как описано ранее (J.Biol. Chem. 274 (1999), pp.35562-35570). Е3330 добавляли к CB-ECFC в различных концентрациях приблизительно на 30 мин при комнатной температуре перед тем, как их посеять на слой матригеля в концентрации приблизительно 1×104 клеток на лунку. Через 8 часов при помощи микроскопа в случайно выбранных полях зрения подсчитывали количество полноценных трубок, образующих замкнутую сеть, и делали снимки. Е3330 и его аналоги ингибируют формирование трубок, что указывает на их антиангиогенный и антипролиферативный эффект (Фиг.8).
Метод предельного разведения. Е3330 ингибирует рост колоний с большим количеством клеток в тесте с предельным разведением, что также указывает на антиангиогенный эффект (Фиг.9). Клетки ECFC культивировали, как описано ранее (Blood, 1 November 2004, Vol.104, No.9, pp.2752-2760). Колонии ECFC появлялись между 5 и 22 днем культивирования. Количество колоний и клеток в колониях подсчитывали при визуальной оценке при помощи инвертированного микроскопа. Е3330 ингибирует рост колоний с большим количеством клеток в тесте с предельным разведением, что также указывает на антиангиогенный эффект. Увеличение количества Е3330 (RN3-3) приводит к уменьшению количества колоний с большим количеством клеток и увеличению количества колоний с малым количеством клеток, что указывает на ингибирование роста клеток (Фиг.9). (На Фиг.9, слева направо, столбики обозначают этанол и концентрации Е330, равные 25 мкмоль, 37,5 мкмоль и 50 мкмоль)
Ингибирование пролиферации эндотелиальных клеток. Е3330 в концентрациях около 10-100 мкмоль подавляет пролиферацию эндотелиальных клеток сетчатки при инкубации в присутствии или в отсутствии основного фактора роста фибробластов (от англ. basic fibroblast growth factor, bFGF). После выделения ткани сетчатки у молодых взрослых мышей проводили их ферментативную обработку. Клетки сажали на 24-луночные плашки и растили до уровня конфлюэнтности, затем для экспериментов пересаживали в 96-луночные плашки. Через три дня после пассажа определяли общее количество клеток при помощи MTS-теста (Promega). Степень пролиферации подсчитывали согласно инструкциям производителя. Пролиферацию эндотелиальных клеток сетчатки (REC) сравнивали в различных группах и определяли статистически достоверные отличия. Е3330 (RN3-3) блокировал пролиферацию REC, что указывало на эффект, препятствующий формированию кровеносных сосудов (Фиг.10).
Е3330 в концентрациях 10-100 мкмоль подавлял пролиферацию эндотелиальных клеток сосудов сетчатки (RVEC) (Фиг.11). В основной среде Е330 ингибировал клеточную пролиферацию RVEC во всех 4 исследованных концентрациях, 10 мкмоль - 57%, 25 мкмоль - 93% (р<0,01). Пролиферация REC значительно повышалась при добавлении в среду bFGF. Схожий ингибиторный эффект также наблюдался в среде, содержащей bFGF, при концентрациях Е3330 10 мкмоль, 25 мкмоль и выше.
Тест на формирование трубок In vitro. Кроме того, было обнаружено, что в тесте на формирование трубок in vitro, Е3330, подобно авастину, предотвращал формирование капилляроподобных трубочек эндотелиальными клетками, эффект был дозозависимым. В этом тесте было также обнаружено, что совместное применение авастина и ЕЗЗЗО характеризовалось синергизмом и было более эффективно, чем их действие при раздельном применении.
Субретинальная неоваскуляризация в тесте у мышей с нокаутом vldlr-/-. Было обнаружено, что при введении в стекловидное тело Е3330 значительно уменьшает количество субретинальных неоваскулярных мембран (СНМ) сетчатки у мышей vldlr-/-. Эксперименты проводили на мышах с нокаутом рецептора к липопротеинам очень низкой плотности (vidr) для определения ингибирующего эффекта Е3330 на развитие СНМ у мутантов vldlr-/-. Каждому животному производили инъекцию в стекловидное тело 1 мкл BSS в качестве плацебо, а в другой глаз вводили 200 мкмоль Е3330 в объеме 1 мкл. Конечная концентрация Е3330 в сетчатке была эквивалентна приблизительно 20 мкмоль. Количественное определение СНМ проводили через неделю после лечения по всему срезу сетчатки при окраске с помощью пектина, конъюгированного с FITC. Результаты показали, что у 17 из 20 особей количество СНМ при введении в глаз Е3330 было сокращено приблизительно на 30%. Напротив, ни применение авастина (антитела к VEGF), ни применение антитела к bFGF не было связано с каким-либо уменьшением количества формирующихся СНМ. Очевидное увеличение количества СНМ после инъекции антител могло быть следствием описанного ранее иммунного ответа на чужеродный белок (Tator et аl., 2008). Е3330 вызывал статистически значимое уменьшение количества СНМ (р<0,01 в парном t-тесте Стьюдента). Эти данные являются очень обнадеживающими, поскольку данная модель ангиоматозной пролиферации сетчатки, имеет сходство с человеческой, сложно поддается лечению и характеризуется плохим ответом на существующие в настоящее время способы лечения, включая антагонисты VEGF и bFGF. Ингибитор Ape1/Ref-1 позволяет разработать новый подход к контролированию ангиогенеза при лечении возрастной макулярной дегенерации.
Данное изобретение также включает применение агентов, ингибирующих окислительно-восстановительную активность Ape1/Ref-1, в качестве противоопухолевых препаратов. К таким видам рака относится рак молочной железы, простаты, поджелудочной железы, толстого кишечника, шейки матки, герминогенные опухоли, глиомы у взрослых и детей, остеосаркомы, рабдомиосаркомы, немелкоклеточный рак легких, лейкозы и множественная миелома. Было показано, что Ape1/Ref-1 стимулирует ДНК-связывающую активность нескольких факторов транскрипции, таких как HIF-1α, NFкβ, АР-1 и р53, играющих роль в выживаемости и прогрессировании опухоли. Селективное ингибирование окислительно-восстановительной функции Ape1/Ref-1 при помощи Е3330 подавляет связывание транскрипционных факторов с ДНК и нарушает способность опухолевых клеток разрастаться. Следующие ниже примеры являются иллюстративными и не ограничивают рамок данного изобретения.
Снижение выживаемости опухолевых клеток. Клетки MCF-7 или OVCAR-3 (около 2-4000) рассаживали по лункам 96-луночной плашки в трипликате и оставляли на ночь для адгезии. В культуральную среду добавляли Е3330 (RN3-3). Спустя приблизительно 24 или 72 ч в каждую лунку вносили около 0,05 мг/мл реагента MTS (3-(4-5-диметилтиазол-2-ил)-5-(3-карбоксиметоксифенил)-2-(4-сульфофенил)-2Н-тетразолиевой соли) и инкубировали при 37°С в течение 4 ч с последующим измерением поглощения при 490 нм. Значения стандартизовали относительно лунок, содержащих только среду. Е3330 самостоятельно вызывал гибель опухолевых клеток MCF-7, полученных из аденокарциномы молочной железы человека (Фиг.12), и опухолевых клеток OVCAR-3, полученных из аденокарциномы яичников человека (Фиг.13), эффект был дозозависимым. Аналогичный эффект может наблюдаться на клетках, полученных при множественной миеломе, карциноме предстательной железы, - немелкоклеточной карциноме легких, толстого кишечника и при глиоме. В отличие от этого, в исследованиях, выполненных авторами изобретения, не наблюдалось существенного подавления роста нормальных клеток, таких как гемопоэтических эмбриональных клеток или CD34+ прогениторных клеток человека. Эти данные являются новыми в том отношении, что они указывают то, что окислительно-восстановительная активность Ape1/REF-1 играет роль для выживаемости раковых клеток, однако не задействована в выживаемости «нормальных» клеток.
Тест миграции клеток глиомы. Была изучена способность Е3330 ингибировать миграционную активность клеток глиомы SF767. С этой целью 1,5×106 клеток SF767 сажали в 60-мм культуралычые чашки и оставляли на ночь для прикрепления и образования конфлюэнтного монослоя. Монослой процарапывали поперек чашки или повреждали при помощи 200-мкл наконечника для пипетки, как описано ранее (Liang 2007). Затем клетки отмывали для удаления плавающих клеток и добавляли среду, содержащую 25, 50, 75 или 100 мкмоль Е3330 или соответствующий контроль в виде носителя, DMSO. Среду, содержащую препарат, удаляли через 24 ч и добавляли свежую среду. Через 0, 24, 36 и 48 ч после добавления препарата делали снимки трех промаркированных участков вдоль царапины. Миграцию оценивали по десяти стандартным полям каждого отснятого изображения с помощью программного обеспечения Spot Software (Diagnostic Instruments, Sterling Heights, MI) для определения расстояния в микронах между передними краями царапины. Каждый массив данных, всего по 30 на каждую точку, нормализовали относительно миграции в контроле (с носителем) через Очи использовали для определения стандартного отклонения. Результаты указывают на то, что Е3330 подавлял способность клеток SF767 к миграции, и через 48 ч снижал миграцию клеток, обработанных 100 мкмоль Е3330, в 4 раза по сравнению с контролем (с носителем).
Результаты, полученные авторами изобретения, свидетельствуют о возможности воздействия на микроокружение или строму. Микроокружение, отличающееся для различных типов раковых клеток само по себе, играет роль в прогрессировании опухоли, в том числе и метастазировании. Оно может ограничивать доступ лекарственных препаратов к опухоли, изменять метаболизм лекарств и вносить вклад в устойчивость к лекарственным препаратам. Очевидно, что способность воздействовать на микроокружение может помочь добиться максимальных результатов противоопухолевой терапии.
В другом воплощении данное изобретение направлено на применение агентов, ингибирующих окислительно-восстановительную активность Ape1/Ref-1 в сочетании с другими препаратами. Такие препараты включают мелфалан, гемцитабин, цисплатин, метоксиамин, талидомид и его производные и ретиноевую кислоту (РК), но не ограничиваются ими. Селективное ингибирование Ape1/Ref-1 может усиливать действие других препаратов, повышая эффективность противоопухолевой терапии. Так, можно вводить более низкие дозы препаратов, которые в более высоких дозировках вызывают слабость и токсичны для нормальных клеток, без снижения их противоопухолевой эффективности. Применение агентов, селективно ингибирующих окислительно-восстановительную активность Ape1/Ref-1, может обеспечить защиту нормальных клеток от воздействия цисплатина и других хемотоксичных соединений. Следующие ниже примеры являются иллюстративными и не ограничивают рамок данного изобретения.
Е3330 в сочетании с химиотерапевтическим препаратом мелфалан. Е3330 в сочетании с химиотерапевтическим препаратом мелфалан обладает синергетическим эффектом, усиливая гибель клеток множественной миеломы (Фиг.14). Графики, демонстрирующие синергетический эффект, построены при помощи программного обеспечения CalcuSyn. Е3330 применяли либо отдельно, либо в сочетании с мелфаланом. В качестве индикатора двунитевых разрывов ДНК определяли фосфорилирование гистона Н2АХ по Ser139 при помощи антитела, специфичного к фосфорилированному Н2АХ, производства Upstate Cell Signaling Solutions (Waltham, MD). Клетки инкубировали отдельно с мелфаланом или с мелфаланом в сочетании с Е3330. После воздействия препарата собирали клетки, находящиеся в экспоненциальной фазе роста, отмывали холодным PBS и лизировали в 100 мкл буфера RIPA, как описано выше. Определяли количество белка и разделяли путем электрофореза в загрузочном буфере в 12% SDS-полиакриламидном геле. Мышиные моноклональные антитела к фосфорилированному гистону Н2АХ (примерно 1:1000) или актину (примерно 1:1000; использовали в качестве контроля количества внесенного образца, LabVision Corp., NeoMarkers, Fremont, CA) использовали для определения количества белка, как описано ранее. Полосы проявляли при помощи хемилюминесцентного набора производства Roche Applied Biosciences (Indianapolis, IN). Полосы визуализировали при помощи Bio-Rad Chemidoc XRS (Hercules, CA) и проводили их количественную оценку при помощи программного обеспечения Chemidoc, Quantity One 4.6.1. Мелфалан в сочетании с ЕЗЗЗО (RN3-3) вызывал увеличение количества двунитевых разрывов ДНК по сравнению с мелфаланом отдельно.
Е3330 (RN3-3) обладал синергетическим эффектом при использовании в сочетании с химиотерапевтическим препаратом мелфалан, усиливая гибель клеток множественной миеломы в MTS-тесте через 72 ч (Фиг.15). Е3330 (RN3-3) использовали либо в отдельности, либо в сочетании с мелфаланом, и на графике, построенном при помощи программного обеспечению CalcuSyn, в основе которого лежит алгоритм Chou-Talalay (Chou-Talalay; Advances in Enzyme Regulation 22, 27-55), откладывали ED50 против контроля в процентах. Сочетание мелфалана с Е3330 (RN3-3) оказалось более эффективным, чем каждый из агентов по-отдельности.
Е3330 в сочетании с химиотерапевтическим препаратом гемцитабин. Е3330 усиливал проапоптотический эффект гемцитабина (около 0,25 мкмоль) на клетки опухоли поджелудочной железы (Фиг.16). Для изучения апоптоза клетки сажали и оставляли на ночь для прикрепления. Клетки обрабатывали либо Е3330 отдельно, либо в сочетании с гемцитабином. Апоптоз оценивали через 24 и 48 ч после обработки. Клетки трипсинизировали, осаждали, отмывали в ледяном PBS и ресуспендировали в 1x связывающем буфере [приблизительно 10 ммоль/л HEPES/NaOH (рН 7,4), 140 ммоль/л NaCl, 2,5 ммоль/л СаСl2]. Апоптоз оценивали при помощи конъюгированного с Alexa Fluor 488 аннексина V из набора Vybrant Apoptosis Assay в сочетании с иодидом пропидия (Molecular Probes, Eugene, OR), как описано ранее (Clinical Cancer Research 13, 260-267, January 1, 2007). Клетки, сильно позитивные по аннексину, считались позитивными в отношении апоптоза. Образцы анализировали при помощи проточной цитометрии в отделе проточной цитометрии онкологического центра университета Индианы.
Е3330 в сочетании с химиотерапевтическим препаратом цисплатин. ЕЗЗЗО в концентрациях до 120 мкмоль не нарушал выживаемости клеток ганглиев дорсальных корешков крысы, культивируемых до 72 ч, согласно результатам MTS-теста на жизнеспособность клеток (Фиг.17). Также не было выявлено эффекта Е3330 (RN3-3) на постмитотические клетки ганглиев дорсальных корешков крысы, что указывало на отсутствие токсического эффекта Е3330 (RN3-3) на неделящиеся клетки.
Культивирование клеток ганглиев дорсальных корешков крысы и их обработку проводили аналогично опубликованным ранее процедурам с применением Е3330 в отдельности (DNA Repair Volume 4, Issue 3, 2 March 2005, pp 367-379). Кроме того, Е3330 обеспечивал защиту от нейротоксических эффектов химиотерапевтического препарата цисплатин при введении в клетки ганглиев дорсальных корешков крысы (Фиг.18). Это показывает, что наряду с усилением эффекта некоторых химиотерапевтических агентов, Е3330 (RN3-3) обладает протективным эффектом в отношении неделящихся постмитотических клеток (например, клеток ганглиев дорсальных корешков крысы) даже в присутствии химиотерапевтического агента.
Е3330 в сочетании с ретиноевой кислотой. Е3330 усиливает эффекты ретиноевой кислоты, способствуя клеточной дифференцировке (Фиг.23). Клетки HL-60 инкубировали отдельно с плацебо (этанол; контроль), Е3330, ретиноевой кислотой (РК) или Е3330 в сочетании с РК в указанных концентрациях, и на шестой день определяли морфологию клеток. Анализ морфологии указывал на усиление дифференцировки клеток HL-60, обработанных Е3330 (RN3-3). Анализ клеток HL-60 на 6 день на апоптоз позволил обнаружить, что сочетание Е3330 и РК вызывает увеличение количества клеток, находящихся в состоянии апоптоза, по сравнению с клетками, обработанными только Е3330, и при концентрации Е3330 25 мкмоль происходит приблизительно 1,5-кратное увеличение доли апоптотических клеток по сравнению только с РК (Фиг.24).
Е3330 усиливал эффект РК в концентрациях в 1000 раз более низких, но вызывал аналогичную степень дифференцировки, как при использовании более высоких концентраций РК. CD11, являющийся маркером дифференцировки HL-60, показал, что добавление Е3330 к РК позволяет использовать приблизительно в 1000 раз меньшее (на 3 порядка) количество РК для обеспечения такой же степени дифференцировки, как и при более высоких концентрациях РК (Фиг.25).
Е3330 не вызывал существенное повышение уровня клеток HL-60 в состоянии апоптоза (тест с аннексином/иодидом пропидия) при более низких концентрациях РК, даже несмотря на значительное, приблизительно в 1000 раз, увеличение степени дифференцировки (Фиг.26).
Данные результаты свидетельствуют о том, что Е3330 в сочетании с РК приводит к дифференцировке клеток, но не усиливает апоптоз в этих клетках и модельных системах при более низких концентрациях РК.
Е3330 в сочетании с метоксиамином - клетки множественной миеломы. Е3330 в сочетании с низкомолекулярным препаратом метоксиамином усиливает гибель клеток множественной миеломы согласно результатам MTS-теста (Фиг.27). Данные были рассчитаны с помощью программного обеспечения CalcuSyn, в основе которого лежит алгоритм Chou-Talalay (Chou-Talalay; Advances in Enzyme Regulation 22, 27-55). Е3330 использовали либо в отдельности, либо в сочетании с метоксиамином.
В качестве индикатора двунитевых разрывов ДНК определяли фосфорилирование гистона Н2АХ по Ser139 при помощи антитела, специфичного к фосфорилированному Н2АХ, производства Upstate Cell Signaling Solutions (Waltham, MD). Клетки инкубировали отдельно с ЕЗЗЗО или с ЕЗЗЗО в сочетании с метоксиамином. После воздействия препарата собирали клетки, находящиеся в экспоненциальной фазе роста, отмывали холодным PBS и лизировали в 100 мкл буфера RIPA, как описано выше. Определяли количество белка и разделяли путем электрофореза в загрузочном буфере в 12% SDS-полиакриламидном геле.
Мышиные моноклональные антитела к фосфорилированному гистону Н2АХ (примерно 1:1000) или актину (примерно 1:1000; использовали в качестве контроля количества внесенного образца, LabVision Corp., NeoMarkers, Fremont, CA) использовали для определения количества белка, как описано ранее. Полосы проявляли при помощи хемилюминесцентного набора производства Roche Applied Biosciences (Indianapolis, IN). Полосы визуализировали при помощи Bio-Rad Chemidoc XRS (Hercules, CA) и проводили их количественную оценку при помощи программного обеспечения Chemidoc, Quantity One 4.6.1.
Е3330 в сочетании с метоксиамином - панкреатические клетки. Е3330 усиливал проапоптотический эффект метоксиамина на клетки опухоли поджелудочной железы. Для изучения клеточного апоптоза клетки сажали и оставляли на ночь для прикрепления. Клетки обрабатывали либо Е3330 отдельно, либо в сочетании с метоксиамином. Апоптоз оценивали через 24 и 96 ч после обработки. Клетки трипсинизировали, осаждали, отмывали в ледяном PBS и ресуспендировали в 1x связывающем буфере [приблизительно 10 ммоль/л HEPES/NaOH (pH 7,4), 140 ммоль/л NaCl, 2,5 ммоль/л СаСl2]. Апоптоз оценивали при помощи конъюгированного с Alexa Fluor 488 аннексина V из набора Vybrant Apoptosis Assay в сочетании с иодидом пропидия (Molecular Probes, Eugene, OR), как описано ранее (Clinical Cancer Research 13, 260-267, January 1, 2007). Клетки, сильно позитивные по аннексину, считались позитивными в отношении апоптоза. Образцы анализировали при помощи проточной цитометрии в отделе проточной цитометрии онкологического центра университета Индианы.
Предварительные эксперименты in-vivo. Для изучения безопасности и определения фармакокинетических свойств Е3330 были проведены предварительные эксперименты in vivo на мышах (Фиг.19-22).
Фиг.19. Вес тела самцов мышей, которым вводили Е3330 (RN3-3) (0-50 мг/кг). При концентрациях Е3330 (RN3-3) ниже 50 мг/кг не наблюдалось токсичности для мышей. Мышам давали RN3-3 (Е3330) и взвешивали либо за два дня до начала лечения, либо после введения вещества в трех дозировках.
Фиг.20. Данные по выживаемости мышей, получавших различное количество RN3-3 (Е3330) на 2, 3, 4 или 5 день от начала лечения. Число выживших мышей из общего числа представлено в виде соотношения: «количество выживших / общее количество».
Фиг.21. Данные по фармакокинетике Е3330 (RN3-3) в ходе 24-часового эксперимента. Мышам давали Е3330 (RN3-3), а затем определяли его концентрацию в крови в отделе клинической фармакологии и аналитики. На графике время изображено против концентрации Е3330 (RN3-3), а в таблице приведена оцениваемая концентрация. Для построения каждой временной точки использовали трех мышей, данные представляют среднее значение со стандартным отклонением (значения не приведены), указанное для каждого времени.
Фиг.22. Данные по фармакокинетике Е3330 (RN3-3). В данной таблице приведены данные, собранные по выживаемости, весу и фармакокинетическим показателям. Время полужизни RN3-3 (Е3330) и концентрации определяли для самцов, самок и объединенной группы животных, вес которых также определяли.

Claims (12)

1. Способ подавления физиологических нарушений, связанных с измененным ангиогенезом, выбранных из ретинопатии, диабетической ретинопатии, макулярной дегенерации, ретролентальной фиброплазии, возрастной макулярной дегенерации, опухоли поджелудочной железы и глиомы взрослых и детей, включающий введение нуждающемуся субъекту эффективного количества агента, выбранного из 3-[(5-(2,3-диметокси-6-метил-1,4-бензохинонил)]-2-нонил-2-пропеновой кислоты и ее фармацевтически приемлемых солей или сольватов.
2. Способ по п.1, где указанное нарушение выбрано из ретинопатии, диабетической ретинопатии, макулярной дегенерации, ретролентальной фиброплазии и возрастной макулярной дегенерации.
3. Способ по п.1, где указанным нарушением является возрастная макулярная дегенерация.
4. Способ по любому из пп.1-3, где указанным агентом является 3-[(5-(2,3-диметокси-6-метил-1,4-бензохинонил)]-2-нонил-2-пропеновая кислота или ее фармацевтически приемлемая соль.
5. Способ по п.4, где указанному субъекту вводится по меньшей мере один дополнительный терапевтический агент.
6. Способ по п.5, где указанным дополнительным терапевтическим агентом является ретиноевая кислота.
7. Способ по п.5, где указанным дополнительным терапевтическим агентом является бевацизумаб.
8. Способ по п.1, где указанное заболевание выбрано из опухоли поджелудочной железы и глиомы взрослых и детей.
9. Способ по п.5, где указанным заболеванием является опухоль поджелудочной железы.
10. Способ по любому из пп.8 и 9, где указанным агентом является 3-[(5-(2,3-диметокси-6-метил-1,4-бензохинонил)]-2-нонил-2-пропеновая кислота или ее фармацевтически приемлемая соль.
11. Способ по п.10, где указанному субъекту вводят по меньшей мере один дополнительный терапевтический агент.
12. Способ по п.11, где указанный дополнительный терапевтический агент выбран из мелфалана, гемцитабина, цисплатина, талидомида и его производных и ретиноевой кислоты.
RU2010113569/15A 2007-09-26 2008-09-22 Производное бензохинона е3330 в комбинации с химиотерапевтическими агентами для лечения рака и ангиогенеза RU2510270C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US97539607P 2007-09-26 2007-09-26
US60/975,396 2007-09-26
US98956607P 2007-11-21 2007-11-21
US60/989,566 2007-11-21
PCT/US2008/077210 WO2009042542A1 (en) 2007-09-26 2008-09-22 Benzoquinone derivative e3330 in combination with chemotherapeutic agents for the treatment of cancer and angiogenesis

Publications (2)

Publication Number Publication Date
RU2010113569A RU2010113569A (ru) 2011-11-10
RU2510270C2 true RU2510270C2 (ru) 2014-03-27

Family

ID=39951652

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010113569/15A RU2510270C2 (ru) 2007-09-26 2008-09-22 Производное бензохинона е3330 в комбинации с химиотерапевтическими агентами для лечения рака и ангиогенеза

Country Status (13)

Country Link
US (6) US9040505B2 (ru)
EP (4) EP2203161B1 (ru)
JP (4) JP5646327B2 (ru)
KR (2) KR101689796B1 (ru)
AU (5) AU2008304619C1 (ru)
BR (1) BRPI0817293A2 (ru)
CA (2) CA2700274C (ru)
ES (2) ES2653855T3 (ru)
IL (1) IL204675A0 (ru)
MX (1) MX2010003315A (ru)
RU (1) RU2510270C2 (ru)
WO (2) WO2009042542A1 (ru)
ZA (1) ZA201002246B (ru)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009042542A1 (en) 2007-09-26 2009-04-02 Indiana University Research And Technology Corporation Benzoquinone derivative e3330 in combination with chemotherapeutic agents for the treatment of cancer and angiogenesis
US11331294B2 (en) 2007-09-26 2022-05-17 Indiana University Research And Technology Corporation Benzoquinone derivative E3330 in combination with chemotherapeutic agents for the treatment of bladder cancer
US9567346B2 (en) * 2010-10-29 2017-02-14 Life Technologies Corporation Biotin derivatives
US9517244B2 (en) 2011-04-22 2016-12-13 University Of Florida Research Foundation, Inc. Therapeutic combinations for use in neoplasia
CN103781753B (zh) * 2011-05-26 2016-08-17 印第安纳大学研究及科技有限公司 用于治疗ape1介导的疾病的醌化合物
US20140128398A1 (en) 2011-06-03 2014-05-08 Indiana University Research And Technology Corporation Compounds, compositions and methods for treating oxidative dna damage disorders
CN103717606A (zh) * 2011-08-05 2014-04-09 帝人株式会社 稠合多环芳香族化合物、芳香族聚合物及芳香族化合物的合成方法
WO2013116228A1 (en) * 2012-01-31 2013-08-08 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Compounds and methods for inhibition of ap endonuclease-1/ redox factor-1 (hape1) activity
EP2825162B1 (en) 2012-03-14 2018-09-12 Indiana University Research and Technology Corporation Compounds and methods for treating leukemia
CN104470957B (zh) 2012-05-30 2016-11-16 日本瑞翁株式会社 聚合性化合物、聚合性组合物、高分子、以及光学各向异性体
CN107253935B (zh) 2012-07-09 2020-10-09 日本瑞翁株式会社 肼化合物、聚合性化合物的制备方法及将肼化合物作为聚合性化合物的制造原料使用的方法
JP6476862B2 (ja) 2012-10-22 2019-03-06 日本ゼオン株式会社 位相差板、円偏光板、及び画像表示装置
US10273322B2 (en) 2013-08-22 2019-04-30 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optical anisotropic body
KR102315630B1 (ko) 2013-10-31 2021-10-20 제온 코포레이션 중합성 화합물, 중합성 조성물, 고분자, 및 광학 이방체
KR101612097B1 (ko) 2015-01-07 2016-04-12 충남대학교산학협력단 아세틸화된 산화환원조절단백-1의 제조방법 및 이를 함유하는 유방암 예방 및 치료용 조성물
JP6669160B2 (ja) 2015-03-19 2020-03-18 日本ゼオン株式会社 液晶性組成物、位相差層の製造方法及び円偏光板
MX2017014750A (es) 2015-05-21 2018-02-09 Univ Indiana Res & Tech Corp Metodos de orientacion a ape1/ref-1 para inhibir genes de señalizacion de hipoxia.
CN107533183B (zh) 2015-05-28 2020-09-25 日本瑞翁株式会社 圆偏振光分离膜及其制造方法
KR20170052345A (ko) * 2015-11-04 2017-05-12 충남대학교산학협력단 환원형 산화환원조절단백-1를 함유하는 염증 예방 및 치료용 약학 조성물
US10647920B2 (en) 2015-12-22 2020-05-12 Zeon Corporation Liquid crystalline composition, liquid crystal cured layer, method for producing same, and optical film
KR20180118133A (ko) 2016-03-08 2018-10-30 니폰 제온 가부시키가이샤 액정성 조성물, 액정 경화층 및 그 액정 경화층의 제조 방법
EP3573606A4 (en) * 2017-01-25 2020-11-25 Indiana University Research and Technology Corporation PROPHYLAXIS AND TREATMENT OF ACUTE MYELOID LEUKEMIA
EP3735968A1 (en) * 2017-03-20 2020-11-11 Indiana University Research & Technology Corporation Use of ape1/ref-1 inhibitors in combination therapies for treatment of cancer
EP3605167A4 (en) 2017-03-24 2020-12-09 Zeon Corporation LIQUID CRYSTAL COMPOSITION, LIQUID CRYSTAL HARDENED FILM AND METHOD FOR MANUFACTURING THEREOF
KR20190128643A (ko) 2017-03-24 2019-11-18 니폰 제온 가부시키가이샤 액정 경화 필름 및 그 제조 방법
EP3440047A4 (en) 2017-04-17 2020-04-01 Indiana University Research & Technology Corporation PREVENTION AND INVERSION OF INFLAMMATION-INDUCED DNA ALTERATION
WO2018232238A1 (en) * 2017-06-16 2018-12-20 Indiana University Research And Technology Corporation Therapeutic agent for tuberous sclerosis complex (tsc)
CA3090766A1 (en) * 2018-02-08 2019-08-15 Indiana University Research And Technology Corporation Targeting ocular diseases with novel ape1/ref-1 inhibitors
CN108440271A (zh) * 2018-04-03 2018-08-24 中山大学 一种6-甲氧基萘嵌苯酮类化合物的制备方法
CA3122284A1 (en) * 2018-12-17 2020-06-25 Indiana University Research And Technology Corporation Treatment of gastrointestinal disorders and symptoms thereof
CN117500492A (zh) * 2021-04-30 2024-02-02 奥库菲尔制药股份有限公司 用于治疗糖尿病视网膜病变和相关病症的方法和组合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07291859A (ja) * 1994-04-28 1995-11-07 Eisai Co Ltd 転写因子活性阻害剤
JP2001510468A (ja) * 1996-12-27 2001-07-31 オクシス アイル オブ マン,リミテッド 環状有機セレン化合物、その製造及びその使用
WO2002085897A1 (en) * 2001-04-05 2002-10-31 Alangudi Sankaranarayanan Heterocyclic compounds for aging-related and diabetic vascular complications
US20030229004A1 (en) * 2002-03-20 2003-12-11 Pangene Corporation Modulation of tumor cells using BER inhibitors in combination with a sensitizing agent and DSBR inhibitors

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3438998A (en) * 1964-10-05 1969-04-15 Research Corp Antibiotic lambertellin and method for production
JPS51128932A (en) * 1975-04-30 1976-11-10 Takeda Chem Ind Ltd Organic compounds
JPS58177934A (ja) * 1982-04-13 1983-10-18 Takeda Chem Ind Ltd ベンゾキノン誘導体
FI102273B1 (fi) 1989-09-11 1998-11-13 Eisai Co Ltd Kinonijohdannaiset, niiden valmistaminen ja niiden farmakologinen käyttö
US6228879B1 (en) * 1997-10-16 2001-05-08 The Children's Medical Center Methods and compositions for inhibition of angiogenesis
US5629327A (en) * 1993-03-01 1997-05-13 Childrens Hospital Medical Center Corp. Methods and compositions for inhibition of angiogenesis
US5919643A (en) 1996-06-11 1999-07-06 Advanced Research & Technology Institute Methods and compositions for the use of apurinic/apyrimidinic endonucleases
US6406917B1 (en) 1996-06-11 2002-06-18 Advanced Research And Technology Institute Methods and compositions for the use of apurinic/apyrimidinic endonucleases
EP0813866A3 (en) * 1996-06-17 1999-01-20 Eisai Co., Ltd. Therapeutic agent for joint diseases
US5849793A (en) * 1997-08-15 1998-12-15 The Picower Institute For Medical Research HIV matrix protein tyrosine position 29 pocket binders
AU5873000A (en) 1999-06-24 2001-01-31 Pharmacia Corporation Combination of tumors necrocis factor (tnf) antagonists and cox-2 inhibitors forthe treatment of inflammation
WO2002076499A2 (en) * 2001-03-23 2002-10-03 Aphton Corporation Combination treatment of pancreatic cancer
WO2003090681A2 (en) * 2002-04-24 2003-11-06 Research Development Foundation SYNERGISTIC EFFECTS OF NUCLEAR TRANSCRIPTION FACTOR NF-κB INHIBITORS AND ANTI-NEOPLASTIC AGENTS
ME00425B (me) * 2003-05-30 2011-10-10 Genentech Inc Liječenje sa anti-vegf antitijelima
US20060024691A1 (en) * 2004-03-25 2006-02-02 Buck Institute For Age Research Novel pathways in the etiology of cancer
WO2009042542A1 (en) * 2007-09-26 2009-04-02 Indiana University Research And Technology Corporation Benzoquinone derivative e3330 in combination with chemotherapeutic agents for the treatment of cancer and angiogenesis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07291859A (ja) * 1994-04-28 1995-11-07 Eisai Co Ltd 転写因子活性阻害剤
JP2001510468A (ja) * 1996-12-27 2001-07-31 オクシス アイル オブ マン,リミテッド 環状有機セレン化合物、その製造及びその使用
WO2002085897A1 (en) * 2001-04-05 2002-10-31 Alangudi Sankaranarayanan Heterocyclic compounds for aging-related and diabetic vascular complications
US20030229004A1 (en) * 2002-03-20 2003-12-11 Pangene Corporation Modulation of tumor cells using BER inhibitors in combination with a sensitizing agent and DSBR inhibitors

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
FISHEL ML. et al. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol. Aspects. Med. 2007 Jun-Aug; 28(3-4): 375-95 [он-лайн] [найдено 2012-07-13] (Найдено из базы данных PubMed PMID:17560642). *
FISHEL ML. et al. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol. Aspects. Med. 2007 Jun-Aug; 28(3-4): 375-95 [он-лайн] [найдено 2012-07-13] (Найдено из базы данных PubMed PMID:17560642). RAFFOUL JJ. et al. Down-regulation of apurinic/apyrimidinic endo-nuclease 1/redox factor-1 expression by soy isoflavones enhances prostate cancer radiotherapy in vitro and in vivo. Cancer Res. 2007 Mar 1; 67(5):2141-9 [он-лайн] [найдено 2012-07-13] (Найдено из базы данных PubMed PMID:17332344) *
RAFFOUL JJ. et al. Down-regulation of apurinic/apyrimidinic endo-nuclease 1/redox factor-1 expression by soy isoflavones enhances prostate cancer radiotherapy in vitro and in vivo. Cancer Res. 2007 Mar 1; 67(5):2141-9 [он-лайн] [найдено 2012-07-13] (Найдено из базы данных PubMed PMID:17332344) *
THATCHER N. The place of targeted therapy in the patient management of non-small cell lung cancer. Lung Cancer 2007 Aug; 57 Suppl.2: S18-23 Реферат [он-лайн] [найдено 2012-08-09] (Найдено из базы данных PubMed PMID:17686441). *
ZOU GM et al. Ape1 regulates hematopoietic differentiation of embryonic stem cells through its redox functional domain. Blood. 2007 Mar 1; 109(5):1917-22 [он-лайн] [найдено 2012-07-19] (Найдено из базы данных PubMed PMID: 17053053) *
БУРМЕСТЕР Г.-Р. и др. Наглядная иммунология. - М.: БИНОМ. Лаборатория знания, 2007, с.83 Б., В. *
реферат [он-лайн] [найдено 2012-07-13] (Найдено из базы данных PAJ). *
реферат [он-лайн] [найдено 2012-07-17] (Найдено из базы данных PatSearch, DWPI). *
реферат [он-лайн] [найдено 2012-07-17] (Найдено из базы данных PatSearch, DWPI). ZOU GM et al. Ape1 regulates hematopoietic differentiation of embryonic stem cells through its redox functional domain. Blood. 2007 Mar 1; 109(5):1917-22 [он-лайн] [найдено 2012-07-19] (Найдено из базы данных PubMed PMID: 17053053) БУРМЕСТЕР Г.-Р. и др. Наглядная иммунология. - М.: БИНОМ. Лаборатория знания, 2007, с.83 Б., В. *

Also Published As

Publication number Publication date
US20150265564A1 (en) 2015-09-24
KR20100084522A (ko) 2010-07-26
AU2015268612A1 (en) 2016-01-07
US20100285008A1 (en) 2010-11-11
JP2010540545A (ja) 2010-12-24
KR20150038712A (ko) 2015-04-08
WO2009042542A1 (en) 2009-04-02
AU2018256605C1 (en) 2020-07-02
AU2017203131B2 (en) 2018-08-02
CA2700274C (en) 2017-08-22
US9040505B2 (en) 2015-05-26
BRPI0817293A2 (pt) 2015-06-16
JP5646327B2 (ja) 2014-12-24
AU2017203131A1 (en) 2017-06-01
KR101572688B1 (ko) 2015-11-27
US20190231728A1 (en) 2019-08-01
EP3725309A1 (en) 2020-10-21
AU2008304619C1 (en) 2020-06-04
CA2700274A1 (en) 2009-04-02
US9089605B2 (en) 2015-07-28
EP2203161B1 (en) 2018-05-09
US20180325853A1 (en) 2018-11-15
WO2009042544A1 (en) 2009-04-02
EP2203162A1 (en) 2010-07-07
CA2700365C (en) 2016-07-05
AU2008304619B2 (en) 2015-09-24
JP5628674B2 (ja) 2014-11-19
AU2020200585A1 (en) 2020-02-13
AU2018256605B2 (en) 2019-10-31
EP3725309B1 (en) 2022-11-23
EP2203162B1 (en) 2017-11-08
AU2008304619A1 (en) 2009-04-02
ES2675951T3 (es) 2018-07-13
KR101689796B1 (ko) 2016-12-27
US10058523B2 (en) 2018-08-28
EP3299015A1 (en) 2018-03-28
US20220184016A1 (en) 2022-06-16
MX2010003315A (es) 2011-03-15
AU2018256605A1 (en) 2018-11-22
CA2700365A1 (en) 2009-04-02
AU2017203131C1 (en) 2020-06-04
RU2010113569A (ru) 2011-11-10
JP2015017091A (ja) 2015-01-29
JP2010540544A (ja) 2010-12-24
JP2015212293A (ja) 2015-11-26
EP2203161A1 (en) 2010-07-07
ZA201002246B (en) 2016-02-24
ES2653855T3 (es) 2018-02-09
IL204675A0 (en) 2010-11-30
AU2015268612B2 (en) 2017-02-23
US20100297113A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
RU2510270C2 (ru) Производное бензохинона е3330 в комбинации с химиотерапевтическими агентами для лечения рака и ангиогенеза
US20220339169A1 (en) Methods of treating or selecting a treatment for a subject resistant to tnf inhibitor using a nlrp3 antagonist
TWI501762B (zh) 阿達帕林治療癌症的新穎用途
US20220249421A1 (en) Benzoquinone derivatives for the treatment of bladder cancer
JP5393691B2 (ja) 急性ヒト骨髄性白血病細胞を死滅させるトロンボポエチン受容体作用薬(TpoRA)
US20230026808A1 (en) Compounds, compositions, and methods for treating ischemia-reperfusion injury and/or lung injury
US11331294B2 (en) Benzoquinone derivative E3330 in combination with chemotherapeutic agents for the treatment of bladder cancer
CN102215833B (zh) 苯醌衍生物e3330联合化疗剂用于治疗癌症和血管生成
TW202337469A (zh) 治療小細胞肺癌之方法
Abed et al. Nanoencapsulation of MDM2 Inhibitor RG7388 and Class-I HDAC Inhibitor Entinostat Enhances their Therapeutic Potential Through Synergistic Antitumor Effects and Reduction of Systemic Toxicity
JP2024511836A (ja) 膵臓癌の治療のためのpi3k-デルタ阻害剤

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190923