RU2506965C2 - Силоизмерительный катетер с присоединенной центральной распоркой - Google Patents

Силоизмерительный катетер с присоединенной центральной распоркой Download PDF

Info

Publication number
RU2506965C2
RU2506965C2 RU2009133735/14A RU2009133735A RU2506965C2 RU 2506965 C2 RU2506965 C2 RU 2506965C2 RU 2009133735/14 A RU2009133735/14 A RU 2009133735/14A RU 2009133735 A RU2009133735 A RU 2009133735A RU 2506965 C2 RU2506965 C2 RU 2506965C2
Authority
RU
Russia
Prior art keywords
strain
catheter
measuring
force
tip
Prior art date
Application number
RU2009133735/14A
Other languages
English (en)
Other versions
RU2009133735A (ru
Inventor
Томас Вайно СЕЛКИ
Original Assignee
Байосенс Уэбстер, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Байосенс Уэбстер, Инк. filed Critical Байосенс Уэбстер, Инк.
Publication of RU2009133735A publication Critical patent/RU2009133735A/ru
Application granted granted Critical
Publication of RU2506965C2 publication Critical patent/RU2506965C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0136Handles therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0144Tip steering devices having flexible regions as a result of inner reinforcement means, e.g. struts or rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0242Operational features adapted to measure environmental factors, e.g. temperature, pollution
    • A61B2560/0247Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value
    • A61B2560/0252Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value using ambient temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires
    • A61M2025/015Details of the distal fixation of the movable mechanical means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0141Tip steering devices having flexible regions as a result of using materials with different mechanical properties

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Otolaryngology (AREA)
  • Mechanical Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Pathology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Surgical Instruments (AREA)

Abstract

Группа изобретений относится к медицине. Силоизмерительный катетер содержит удлиненный трубчатый элемент, имеющий полость, электрод наконечника, размещенный на дистальном конце трубчатого элемента, и центральную распорку, продолжающуюся вблизи от проксимального конца электрода наконечника через способный к изгибу дистальный участок удлиненного трубчатого элемента. Центральная распорка имеет первую продольную кромку и вторую продольную кромку и присоединена к удлиненному трубчатому элементу по всей длине первой продольной кромки и второй продольной кромки для образования неразъемной сборной конструкции из центральной распорки и удлиненного трубчатого элемента. Датчик деформации закреплен на центральной распорке для измерения силы вблизи дистального конца трубчатого элемента. Раскрыт альтернативный вариант выполнения силоизмерительного катетера, отличающийся средствами установки электрода и центральной распорки. Изобретения обеспечивают снижение вероятности перфорации тканей на пути продвижения катетера. 2 н. и 34 з.п.ф-лы, 15 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение касается медицинского устройства для использования в сосудах пациента с целью диагностирования и лечения пациента, например картирования ткани и/или абляции ткани с использованием радиочастот (RF) или других источников энергии. Конкретнее, изобретение касается катетера, имеющего центральную распорку, закрепленную в наконечнике катетера для определения неразъемной составной конструкции наконечника, которая максимально увеличивает открытый внутренний объем наконечника катетера и жесткость на кручение наконечника катетера и при этом минимизирует внешний диаметр наконечника катетера и обеспечивает однородный изгиб наконечника в плоскости. На присоединенной центральной распорке зафиксированы один или более тензометрических датчиков силы для измерения изгиба наконечника катетера, а также аксиальных и боковых сил, действующих на наконечник. Катетер может также включать в себя тяговые нити для изгиба участка наконечника катетера.
УРОВЕНЬ ТЕХНИКИ
Многие патологические состояния человека и других млекопитающих связаны с заболеванием или иным отклонением от норм выстилки или стенок, которые ограничивают различные пространства в организме. Для лечения патологических состояний в пространствах в организме методики применения медицинских устройств выполняются с возможностью проведения различных терапевтических воздействий на пространства в организме наименее инвазивным образом.
Здесь термин «пространство в организме» и в том числе его производные предполагает обозначение любой полости в организме, которая ограничена, по меньшей мере, частично, стенкой из ткани. Например, камеры сердца, матка, участки желудочно-кишечного тракта, а также артериальные и венозные сосуды рассматриваются как наглядные примеры пространств в организме в рамках подразумеваемого значения термина.
Термин «сосуд» и в том числе его производные предполагает обозначение любого пространства в организме, которое ограничено по своей длине стенкой из ткани в форме трубки и которое оканчивается на каждом из двух концов, по меньшей мере, одним отверстием, которое сообщается с внешней средой за пределами этого пространства в организме. Например, большой и малый кишечник, семявыносящий проток, трахея и фаллопиевы трубы представляют собой наглядные примеры сосудов в рамках подразумеваемого значения термина. Кровеносные сосуды здесь также рассматриваются как сосуды, включая участки сосудистой сети между их точками разветвления. Конкретнее, легочные вены являются сосудами в рамках подразумеваемого значения термина, в том числе область легочных вен между разветвленными участками их отверстий вдоль стенки левого желудочка, несмотря на то, что ткань стенок, определяющая отверстия, обычно представляет собой исключительно суживающиеся полостные формы.
Один из способов лечебного воздействия на пространства в организме в минимально инвазивной форме заключается в использовании катетеров для того, чтобы получить доступ к внутренним органам и сосудам в пределах пространства в организме. Электродные или электрофизиологические катетеры (EP) широко используются в медицинской практике на протяжении многих лет. Они применяются для стимуляции и составления карт электрической активности сердца, а также для абляции участков с ненормальной электрической активностью. На практике электродный катетер вводится в основную вену или артерию, например в бедренную артерию, и далее проводится в ту полость сердца, которая является проблемной, для выполнения процедуры абляции.
В патенте США №6,272,672 (Ben-Heim) раскрыто использование одного или нескольких пьезоэлектрических элементов, или датчиков деформации для формирования сигналов, несущих информацию об изгибе относительно осей катетера. В то время как в этом патенте обсуждается использование таких датчиков для измерения и отображения изгиба катетера применительно к пользователю, в нем не обеспечивается средство для точного измерения силы, действующей на наконечник катетера.
В патенте США №6,612,992 (Rambow и др.) раскрыт ультразвуковой катетер, в котором используется множество датчиков деформации, размещенных по периферии катетера, для обеспечения информации, касающейся расположения катетера в сердечно-сосудистой системе, однако отсутствуют указания по поводу измерения силы, действующей на наконечник катетера.
Поскольку EP-катетеры используются в большей части процедур, в которых стоит вопрос о перфорации ткани, было бы желательно иметь электрод наконечника, обеспечивающий дополнительную обратную связь по таким параметрам, как определение силы и контакт с тканью, при сохранении тех же характеристик, которыми обладают существующие электроды наконечников EP-катетеров.
Кроме того, поскольку EP-катетеры используются для абляции динамически подвижной ткани, существует необходимость в катетере, который точно измеряет силу, действующую на наконечник катетера, и при этом обладает желательными характеристиками при изгибе, таком как изгиб в плоскости.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Изобретение направлено на катетер, который имеет встроенные датчики для измерения силы, действующей на наконечник катетера, и при этом обеспечивает информацию в отношении изгиба тела катетера. Катетер по настоящему изобретению можно легко реализовать как двунаправленный управляемый катетер, имеющий превосходные характеристики при изгибе в плоскости. Катетер содержит удлиненное трубчатое тело катетера, имеющее, по меньшей мере, одну полость, продолжающуюся через него, а также способную к изгибу трубчатую секцию наконечника, имеющую центральную распорку и две полуцилиндрические полости, продолжающиеся через нее. Центральная распорка закреплена, предпочтительно термическим способом, на внутренней части трубчатого катетера по существу по всей длине центральной распорки, образуя тем самым неразъемную конструкцию наконечника. Один или более датчиков деформации зафиксированы на центральной распорке, обеспечивая систему информацией о силе, действующей на наконечник, и изгибе тела катетера.
Датчики деформации зафиксированы на присоединенной центральной распорке с определенной пространственной ориентацией. Изгибная деформация детектируется датчиком деформации, зафиксированным параллельно продольной оси распорки. Деформация при кручении детектируется двумя датчиками деформации, ориентированными под углом 90 градусов друг к другу и под углом 45 градусов относительно продольной оси распорки. Поскольку отслеживаются деформации присоединенной центральной распорки как при изгибе, так и при кручении, а распорка присоединена по своей продольной кромке по внутреннему диаметру удлиненного трубчатого элемента, можно определить силы, приложенные к внешнему диаметру наконечника катетера. Для повышения чувствительности в месте расположения датчиков деформации при кручении, на центральной распорке может быть выполнена шейка или сделаны пазы для обеспечения средства усиления измеряемой деформации. Датчик деформации может представлять собой датчик деформации на основе кремния или датчик деформации на основе металлической фольги. Схема для определения деформации на основе сопротивления, измеряемого датчиком сопротивления, находится в рукоятке катетера и/или в системе для навигации или абляции, с которой соединен катетер. Большинство металлических сплавов, используемых в датчиках деформации, проявляют практически линейное изменение калибровочного множителя в широком диапазоне температур, которое составляет менее ±1% в диапазоне температур ±100ºС. При двухпроводной схеме ошибка, привносимая сопротивлением выводного провода, является функцией отношения сопротивлений R1/Rg. Ошибка, обусловленная выводным проводом, обычно несущественна, если сопротивление (R1) выводного провода мало по сравнению с сопротивлением (Rg) датчика, но если сопротивление выводного провода превышает 0,1%, следует обеспечить температурную компенсацию для выводного провода, чтобы повысить точность измерений. Температурная компенсация требуется датчикам деформации на основе кремния. Температурная компенсация может основываться на применении датчиков температуры, используемых в качестве средства управления с обратной связью в катетерах для абляции.
Катетер дополнительно содержит первую и вторую тяговые нити, которые имеют проксимальный и дистальный концы. Каждая тяговая нить продолжается от рукоятки управления на проксимальном конце тела катетера через полость в теле катетера в одну из полостей в секции наконечника. Тяговые нити могут размещаться в пустотелом рукаве, размеры которого подобраны так, чтобы поддерживать тесную взаимосвязь между тяговыми нитями. Дистальные концы тяговых нитей зафиксированы либо на противоположных концах центральной распорки либо на электроде наконечника, либо на трубчатой конструкции дистальной секции наконечника катетера.
Рукоятка управления включает в себя блок управления, в котором имеется рычаг, несущий на себе пару шкивов для подтягивания соответствующих тяговых нитей для того, чтобы изогнуть секцию наконечника катетера. Шкивы установлены с возможностью вращения на противоположных участках рычага так, чтобы один шкив приводился в движение дистально, в то время как другой шкив приводился в движение проксимально при повороте рычага. Поскольку каждая тяговая нить натянута на соответствующий шкив, поворот рычага приводит к тому, что шкив, который приводится в движение проксимально, подтягивает свою тяговую нить для того, чтобы изогнуть секцию наконечника в направлении внеосевой полости, в которой проходит эта тяговая нить.
В частности, настоящее изобретение заключается в составном наконечнике катетера, который содержит экструдированную тонкостенную эластомерную трубку, имеющую армирующую оплетку со спиральной намоткой, причем эластомерная трубка имеет центральную распорку, которая состоит из тонкой удлиненной прямоугольной металлической полоски, причем оба тонких удлиненных края (кромки) упомянутой полоски присоединены, предпочтительно термическим способом, к внутренней стенке эластомерной трубки, образуя тем самым составную конструкцию с неразъемными звеньями. Термин «неразъемные» использован для описания составной конструкции, образованной эластомерной трубкой и металлической полоской, в которой любая попытка разделить металлическую трубку и металлическую полоску приведет к необратимому разрушению составной конструкции.
Данная составная конструкция наконечника обеспечивает наличие двух больших диаметрально противоположных полостей в форме полумесяца, которые продолжаются через наконечник, обеспечивая пространство для размещения проводки, датчиков, трубчатого канала для переноса текучей среды и т.п. Распорка, разделяющая полости в форме полумесяца, может быть выполнена из любого из сверхупругих (металлических) сплавов, таких как нитинол, бета-титановый сплав или пружинная закаленная нержавеющая сталь. Данная конструкция составного наконечника катетера максимально увеличивает площадь поперечного сечения открытых полостей в наконечнике катетера, а также жесткость на кручение наконечника катетера, и при этом минимизирует внешний диаметр наконечника катетера путем обеспечения одинакового момента инерции сечения в каждом сечении наконечника катетера вдоль продольной оси, поскольку присоединенная центральная распорка и эластомерная трубка не могут перемещаться относительно друг друга при изгибе наконечника. Данная составная конструкция обеспечивает однородный изгиб наконечника в плоскости и равномерно распределенные крутящие и изгибающие силы независимо от угла изгиба наконечника, т.к. момент инерции поперечного сечения остается постоянным вдоль всей длины наконечника при изгибе наконечника. Все известные конструкции наконечников предшествующего уровня техники характеризуются переменным моментом инерции поперечного сечения при изгибе наконечника, поскольку внутренняя распорка и наружная эластомерная трубка прикреплены друг к другу только в областях их проксимального и дистального концов, и при изгибе наконечника распорка и наружная трубка перемещаются относительно друг друга. Во всех конструкциях предшествующего уровня техники положение объединенной центральной оси независимо перемещающихся распорки и наружной трубки постоянно изменяется в процессе изгиба наконечника, поскольку абсолютное расстояние между центральной осью единого целого (распорки и наружной трубки) и центральной осью каждой из частей изменяется. Это приводит к появлению неоднородных крутящей и изгибающей сил, которые зависят от степени изгиба наконечника.
Профиль кривой изгиба может быть изменен путем изменения момента инерции сечения для сечения распорки, перпендикулярного продольной оси распорки, используя обработку резанием или калибрование, что приводит либо к удалению материала либо к изменению толщины материала на различных участках сечения центральной распорки. У составного изгибающегося наконечника с присоединенной центральной распоркой отношение ширины к толщине велико, что обеспечивает наличие первой центральной оси, момент инерции сечения вокруг которой велик, а также второго соответствующего малого момента инерции сечения вокруг центральной оси, ортогональной первой центральной оси, обеспечивая тем самым исключительные характеристики при изгибе в плоскости.
Настоящее изобретение обеспечивает единую унифицированную составную конструкцию, обладающую высокими характеристиками, для изгибающегося узла сборки наконечника катетера, способного к изгибу, в которой сочетаются характеристики эластомеров и металлов и исключаются сердцевинные полости, полученные путем экструзии. Две полуцилиндрические полости, образованные присоединенной распоркой, обеспечивают большой объем для размещения проводки, датчиков для измерения сил, действующих на наконечник, и локационных датчиков, а также полостей наконечника, предназначенных для ирригации. По альтернативному варианту может быть обеспечен промежуточный участок между секцией наконечника, способной к изгибу, и электродом наконечника, на котором центральная распорка отсутствует, и где обеспечивается еще больше места для датчиков температуры и локационных датчиков. Диаметры наконечника катетера могут быть уменьшены, поскольку рабочий объем полости наконечника при такой конструкции максимально увеличен.
В предпочтительном варианте осуществления катетера удлиненный трубчатый элемент, имеющий проксимальный конец и дистальный конец, а также имеющий полость, термическим способом присоединен к продольным кромкам центральной распорки, которая проходит по способному к изгибу участку катетера. Данное соединение образует неразъемную сборную конструкцию, состоящую из удлиненного трубчатого элемента и центральной распорки.
Электрод наконечника размещен на дистальном конце трубчатого элемента. Отформованное соединительное звено имеет дистальный участок, выполненный с возможностью приема участка проксимального конца электрода наконечника, а также проксимальный участок, имеющий, по меньшей мере, один паз, выполненный с возможностью приема, по меньшей мере, одной из первой или второй продольных кромок центральной распорки.
Дистальный конец центральной распорки содержит, по меньшей мере, одну выемку, способную к зацеплению с защелкиванием, а отформованное соединительное звено дополнительно содержит, по меньшей мере, один клин, способный к зацеплению с защелкиванием, выполненный с возможностью приема выемки, способной к зацеплению с защелкиванием. Такая конструкция позволяет произвести быструю сборку электрода наконечника, сборного трубчатого элемента и центральной распорки.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На Фиг.1А-1С показаны виды в плоскости способного к изгибу EP-катетера с рукояткой управления изгибом кулисного типа по настоящему изобретению.
На Фиг.1D показан вид в плоскости ручки регулирования трения, расположенной на рукоятке управления изгибом кулисного типа.
На Фиг.2 показан вид в продольном сечении способной к изгибу дистальной секции наконечника, а также участка проксимальной секции катетера, представленного на Фиг.1, включая в себя тензометрические датчики силы на присоединенной центральной распорке.
На Фиг.3 показан вид в сечении трубчатой секции EP-катетера, представленной на Фиг.2, в секущей плоскости А-А.
На Фиг.4 показан покомпонентный вид в перспективе дистального наконечника варианта осуществления способного к изгибу катетера по настоящему изобретению.
На Фиг.5 показан вид в перспективе электрода наконечника способной к изгибу секции наконечника катетера по настоящему изобретению.
На Фиг.6 показан вид в сечении в перспективе отформованного соединительного звена способной к изгибу секции наконечника катетера по настоящему изобретению.
На Фиг.7а показан вид в плоскости тяговой нити для использования в способной к изгибу секции наконечника катетера по настоящему изобретению.
На Фиг.7b показан вид в перспективе дистальной секции способного к изгибу катетера по настоящему изобретению.
На Фиг.8 показан вид сбоку центральной распорки по дополнительному варианту осуществления способной к изгибу секции наконечника катетера по настоящему изобретению.
На Фиг.9 показан вид в перспективе устройства для изготовления способной к изгибу секции наконечника катетера по настоящему изобретению.
На Фиг.10 показан вид в перспективе дистального наконечника способного к изгибу катетера по настоящему изобретению.
На Фиг.11 показан вид в перспективе дистального наконечника способного к изгибу катетера по настоящему изобретению.
На Фиг.12 показан вид в плоскости участка присоединенной центральной распорки, имеющей тензометрические датчики силы, которые на ней установлены.
На Фиг.13 показан вид в плоскости тензометрического датчика силы для использования в катетере настоящего изобретения.
На Фиг.14 изображена схема для измерения силы для использования в способном к изгибу катетере, имеющем тензометрический датчик, выполненный по технологии микроэлектромеханических систем на кремниевой подложке по настоящему изобретению.
На Фиг.15 изображена схема для измерения силы для использования в способном к изгибу катетере, имеющем тензометрический датчик на основе металлической фольги по настоящему изобретению.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
На Фиг.1А-1С изображен вид в плоскости варианта осуществления способного к изгибу катетера по настоящему изобретению. Как показано на Фиг.1В, предпочтительный катетер 100 содержит удлиненное трубчатое тело катетера, имеющее проксимальную секцию 32, дистальную секцию 34 наконечника, а также рукоятку 36 управления на проксимальном конце проксимальной секции 32. Электрод 38 наконечника и возможный кольцевой электрод 40 располагаются в способной к изгибу дистальной секции 34 наконечника или близко к ней так, чтобы обеспечить источник энергии для проведения абляции, если требуемое устройство представляет собой катетер для радиочастотной абляции, или для приема электрических сигналов, если катетер представляет собой диагностический катетер для электрофизиологического картирования. Рукоятка 36 управления может иметь различную конструкцию, допускающую приложение усилия по натяжению к тяговым нитям, используемым для изгиба способной к изгибу секции 34 наконечника. Предпочтительно рукоятка 36 управления представляет собой рукоятку, используемую в группе продуктов двустороннего действия Biosense EZ-Steer, рукоятка управления которой изображена на Фиг.1А-С. Рычаг 37 «кулисного» типа подтягивает одну из двух тяговых нитей для изгиба наконечника катетера в одном направлении (Фиг.1А), а затем, наоборот, может сделать выбор в пользу второй (противоположной) тяговой нити для изгиба наконечника катетера в другом направлении (Фиг.1С). Рукоятка 36 управления имеет также подвижный ролик 37а для регулирования трения, показанный на Фиг.1D, который позволяет оперирующему хирургу использовать кулисный рычаг 37 в свободном состоянии или отрегулировать натяжение, чтобы зафиксировать кулисный рычаг 37 и изогнутый наконечник в определенном положении. Величина трения при перемещении кулисного рычага 37 возрастает с поворотом ролика 37а регулировки трения по часовой стрелке до достижения положения его полной фиксации.
На Фиг.2 изображен вид в сечении перехода от проксимальной секции 32 к способной к изгибу секции 34 катетера 100 перпендикулярно центральной распорке 80, образующей участок катетера, а на Фиг.3 изображено сечение катетера, представленного на Фиг.2, в плоскости по линии А-А. Катетер 100 содержит удлиненную трубчатую конструкцию, имеющую центральную полость 58, проходящую через дистальный участок 32, и две полуцилиндрические полости 58а и 58b на способном к изгибу участке 34 наконечника. Проксимальная секция 32 обладает гибкостью, но по существу не поддается сжатию по своей длине. Проксимальная секция 32 может иметь любую пригодную конструкцию и может быть выполнена из любого пригодного материала. Предпочтительная конструкция содержит наружную стенку 30, выполненную из термопластического эластомера Pellethane или PEBAX, и возможную внутреннюю стенку 18. Наружная стенка 30 может также содержать уложенную сеточную обмотку из нержавеющей стали или схожего материала для увеличения жесткости при кручении так, чтобы при повороте рукоятки 36 управления дистальный конец проксимальной секции 32 так же как и дистальная секция 34 поворачивались соответствующим образом.
Полная длина катетера варьируется в зависимости от сферы его применения, однако предпочтительная длина находится в пределах примерно от 90 до 120 см, более предпочтительно - в пределах примерно от 100 до 110 см. Наружный диаметр проксимальной секции 32 также является расчетной характеристикой, которая изменяется в зависимости от области применения катетера, но предпочтительно составляет менее примерно восьми French (Fr). Возможная внутренняя стенка 18 содержит полимерную трубку, которая может быть разделена на слои по спирали и размер которой подобран так, чтобы наружный диаметр был примерно того же размера, или незначительно менее, чем внутренний диаметр наружной стенки 30, что обеспечивает дополнительную жесткость, регулируемую углом наклона при разделении на слои по спирали.
В представленном варианте осуществления дистальная секция 34 и проксимальная секция 32 являются отдельными конструкциями, которые скреплены между собой. Проксимальная секция 32 и дистальная секция 34 могут крепиться с использованием полиуретанового клея на соединении 35 между двумя секциями. Другие способы крепления включают в себя соединение проксимальной и дистальной секций с использованием нагрева для сплавления секций между собой.
В EP-катетере настоящего изобретения электрод 38 наконечника и возможные кольцевые электроды 40, показанные на Фиг.1А-1С, каждый электрически соединен со жгутом выводных проводов 70. Каждый провод в жгуте выводных проводов 70 продолжается от рукоятки 36 управления через полость 58 в проксимальной секции 32 и через одну из полостей 58а или 58b в дистальной секции 34 к электроду 38 наконечника и возможному кольцевому электроду (или электродам) 40. Проксимальный конец каждого выводного провода 70 соединен с соответствующим соединительным звеном (не показано) в рукоятке 36 управления, которая может быть соединена с соответствующим источником радиочастотной энергии или с системой электрофизиологического картирования, или иной диагностической или терапевтической системой.
Полость 90 для ирригации обеспечивает канал для переноса жидкости от проксимально конца катетера к дистальному участку 34 наконечника. Полость 90 для ирригации находится в жидкостной связи с одним или более жидкостным портом в электроде 38 наконечника. На Фиг.4 и 5 представлена возможная схема расположения жидкостных портов 439 для ирригации в электроде наконечника. Полость 90 для ирригации используется для переноса ирригационной жидкости через катетер и через жидкостные порты в наконечнике для того, чтобы снизить коагуляцию жидкостей организма, таких как кровь, на электроде наконечника или вблизи него.
В двунаправленном катетере пара тяговых нитей 44а и 44b продолжается через полость 58 в проксимальной секции 32 и каждая из них проходит через одну из полостей 58а и 58b в дистальной секции 34. Тяговые нити выполнены из любого пригодного материала, такого как нержавеющая сталь или проволока из нитинола или неметаллические волокна, например материал Вектран. Предпочтительно каждая тяговая нить имеет смазывающее покрытие, такое как политетрафторэтилен или подобный материал. Каждая тяговая нить 44 проходит от рукоятки 36 управления практически до конца дистальной секции 34.
Рукав или рукава (не показаны) могут использоваться для размещения тяговых нитей проксимально до мягкого наконечника катетера. Рукав используется для удерживания каждой тяговой нити на соответствующей стороне центральной распорки. При двунаправленном изгибе противодействующие тяговые нити всегда размещаются в отдельных полостях. При такой конструкции размещение нескольких тяговых нитей в одной полости может использоваться для получения различных кривых изгиба в одном направлении изгиба. Такой рукав может быть выполнен из любого пригодного материала, например полиамида или полиуретана.
Примеры других пригодных рукояток 36 управления, которые могут использоваться по настоящему изобретению, описаны в патентах США №6,123,699, 6,171,277, 6,183,463 и 6,198,974, раскрытие которых включено в настоящее описание путем ссылки. В таких рукоятках управления проксимальное перемещение блока управления большим пальцем руки относительно корпуса рукоятки приводит к проксимальному перемещению первого штока и первой тяговой нити относительно корпуса рукоятки и тела катетера, что приводит к изгибу секции наконечника в направлении полости, в которой проходит первая тяговая нить. Дистальное перемещение блока управления большим пальцем руки относительно корпуса рукоятки приводит к дистальному перемещению первого штока, что вызывает проксимальное перемещение второго штока и тяговой нити относительно корпуса рукоятки и тела катетера, что приводит к изгибу секции наконечника в направлении полости, в которой проходит вторая тяговая нить. Могут использоваться дополнительные схемы компоновки тяговых нитей 44 и зубчатой передачи в рукоятке управления, на подобии раскрытых в патенте США №7,077,823, который также включен в настоящее описание путем ссылки.
В состав дистальной секции 34 входят внутренний слой 62, слой 64 оплетки и наружный слой 66 дистальной секции наконечника. Внутренний слой 62 дистальной секции 34 катетера представляет собой тонкий слой из термопластического эластомерного материала, толщина которого предпочтительно составляет 0,0025-0,0035 дюйма. Внутренний слой 62 является слоем 64 оплетки из синтетических волокон, диаметр которого составляет приблизительно 0,002-0,003 дюйма. В предпочтительном варианте осуществления синтетическое волокно представляет собой моноволокно, изготовленное на основе полиэтиленнафталата (Pen) по технологии Biogeneral Advanced Fiber Technology. Наружный слой 66 представляет собой эластомерный материал, нанесенный путем экструдирования на внутренний слой с оплеткой. Внутренний слой 62 и наружный слой 66 могут изготавливаться из эластомеров, обладающих одинаковой твердостью по Шору, или из материалов с различной твердостью по Шору. Предпочтительно эластомер представляет собой PEBAX или Pellethane в силу их технологичности и высокой теплостойкости при изгибе.
Кроме того, может быть использована страховочная нить 95 для крепления электрода наконечника к стержню катетера в целях предотвращения отсоединения электрода наконечника. Страховочная нить предпочтительно представляет собой 0,0065 дюймовую монель, которая проходит через полость 58 на проксимальном участке 32 катетера, а также через одну из двух полостей 58а и 58b на дистальном участке 34 наконечника. Дистальный конец страховочной нити прикреплен к электроду 38 наконечника, в то время как проксимальный участок прикреплен к точке крепления внутри рукоятки 36 управления.
На Фиг.4 изображен покомпонентный вид дистального наконечника способного к изгибу катетера по настоящему изобретению. На Фиг.5 показан вид в перспективе электрода 438 наконечника. Электрод 438, изображенный на Фиг.4 и 5, представляет собой механически обработанный металлический электрод, состоящий из металла, проявляющего инертность в среде жидкости организма, например золота, платины, палладия или сплава этих металлов. Электрод 438 может быть также выполнен из основного металла, такого как медь, серебро, золото, алюминий, бериллий, бронза, палладий или сплавов этих металлов, на который затем наносится электролитическое покрытие, внутреннее и/или внешнее, из инертных металлов, таких как золото, платина, палладий или сплав этих металлов. Электрод 438 может включать в себя множество портов 439 для ирригации, соединенных с центральной полостью 440 для ирригации, однако такие порты и полости не являются обязательными. Проксимальный конец электрода 438 наконечника содержит основание 437, имеющее меньший диаметр, чем остальная часть электрода наконечника, и выполненное с возможностью сопряжения с соединительным звеном 442. Основание 437 может включать в себя множество зубцов 437а, которые способствуют закреплению электрода 438 наконечника в соединительном звене 442. Основание 437 электрода 438 наконечника крепится к соединительному звену 442 путем термоскрепления или ультразвуковой сварки. Купол 438а наконечника может быть механически обработан для обеспечения закругленного атравматического дистального наконечника с целью снижения повреждаемости ткани при размещении или использовании катетера. Полость 495 обеспечивает проход для страховочной нити 95, а полость 470 обеспечивает проход для выводного провода 70, который обеспечивает энергией электрод 438 наконечника. Выводной провод 70 присоединен к электроду 438 наконечника с использованием проводящего припоя или проводящей эпоксидной смолы.
Соединительное звено 442, полученное литьем под давлением и изображенное на Фиг.4 и 6, имеет дистальную секцию 443, внутренний диаметр которой на ее дистальном конце выполнен с возможностью приема основания 437 электрода 438 наконечника, а также имеет проксимальную секцию 441 с пазом 441а, выполненную с возможностью приема дистального конца 480 центральной распорки 80. Соединительное звено 442 изготовлено литьем под давлением из полимера медицинского назначения, такого как полиэфирэфиркетон (PEEK), сополимер акрилонитрила, бутадиена и стирола (ABS), поликарбонат, или другого подходящего материала, известного специалисту в данной области техники. Дистальный конец 480 центральной распорки 80 также включает в себя выемку 481, способную к зацеплению с защелкиванием, выполненную с возможностью фиксации на клине 441b, способном к зацеплению с защелкиванием, в соединительном звене 442, обеспечивая тем самым механизм для быстрой сборки дистальной секции способного к изгибу катетера, сам же способ его работы подробнее описан ниже. Отверстия 444а и 444b крепления тяговой нити представляют собой полости, выполненные с возможностью приема тяговых нитей 44а и 44b. Тяговые нити, приспособленные для такого использования, показаны на Фиг.7А. Тяговые нити 44а и 44b для использования в данном варианте осуществления предпочтительно выполнены из нити Вектран, на которой имеется шарик из эпоксидной смолы 444с, прикрепленный к ее дистальному концу. Нить Вектран должна пройти очистку с помощью спирта и/или ультразвуковой ванны перед прикладыванием шарика из эпоксидной смолы, который затем проходит обработку ультрафиолетом. Важно, чтобы эпоксидная смола была надежно зафиксирована на дистальном конце тяговых нитей 44а и 44b. По альтернативному варианту тяговая нить может быть выполнена из высокопрочной нержавеющей стали (304V), на одном конце которой образуют шарик с использованием технологии высокоскоростной лазерной плавки.
Вблизи дистального конца 480 центральной распорки 80 установлены один или несколько датчиков 490а-с деформации. Датчики деформации зафиксированы на присоединенной центральной распорке с определенной пространственной ориентацией. Изгибная деформация детектируется датчиком 490с деформации, зафиксированным в положении, параллельном продольной оси распорки. Деформация кручения детектируется двумя датчиками 490а и 490b деформации, расположенными под углом 90 градусов друг к другу и под углом сорок пять градусов относительно продольной оси распорки. Поскольку отслеживаются деформации присоединенной центральной распорки как при изгибе, так и при кручении, а распорка присоединена по своей продольной кромке по внутреннему диаметру удлиненного трубчатого элемента, можно определить силы, приложенные по внешнему диаметру наконечника катетера. Для повышения чувствительности, в месте расположения датчиков 490а и 490b деформации при кручении, на центральной распорке может быть выполнена шейка путем удаления участков 492 кромки центральной распорки 80, как изображено на Фиг.12. Таким же образом чувствительность при измерении изгибной деформации может быть увеличена путем прорезания одного или нескольких пазов 494 в центральной распорке 80. По альтернативному варианту можно использовать набор из двух датчиков деформации, размещенных на противоположных сторонах центральной распорки, причем один работает на сжатие, а другой - на растяжение. При таком расположении выход мостовой схемы для того же уровня деформации может быть эффективно удвоен. В схеме монтажа, при которой все плечи измерительного моста соединены с датчиками деформации, температурная компенсация осуществляется автоматически, поскольку изменения сопротивления, связанные с изменением температуры, будут одинаковыми для всех плеч моста.
На Фиг.13 изображен обычный датчик деформации для использования в настоящем изобретении. Предпочтительный датчик 490 деформации представляет собой прямоугольный монокристаллический или поликристаллический кремниевый элемент, установленный в направлении измеряемой деформации. Конструкция площадок 496 крепления выводного провода по обе стороны чувствительного элемента 498 имеет симметричную слабонапряженную геометрию для минимизации влияния остаточных напряжений на кремниевый брусок. Они могут представлять собой как традиционную контактную площадку для нанесения припоя, так и площадку для проводного соединения. Для проводного соединения обычно используется алюминиевая поверхность, а для пайки - золоченая никелевая поверхность. Будучи самыми крупными деталями устройства датчика деформации, эти площадки определяют размер устройства, и все устройство может быть сведено по размеру до долей квадратного миллиметра. Слабонапряженная полиамидная подложка повышенной надежности, схожая с каптоновой лентой, служит опорой всей конструкции, полная толщина которой обычно менее чем 1 миллиметр. Поскольку базовый элемент и конструкция площадки имеют толщину фольги, радиус изгиба всего датчика деформации составляет менее 0,06 дюйма.
Выводные провода предпочтительно содержат малогабаритный экранированный кабель, образованный тремя внутренними витыми парами токопроводящих жил с полинейлоновым покрытием двойной изоляции, соответствующих калибру №38-48 (медь) по системе AWG, которые закрыты экраном и, кроме того, имеют защитное покрытие из тефлона (FEP). Поскольку имеется минимум три датчика деформации, каждый из которых требует минимум два провода (три провода - для температурной компенсации фольгового датчика деформации), в данном варианте осуществления понадобится в общей сложности шесть проводов. Если применяется температурная компенсация в месторасположении датчика деформации, понадобится, по меньшей мере, еще два провода для обеспечения чувствительности к темпертуре с использованием термопары или термистора.
Центральная распорка 80 содержит прямоугольную секцию балки, таким образом, изгиб простой балки вдоль ее продольной оси определить нетрудно, но с добавлением изгиба при кручении центральной распорки образуется сложное напряженно-деформированное состояние, что является следствием наложения напряжений от различных силовых факторов, и изменения векторов сил, действующих на наконечник, делают эту задачу сложной. Деформация определяется как величина деформирования, отнесенная к единице длины объекта, при приложении нагрузки. Изгибная деформация (моментная деформация) рассчитывается путем определения соотношения между кривой изгиба наконечника и величиной изгиба, которая из этого следует. Деформация кручения измеряется тогда, когда скручивание наконечника катетера при боковом изгибе приводит к появлению компоненты деформации кручения. Деформация кручения рассчитывается путем деления напряжения при кручении на модуль упругости.
Тремя основными факторами, влияющими на выбор тензодатчика, являются рабочая температура, деформированное состояние (градиент, амплитуда и зависимость от времени), а также требуемая устойчивость системы. В идеале у тензодатчика изменяется сопротивление лишь благодаря деформированию звена центральной распорки, однако на измеряемое сопротивление оказывают влияние температура, свойства материала, клей, используемый для присоединения датчика к поверхности центральной распорки, и устойчивость звена распорки. Для восприятия изгибных характеристик центральной распорки могут использоваться два вида датчиков деформации (полупроводниковые и фольговые на основе металла), но полупроводниковые датчики предпочтительны. Полупроводниковые датчики обладают большей упругостью, чем датчики на основе металлической фольги, а потому имеют высокую предрасположенность возвращаться к форме своего недеформированного состояния. Калибровочный множитель полупроводниковых датчиков в пятьдесят раз, а чувствительность более чем в сто раз (30-120) превосходят соответствующие показатели датчиков на основе металлической фольги, у которых калибровочные множители и чувствительность существенно ниже. Полупроводниковые датчики поступают в упаковке значительно меньших размеров и по значительно меньшей цене, чем датчики на основе металлической фольги. Для полупроводниковых датчиков отношение сопротивления к деформации выражается нелинейной зависимостью, которая отклоняется от уравнения прямой на 10-20%, но этот факт известен заранее и поправка может вводиться математически. Выводные провода для датчиков деформации на основе полупроводников весьма малы и соединяются с датчиком с помощью проводящей эпоксидной смолы, проводного соединения, лазерной пайки/сварки или посредством ультразвука.
Поскольку звено центральной распорки присоединено по своей продольной кромке к наконечнику катетера в оплетке, калибровка датчика должна выполняться на каждом полуобработанном или обработанном катетере при рабочей температуре катетера (т.е. температуре тела). Переменные факторы производственного процесса, такие как изменения характеристик материала стержня катетера (модуля упругости и модуля упругости при кручении), изменение шага оплетки, диаметр оплетки и допуск на размер для материала наконечника, обусловливают эти требования. Данные по калибровке тензодатчиков для каждого катетера могут храниться в электрически стираемом перепрограммируемом ПЗУ (EEPROM) или ином накопителе в рукоятке катетера, так чтобы обеспечить легкий доступ к необходимой оперативной информации. Требуется в динамике осуществлять контроль и запись выходных сигналов тензодатчиков, силы растяжения тяговой нити катетера и местоположения наконечника при изгибе наконечника катетера на различные углы в процессе воздействия силовых векторов нагрузки на наконечник. Использование гибких материалов для наконечника катетера, таких как PEBAX или Arnitel (термопластический эластомер на основе сополиэфира), имеющих стабильный модуль постоянной величины при рабочих температурах катетера, повысит точность измерения контактной силы.
Единая тяговая нить 44, выполненная из неметаллических волокон такого материала как Вектран, может закрепляться на дистальном конце катетера путем продевания тяговой нити через одно или несколько крепежных отверстий 82а-е в центральной распорке 80, так чтобы противолежащие концы тяговой нити, 44а и 44b, располагались на противоположных сторонах центральной распорки, как изображено на Фиг.8. Такие крепежные отверстия 82а-е в центральной распорке 80 предпочтительно имеют диаметр 0,015 дюйма и разнесены на расстояние примерно 0,078 дюйма. Подобные крепежные отверстия можно расположить в центральной распорке 80 путем лазерной резки, пробивки или высверливания. В зависимости от числа отверстий на распорке, а также расположения тяговых нитей в одном или нескольких крепежных отверстиях 82а-е форма кривой будет изменяться, при этом предусматривается как симметричное, так и асимметричное конструктивное оформление кривой. Для образования симметричной кривой противолежащие концы тяговых нитей должны выходить из одного крепежного отверстия в направлении противоположных сторон распорки. Способ изменения формы кривой может осуществляться под контролем расстояния между крепежными отверстиями, используемыми для противолежащих концов тяговой нити. Когда концы каждой из тяговых нитей 44а и 44b закреплены с противоположных сторон центральной распорки 80, натягивание тяговой нити 44а или 44b в проксимальном направлении приведет к тому, что дистальный конец катетера 100 изогнется в плоскости в направлении той внеосевой полости, в которой проходит соответствующая тяговая нить.
В альтернативном варианте осуществления (не показан) используются две тяговые нити с металлическими обжимными кольцами или пластиковыми втулками для удерживания тяговых нитей в соответствующем им крепежном отверстии, расположенном на центральной распорке. Нить проходит через центральную распорку с одной стороны с использованием обжимного кольца как ограничителя, не позволяющего ее полностью вытянуть через крепежное отверстие. Дополнительный способ крепления тяговых нитей заключается в использовании пайки, сварки или клеящего вещества для их закрепления на центральной распорке.
По альтернативному варианту тяговые нити могут не крепиться к центральной распорке. Тяговая нить или тяговые нити могут крепиться к куполу наконечника или дистальному концу мягкой секции способного к изгибу наконечника катетера. На Фиг.9-11 показан ряд конструкций электродов 38 наконечника, выполненных с возможностью приема единой тяговой нити 44. Единая тяговая нить 44, соединенная с электродом 38 наконечника, обеспечивает управление в двух направлениях. Для достижения этого единая тяговая нить проведена через электрод купола, при этом противолежащие стороны тяговой нити располагаются на противоположных сторонах центральной распорки. Направление изгиба будет соответствовать пути наименьшего сопротивления. Кроме того, манипулирование каждой тяговой нитью по отдельности приведет к изгибу в плоскости в направлении той внеосевой полости, в которой проходит соответствующая тяговая нить. При таком варианте осуществления в явном виде оказывается поддержка конструктивным решениям с симметричной кривой.
На Фиг.10 и 11 изображены полые электроды 38 наконечника, выполненные с возможностью приема вставной втулки 45, которая садится с натягом в полый купол. Тяговая нить 44 проведена через вставную втулку. По такой схеме может крепиться одна или несколько тяговых нитей. Тяговая нить будет удерживаться на месте, как только вставную втулку должным образом поместят в электрод наконечника.
На Фиг.7B изображен другой вариант осуществления дистальной секции наконечника катетера 100, в котором тяговые нити крепятся к боковой стенке дистальной секции 34 наконечника катетера 100. Через внутренний слой 62, слой 64 оплетки и наружный слой 66 дистальной секции наконечника просверливают небольшое отверстие 71. После того как отверстие 71 просверлено, используют шлифовальный инструмент, чтобы слегка сгладить внешний контур вокруг отверстия, удалив материал примерно на длину 0,04,, и на глубину 0,013,,. К дистальному концу тяговой нити 44 прикрепляют брусок 72 тяговой нити, выполненный из нержавеющей стали, путем обжатия для создания обжимного кольца или путем использования иного средства соединения. При проведении тяговой нити 44 сквозь крепежное окно брусок будет располагаться на внешнем контуре термопластической мягкой секции способного к изгибу наконечника. Далее используют полиуретан для заливки бруска 72 тяговой нити, восстанавливая тем самым изначальный профиль дистальной секции 34 наконечника. Таким же образом каждая тяговая нить может быть закреплена на внешней периферии катетера 100 в произвольном месте вдоль продольной оси дистальной секции 34 наконечника. Таким же образом можно крепить несколько тяговых нитей, каждую на противоположной стороне центральной распорки. Изменение местоположения крепежных точек приводит к изменению контура изгиба катетера.
Проксимальный конец центральной распорки 80 продолжается с выходом из проксимального конца мягкого участка способного к изгибу наконечника. Проксимальный конец центральной распорки может быть выполнен на конус, так чтобы его можно было легко поместить в проксимальную секцию 32 катетера, что послужит дополнительной опорой области перехода. Рукав, предпочтительно выполненный из политетрафторэтилена (PTFE), может располагаться поверх конусного участка центральной распорки, удерживая тяговые нити и предотвращая тем самым их пересечение. Рукав выполнен в виде облегающего рукава, так что он плотно охватывает центральную распорку и нити, но не настолько плотно, чтобы помешать тяговым нитям свободно перемещаться в продольном направлении.
На Фиг.14 изображена схема измерительного контура 500 для использования с силоизмерительным катетером, имеющим датчики деформации на основе кремния. В измерительном контуре 500 используется сигма-дельта аналого-цифровой преобразователь (ADC) 502 с высокой разрешающей способностью, который включает в себя дифференциальные входы, встроенные программируемые усилители, автоматическую калибровку нуля, высокую степень подавления синфазного сигнала, а также цифровую фильтрацию шума, чтобы способствовать интеграции датчика деформации для точного измерения выходного напряжения мостовой схемы. Кремниевые датчики 490 деформации имеют высокий температурный коэффициент сопротивления (TCR)(чувствительность к температуре) по сравнению с константановой фольгой и фольгой из других металлов, а потому требуются схема компенсации температуры и алгоритмы программного обеспечения (таблицы температурных коэффициентов), как рассматривается ниже:
V OUT =V B ×(S×S 0 ×(1+S 1 ×(T-T r ))+U 0 +U 1 ×(T-T r )) (1)
Уравнение (1) представляет формулу для вычисления детектируемой деформации, где VOUT - выходное напряжение моста, VB - напряжение возбуждения моста, S - приложенная деформация датчика, Tr - справочная температура, измеренная вблизи кремниевого тензодатчика, S0 - чувствительность датчика деформации при справочной температуре Tr, S1 - коэффициент температурной чувствительности (TCS), U0 - смещение нуля или небаланс моста при температуре Tr при отсутствии приложенной деформации, а U1 - температурный коэффициент смещения (OTC). Температурный коэффициент смещения представляет собой интервал ошибок, определяемый максимальным отклонением напряжения смещения при изменении температуры от 25ºС до любой другой температуры в заданном диапазоне. Коэффициент температурной чувствительности соответствует тангенсу угла наклона на графике зависимости чувствительности от температуры. Определение этого коэффициента имеет смысл лишь при наличии линейной или близкой к линейной зависимости между температурой и чувствительностью (единицы измерения: ppm/ºС). Полупроводниковые датчики деформации, которые будут использованы в данном приложении, обладают нелинейностью ±0,25% до 600u inch/inch и менее ±1,5% до 1500u inch/inch.
В уравнении (1) используются полиномы первого порядка для моделирования работы кремниевого датчика деформации. Для получения более высокой точности измерения могут быть также использованы полиномы более высоких порядков, линеаризация на дискретном интервале или аппроксимация второго порядка на дискретном интервале с использованием таблицы коэффициентов. Для цифровой калибровки требуется иметь возможность представить в цифровом виде VOUT, VB и T, а также определить все коэффициенты и выполнить необходимые вычисления с использованием микроконтроллера или компьютера для точного расчета величины деформации.
В схеме, показанной на Фиг.14, используется один аналого-цифровой преобразователь 502 с высокой разрешающей способностью для представления в цифровом виде VOUT, температуры вблизи кремниевого датчика деформации, а также VB (напряжения моста). Результаты этих измерений далее передаются на микропроцессор или компьютер 504 (которые располагаются либо в рукоятке катетера либо в системе для абляции или навигации, с которой соединен катетер), где осуществляется расчет деформации по уравнению (1). Микропроцессор или компьютер 504 могут представлять собой вычислительное устройство общего назначения любого вида, способное осуществить расчет путем выполнения объектной программы, которая содержится в устройстве с ассоциативной памятью. Питание мостовой схемы осуществляется непосредственно от того же источника питания (не показан), который питает как аналого-цифровой преобразователь, так и блок 506 опорного напряжения Vr. Резистивный температурный датчик или термопара, содержащая датчик 508 температуры, измеряет температуру вблизи кремниевого датчика деформации с целью обеспечения температурной компенсации. Датчик деформации может также содержать встроенный датчик температуры с целью обеспечения температурной компенсации. Входной мультиплексор на аналого-цифровом преобразователе 502 позволяет измерять множество напряжений моста кремниевого датчика деформации, используя один аналого-цифровой преобразователь. Для определения коэффициентов температурной калибровки катетер с внутренними кремниевыми датчиками деформации помещают в камеру с регулируемой температурой или водяную баню и производят замеры напряжения моста при ряде различных температур, при которых будет эксплуатироваться катетер, для определения коэффициентов температурной калибровки. Эти коэффициенты температурной калибровки затем хранятся в устройстве памяти, связанном с катетером, таком как электрически стираемое перепрограммируемое ПЗУ, в рукоятке 36 устройства с целью использования микропроцессором 504.
Для измерения статических деформаций используется мостовая схема 510 Витстоуна (Wheatstone) в силу ее особо высокой чувствительности. В идеале, датчик деформации является единственным резистором в схеме, который подвержен изменениям, и мост считается сбалансированным, когда R1/R2=Rg/R3, а потому VOUT равно нулю. Когда мост составлен так, что Rg является единственным активным датчиком деформации, малое изменение Rg незамедлительно выводит мост из равновесия, в результате чего появится выходное напряжение моста.
Для эффективной температурной компенсации в датчиках 90 деформации, выполненных на основе металлической фольги, с длинными выводными проводами, как в случае применения для измерения силы на наконечнике катетера, может использоваться трехпроводное соединение с датчиком деформации, как показано на Фиг.15. Половина сопротивления выводного провода (1/2RL) приходится на смежную сторону моста 510 Витстоуна для компенсации резистивных компонент этих двух проводов, на которые воздействует одинаковое изменение температуры, и, таким образом, мост не подвержен какому бы то ни было температурному влиянию со стороны длинных выводных проводов, которые проходят от схемы до местоположения датчика деформации на основе металлической фольги вблизи дистального наконечника катетера. Влиянием температуры от третьего выводного провода, соединенного с усилителем, можно пренебречь, поскольку усилитель обеспечивает соединение с высоким входным импедансом. При трехпроводной системе все провода должны быть выполнены из одного материала, иметь один калибр провода и одну длину с целью обеспечения соответствующей температурной компенсации. Температурное влияние на сопротивление датчика и на калибровочный множитель может не требовать компенсации, поскольку металлические сплавы, используемые для датчика, в своем большинстве имеют близкую к линейной температурную зависимость изменения калибровочного множителя в широком диапазоне температур, которое составляет менее ±1% в диапазоне температур ±100ºС. Каждый материал провода датчика деформации имеет собственные калибровочный множитель, сопротивление, температурный коэффициент калибровочного множителя, термический коэффициент сопротивления и устойчивость. Материалы, которые могут быть использованы в конструкции датчика деформации, включают в себя провода из константана, нихрома, платиновых сплавов, изоупругого сплава (сплава никель-железо) и сплава типа Карма (сплава никель-хром). Для того чтобы удвоить выход моста при одном и том же уровне деформации, целесообразно соединить датчики, размещенные на противоположных сторонах балки, один из которых работает на сжатие, а другой - на растяжение.
Аналого-цифровой преобразователь (ADC) 502 с высокой разрешающей способностью, который включает в себя дифференциальные входы, встроенные программируемые усилители, автоматическую калибровку нуля, высокую степень подавления синфазного сигнала, а также цифровую фильтрацию шума, чтобы способствовать интеграции датчика деформации, а также точному измерению выходного напряжения мостовой схемы. Выход аналого-цифрового преобразователя 502 сообщается с микропроцессором 504, который выполняет вышеизложенные вычисления для определения деформации.
В области упругости кривой «напряжение - деформация» напряжение линейно пропорционально деформации. Наконечник катетера эксплуатируется в области упругости, так что деформированное состояние наконечника не является постоянным, в противном случае это привело бы к тому, что тензодатчики могли не возвратиться к нулевой деформации, т.к. материал, к которому они присоединены, подвергся бы пластическому течению. Поскольку катетер эксплуатируется в области упругости кривой «напряжение - деформация», значение деформации прямо пропорционально напряжению и может быть преобразовано в напряженное состояние звена распорки в различных пространственных направлениях. Наконечник катетера находится под воздействием трех различных типов напряжений: напряжения, вызванного моментом изгиба, напряжения при кручении и сдвигового напряжения, которое может быть пренебрежимо мало по сравнению с двумя другими компонентами напряжения. Путем калибровки каждого катетера с использованием различных трехмерных векторов сил, действующих на наконечник, можно определить силы (в граммах), действующие на наконечник, на основе значений деформации, полученных каждым датчиком деформации, и на основе соответствующих пространственных расположений датчиков деформации относительно распорки.
Предшествующее описание представлено со ссылкой на существующие в настоящее время предпочтительные варианты осуществления изобретения. Специалисты в данной области техники и технологии, которых касается настоящее изобретение, поймут, что в описанной конструкции могут быть осуществлены изменения и преобразования без значительного отхода от принципа, сущности и объема изобретения.
Соответственно предшествующее описание не следует понимать как имеющее отношение лишь строго к тем конструкциям, которые описаны и изображены на прилагаемых чертежах, но его следует скорее понимать как согласующееся и дающее аргументы в пользу следующих пунктов формулы изобретения, которые должны быть представлены в самом полном и объективном объеме.

Claims (36)

1. Силоизмерительный катетер, имеющий продольную ось, для использования в полом органе организма пациента, содержащий:
удлиненный трубчатый элемент, имеющий проксимальный конец и дистальный конец, а также имеющий первую полость, расположенную в нем;
электрод наконечника, размещенный на дистальном конце трубчатого элемента;
центральную распорку, продолжающуюся вблизи от проксимального конца электрода наконечника через способный к изгибу дистальный участок удлиненного трубчатого элемента, которая имеет первую продольную кромку и вторую продольную кромку;
при этом центральная распорка присоединена к удлиненному трубчатому элементу по существу по всей длине первой продольной кромки и второй продольной кромки для образования неразъемной сборной конструкции из центральной распорки и удлиненного трубчатого элемента; и
по меньшей мере, один датчик деформации, закрепленный на центральной распорке для измерения силы вблизи дистального конца трубчатого элемента.
2. Силоизмерительный катетер по п.1, в котором первый датчик деформации и второй датчик деформации, каждый из которых имеет элемент для измерения деформации, закреплены на центральной распорке, причем элемент для измерения деформации первого датчика деформации расположен перпендикулярно элементу для измерения деформации второго датчика деформации, при этом элемент для измерения деформации каждого из датчиков располагается под углом сорок пять градусов к продольной оси катетера для измерения деформации кручения на дистальном наконечнике катетера.
3. Силоизмерительный катетер по п.1, в котором датчик деформации, имеющий элемент для измерения деформации, закреплен на центральной распорке так, что элемент для измерения деформации расположен соосно с продольной осью катетера для измерения изгибной деформации на дистальном наконечнике катетера.
4. Силоизмерительный катетер по п.1, в котором первый датчик деформации и второй датчик деформации, каждый из которых имеет элемент для измерения деформации, закреплены на центральной распорке, причем элемент для измерения деформации первого датчика деформации расположен перпендикулярно элементу для измерения деформации второго датчика деформации, при этом элемент для измерения деформации каждого из датчиков расположен под углом сорок пять градусов к продольной оси катетера для измерения деформации кручения на дистальном наконечнике катетера, а третий датчик деформации, имеющий элемент для измерения деформации, закреплен на центральной распорке так, что элемент для измерения деформации расположен соосно с продольной осью катетера для измерения изгибной деформации на дистальном наконечнике катетера.
5. Силоизмерительный катетер по п.1, в котором датчик деформации представляет собой полупроводниковый датчик деформации.
6. Силоизмерительный катетер по п.5, в котором полупроводниковый датчик деформации выполнен на основе кремния.
7. Силоизмерительный катетер по п.5, в котором таблица температурных коэффициентов смещения хранится в запоминающем устройстве, связанном с катетером, в целях использования для компенсации изменений воспринятой деформации, вызванных изменением температуры окружающей среды, в которой эксплуатируется катетер.
8. Силоизмерительный катетер по п.1, в котором датчик деформации представляет собой датчик деформации на основе металлической фольги.
9. Силоизмерительный катетер по п.2, в котором центральная распорка заужена вдоль участка крепления первого и второго датчиков деформации для усиления деформации кручения.
10. Силоизмерительный катетер по п.3, в котором, по меньшей мере, один паз прорезан в центральной распорке вблизи датчика деформации для усиления изгибной деформации.
11. Силоизмерительный катетер по п.1, в котором центральная распорка присоединена термическим способом к удлиненному трубчатому элементу по существу по всей своей длине.
12. Силоизмерительный катетер по п.1, который дополнительно содержит тяговую нить, имеющую проксимальный конец и дистальный конец, для того чтобы изогнуть способный к изгибу дистальный участок удлиненного трубчатого элемента, причем проксимальный конец тяговой нити прикреплен к рукоятке управления на дистальном конце катетера.
13. Силоизмерительный катетер по п.3, в котором дистальный конец тяговой нити прикреплен к электроду наконечника.
14. Силоизмерительный катетер по п.1, который дополнительно содержит первую тяговую нить и вторую тяговую нить, каждая из которых имеет проксимальный конец и дистальный конец, причем проксимальные концы первой и второй тяговых нитей прикреплены к рукоятке управления, и дистальный конец первой тяговой нити прикреплен к первой лицевой поверхности центральной распорки, а дистальный конец второй тяговой нити прикреплен ко второй лицевой поверхности центральной распорки.
15. Силоизмерительный катетер по п.14, в котором центральная распорка содержит, по меньшей мере, одно крепежное отверстие для закрепления дистальных концов первой и второй тяговых нитей.
16. Силоизмерительный катетер по п.14, в котором центральная распорка содержит множество крепежных отверстий, продольно разнесенных по длине центральной распорки для закрепления дистальных концов первой и второй тяговых нитей.
17. Силоизмерительный катетер по п.16, в котором множество крепежных отверстий разнесено на расстояние от прилегающих отверстий, составляющее примерно 0,078 дюйма.
18. Силоизмерительный катетер по п.16, в котором диаметр крепежных отверстий составляет примерно 0,015 дюйма.
19. Силоизмерительный катетер по п.1, который дополнительно содержит первую тяговую нить и вторую тяговую нить, каждая из которых имеет проксимальный конец и дистальный конец, причем проксимальные концы первой и второй тяговых нитей прикреплены к рукоятке управления, а дистальные концы первой и второй тяговых нитей прикреплены к электроду наконечника.
20. Силоизмерительный катетер по п.19, в котором электрод наконечника содержит полый участок и вставную втулку, а дистальные концы первой и второй тяговых нитей прикреплены к вставной втулке до введения в полый участок.
21. Силоизмерительный катетер по п.1, который дополнительно содержит датчик температуры.
22. Силоизмерительный катетер по п.21, в котором датчик температуры выполнен с возможностью обеспечения определения температуры наконечника катетера для использования при температурной компенсации выходного сигнала датчика деформации.
23. Силоизмерительный катетер по п.1, который дополнительно содержит датчик положения.
24. Силоизмерительный катетер по п.1, в котором электрод наконечника имеет ирригационные порты, а катетер дополнительно содержит полость для ирригации, которая сообщена с ирригационными портами.
25. Силоизмерительный катетер по п.1, который дополнительно содержит первую тяговую нить и вторую тяговую нить, каждая из которых имеет проксимальный конец и дистальный конец, причем проксимальные концы первой и второй тяговых нитей прикреплены к рукоятке управления, а дистальные концы первой и второй тяговых нитей прикреплены к фиксаторам и продеты через первое и второе отверстия в трубчатом элементе.
26. Силоизмерительный катетер по п.1, в котором трубчатый элемент имеет внутренний слой, слой с оплеткой и наружный слой, причем первая продольная кромка и вторая продольная кромка центральной распорки присоединены термическим способом к внутреннему слою.
27. Силоизмерительный катетер по п.1, в котором центральной распорке придана шероховатость вдоль первой продольной кромки и второй продольной кромки для обеспечения улучшенного соединения с трубчатым элементом.
28. Силоизмерительный катетер по п.1, который дополнительно содержит отформованное соединительное звено, выполненное с возможностью приема проксимального концевого участка электрода наконечника.
29. Силоизмерительный катетер по п.28, в котором дистальный конец центральной распорки содержит, по меньшей мере, одну выемку, способную к зацеплению с защелкиванием, а отформованное соединительное звено дополнительно содержит, по меньшей мере, один клин, способный к зацеплению с защелкиванием, выполненный с возможностью приема выемки, способной к зацеплению с защелкиванием.
30. Силоизмерительный катетер по п.28, в котором отформованное соединительное звено дополнительно содержит, по меньшей мере, один паз, выполненный с возможностью приема, по меньшей мере, одной из первой или второй продольных кромок дистального участка центральной распорки.
31. Силоизмерительный катетер по п.1, в котором выходной сигнал датчика деформации используется для расчета воспринятой силы по следующему уравнению:
VOUT=VB×(S×S0×(1+S1×(T-Tr))+U0+U1×(T-Tr)),
где VOUT - выходное напряжение моста, VB - напряжение возбуждения моста, S - приложенная деформация датчика, Tr - справочная температура, измеренная вблизи кремниевого тензодатчика, S0 - чувствительность датчика деформации при справочной температуре Tr, S1 - коэффициент температурной чувствительности (TCS), U0 - смещение нуля или небаланс моста при температуре Tr при отсутствии приложенной деформации, a U1 - температурный коэффициент смещения (ОТС).
32. Силоизмерительный катетер для использования в полом органе организма пациента, содержащий:
удлиненный трубчатый элемент, имеющий проксимальный конец и дистальный конец, а также имеющий первую полость, расположенную в нем;
электрод наконечника, размещенный на дистальном конце трубчатого элемента;
центральную распорку, продолжающуюся вблизи от проксимального конца электрода наконечника через способный к изгибу дистальный участок удлиненного трубчатого элемента, которая имеет первую продольную кромку и вторую продольную кромку;
отформованное соединительное звено, имеющее дистальный участок, выполненный с возможностью приема участка проксимального конца электрода наконечника, и имеющее проксимальный участок, имеющий, по меньшей мере, один паз, выполненный с возможностью приема, по меньшей мере, одной из первой или второй продольных кромок центральной распорки;
при этом центральная распорка присоединена к удлиненному трубчатому элементу по существу по всей длине первой продольной кромки и второй продольной кромки для образования неразъемной сборной конструкции из центральной распорки и удлиненного трубчатого элемента; а также
по меньшей мере, один датчик деформации, закрепленный на центральной распорке для измерения силы вблизи дистального конца трубчатого элемента.
33. Катетер по п.32, в котором дистальный конец центральной распорки содержит, по меньшей мере, одну выемку, способную к зацеплению с защелкиванием, а отформованное соединительное звено дополнительно содержит, по меньшей мере, один клин, способный к зацеплению с защелкиванием, выполненный с возможностью приема выемки, способной к зацеплению с защелкиванием.
34. Силоизмерительный катетер по п.32, в котором первый датчик деформации и второй датчик деформации, каждый из которых имеет элемент для измерения деформации, закреплены на центральной распорке, причем составной элемент для измерения деформации первого датчика деформации расположен перпендикулярно элементу для измерения деформации второго датчика деформации, при этом элемент для измерения деформации каждого из датчиков расположен под углом сорок пять градусов к продольной оси катетера для измерения деформации кручения на дистальном наконечнике катетера.
35. Силоизмерительный катетер по п.32, в котором датчик деформации, имеющий элемент для измерения деформации, закреплен на центральной распорке так, чтобы элемент для измерения деформации был расположен соосно с продольной осью катетера для измерения изгибной деформации на дистальном наконечнике катетера.
36. Силоизмерительный катетер по п.32, в котором первый датчик деформации и второй датчик деформации, каждый из которых имеет элемент для измерения деформации, закреплены на центральной распорке, причем элемент для измерения деформации первого датчика деформации расположен перпендикулярно элементу для измерения деформации второго датчика деформации, при этом элемент для измерения деформации каждого из датчиков расположен под углом сорок пять градусов к продольной оси катетера для измерения деформации кручения на дистальном наконечнике катетера, а третий датчик деформации, имеющий элемент для измерения деформации, закреплен на центральной распорке так, что элемент для измерения деформации расположен соосно с продольной осью катетера для измерения изгибной деформации на дистальном наконечнике катетера.
RU2009133735/14A 2008-09-09 2009-09-08 Силоизмерительный катетер с присоединенной центральной распоркой RU2506965C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/207,155 2008-09-09
US12/207,155 US9101734B2 (en) 2008-09-09 2008-09-09 Force-sensing catheter with bonded center strut

Publications (2)

Publication Number Publication Date
RU2009133735A RU2009133735A (ru) 2011-03-20
RU2506965C2 true RU2506965C2 (ru) 2014-02-20

Family

ID=41668300

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009133735/14A RU2506965C2 (ru) 2008-09-09 2009-09-08 Силоизмерительный катетер с присоединенной центральной распоркой

Country Status (10)

Country Link
US (1) US9101734B2 (ru)
EP (1) EP2172240B1 (ru)
JP (1) JP5523775B2 (ru)
CN (1) CN101721246B (ru)
AU (1) AU2009212972B2 (ru)
CA (1) CA2678216C (ru)
DK (1) DK2172240T3 (ru)
ES (1) ES2398935T3 (ru)
IL (1) IL200751A (ru)
RU (1) RU2506965C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2799025C1 (ru) * 2019-11-21 2023-06-30 Шанхай Майкропорт Еп Медтек Ко., Лтд. Тензометрический датчик, датчик усилия и оперативный медицинский катетер
US12025436B2 (en) 2019-11-21 2024-07-02 Shanghai Microport Ep Medtech Co., Ltd. Strain gauge, force sensor and interventional medical catheter

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100312129A1 (en) 2005-01-26 2010-12-09 Schecter Stuart O Cardiovascular haptic handle system
US8075498B2 (en) * 2005-03-04 2011-12-13 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US8182433B2 (en) * 2005-03-04 2012-05-22 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US8894589B2 (en) * 2005-08-01 2014-11-25 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US8628518B2 (en) 2005-12-30 2014-01-14 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
US8406901B2 (en) * 2006-04-27 2013-03-26 Medtronic, Inc. Sutureless implantable medical device fixation
US8567265B2 (en) * 2006-06-09 2013-10-29 Endosense, SA Triaxial fiber optic force sensing catheter
US8048063B2 (en) 2006-06-09 2011-11-01 Endosense Sa Catheter having tri-axial force sensor
US8852256B2 (en) 2010-11-15 2014-10-07 Aquesys, Inc. Methods for intraocular shunt placement
US20120123316A1 (en) 2010-11-15 2012-05-17 Aquesys, Inc. Intraocular shunts for placement in the intra-tenon's space
US9095411B2 (en) 2010-11-15 2015-08-04 Aquesys, Inc. Devices for deploying intraocular shunts
US10085884B2 (en) 2006-06-30 2018-10-02 Aquesys, Inc. Intraocular devices
US8721702B2 (en) 2010-11-15 2014-05-13 Aquesys, Inc. Intraocular shunt deployment devices
US8308701B2 (en) * 2010-11-15 2012-11-13 Aquesys, Inc. Methods for deploying intraocular shunts
US8663303B2 (en) 2010-11-15 2014-03-04 Aquesys, Inc. Methods for deploying an intraocular shunt from a deployment device and into an eye
US9492657B2 (en) * 2006-11-30 2016-11-15 Medtronic, Inc. Method of implanting a medical device including a fixation element
US8157789B2 (en) * 2007-05-24 2012-04-17 Endosense Sa Touch sensing catheter
US8622935B1 (en) 2007-05-25 2014-01-07 Endosense Sa Elongated surgical manipulator with body position and distal force sensing
US8357152B2 (en) 2007-10-08 2013-01-22 Biosense Webster (Israel), Ltd. Catheter with pressure sensing
US8535308B2 (en) * 2007-10-08 2013-09-17 Biosense Webster (Israel), Ltd. High-sensitivity pressure-sensing probe
US8298227B2 (en) * 2008-05-14 2012-10-30 Endosense Sa Temperature compensated strain sensing catheter
US8437832B2 (en) * 2008-06-06 2013-05-07 Biosense Webster, Inc. Catheter with bendable tip
US8118775B2 (en) * 2008-09-09 2012-02-21 Biosense Webster, Inc. Deflectable catheter with bonded center strut and method of manufacture for same
US9101734B2 (en) 2008-09-09 2015-08-11 Biosense Webster, Inc. Force-sensing catheter with bonded center strut
US9326700B2 (en) 2008-12-23 2016-05-03 Biosense Webster (Israel) Ltd. Catheter display showing tip angle and pressure
US8475450B2 (en) 2008-12-30 2013-07-02 Biosense Webster, Inc. Dual-purpose lasso catheter with irrigation
US8600472B2 (en) * 2008-12-30 2013-12-03 Biosense Webster (Israel), Ltd. Dual-purpose lasso catheter with irrigation using circumferentially arranged ring bump electrodes
US20100298832A1 (en) 2009-05-20 2010-11-25 Osseon Therapeutics, Inc. Steerable curvable vertebroplasty drill
US9211403B2 (en) * 2009-10-30 2015-12-15 Advanced Bionics, Llc Steerable stylet
US10688278B2 (en) 2009-11-30 2020-06-23 Biosense Webster (Israel), Ltd. Catheter with pressure measuring tip
US8920415B2 (en) * 2009-12-16 2014-12-30 Biosense Webster (Israel) Ltd. Catheter with helical electrode
US8521462B2 (en) 2009-12-23 2013-08-27 Biosense Webster (Israel), Ltd. Calibration system for a pressure-sensitive catheter
US8529476B2 (en) * 2009-12-28 2013-09-10 Biosense Webster (Israel), Ltd. Catheter with strain gauge sensor
US8608735B2 (en) 2009-12-30 2013-12-17 Biosense Webster (Israel) Ltd. Catheter with arcuate end section
US8374670B2 (en) * 2010-01-22 2013-02-12 Biosense Webster, Inc. Catheter having a force sensing distal tip
US9125671B2 (en) 2010-04-29 2015-09-08 Dfine, Inc. System for use in treatment of vertebral fractures
US8798952B2 (en) 2010-06-10 2014-08-05 Biosense Webster (Israel) Ltd. Weight-based calibration system for a pressure sensitive catheter
US8226580B2 (en) 2010-06-30 2012-07-24 Biosense Webster (Israel), Ltd. Pressure sensing for a multi-arm catheter
US8380276B2 (en) 2010-08-16 2013-02-19 Biosense Webster, Inc. Catheter with thin film pressure sensing distal tip
US8731859B2 (en) 2010-10-07 2014-05-20 Biosense Webster (Israel) Ltd. Calibration system for a force-sensing catheter
US8794830B2 (en) * 2010-10-13 2014-08-05 Biosense Webster, Inc. Catheter with digitized temperature measurement in control handle
US8979772B2 (en) 2010-11-03 2015-03-17 Biosense Webster (Israel), Ltd. Zero-drift detection and correction in contact force measurements
US20160256319A1 (en) 2010-11-15 2016-09-08 Aquesys, Inc. Intraocular shunt placement in the suprachoroidal space
US10112045B2 (en) 2010-12-29 2018-10-30 Medtronic, Inc. Implantable medical device fixation
US9775982B2 (en) 2010-12-29 2017-10-03 Medtronic, Inc. Implantable medical device fixation
WO2012117304A1 (en) 2011-03-02 2012-09-07 Koninklijke Philips Electronics N.V. Dry skin conductance electrode
US8942828B1 (en) 2011-04-13 2015-01-27 Stuart Schecter, LLC Minimally invasive cardiovascular support system with true haptic coupling
CN103607961B (zh) 2011-04-14 2016-12-14 圣犹达医疗用品卢森堡控股有限公司 用于导管的紧凑型力传感器
US9220433B2 (en) 2011-06-30 2015-12-29 Biosense Webster (Israel), Ltd. Catheter with variable arcuate distal section
US10743932B2 (en) 2011-07-28 2020-08-18 Biosense Webster (Israel) Ltd. Integrated ablation system using catheter with multiple irrigation lumens
US9662169B2 (en) 2011-07-30 2017-05-30 Biosense Webster (Israel) Ltd. Catheter with flow balancing valve
US10791950B2 (en) * 2011-09-30 2020-10-06 Biosense Webster (Israel) Ltd. In-vivo calibration of contact force-sensing catheters using auto zero zones
US10080682B2 (en) 2011-12-08 2018-09-25 Aquesys, Inc. Intrascleral shunt placement
US9610195B2 (en) 2013-02-27 2017-04-04 Aquesys, Inc. Intraocular shunt implantation methods and devices
US9808373B2 (en) 2013-06-28 2017-11-07 Aquesys, Inc. Intraocular shunt implantation
US8852136B2 (en) 2011-12-08 2014-10-07 Aquesys, Inc. Methods for placing a shunt into the intra-scleral space
US9687289B2 (en) 2012-01-04 2017-06-27 Biosense Webster (Israel) Ltd. Contact assessment based on phase measurement
CN104168854B (zh) 2012-01-24 2017-02-22 史密夫和内修有限公司 多孔结构及其制造方法
ES2556810T3 (es) * 2012-02-07 2016-01-20 Sensoptic Sa Elemento óptico sensor de fuerza e instrumento microquirúrgico
US9833625B2 (en) 2012-03-26 2017-12-05 Medtronic, Inc. Implantable medical device delivery with inner and outer sheaths
US9717421B2 (en) 2012-03-26 2017-08-01 Medtronic, Inc. Implantable medical device delivery catheter with tether
US9339197B2 (en) 2012-03-26 2016-05-17 Medtronic, Inc. Intravascular implantable medical device introduction
US10485435B2 (en) 2012-03-26 2019-11-26 Medtronic, Inc. Pass-through implantable medical device delivery catheter with removeable distal tip
US9854982B2 (en) 2012-03-26 2018-01-02 Medtronic, Inc. Implantable medical device deployment within a vessel
US9220906B2 (en) 2012-03-26 2015-12-29 Medtronic, Inc. Tethered implantable medical device deployment
JP6130905B2 (ja) 2012-03-27 2017-05-17 ディファイン, インコーポレイテッド 温度監視による組織焼灼体積の制御における使用のための方法およびシステム
US10013082B2 (en) 2012-06-05 2018-07-03 Stuart Schecter, LLC Operating system with haptic interface for minimally invasive, hand-held surgical instrument
US9351648B2 (en) 2012-08-24 2016-05-31 Medtronic, Inc. Implantable medical device electrode assembly
US9091603B2 (en) * 2012-09-26 2015-07-28 Biosense Webster (Israel) Ltd. Temperature simulator for thermocouple-based RF ablation system
JP6308678B2 (ja) 2012-11-08 2018-04-11 株式会社放電精密加工研究所 電極、前記電極を用いた電解加工装置、電解加工方法、及びその方法によって加工された加工品
US9549666B2 (en) 2012-11-10 2017-01-24 Curvo Medical, Inc. Coaxial micro-endoscope
US9233225B2 (en) 2012-11-10 2016-01-12 Curvo Medical, Inc. Coaxial bi-directional catheter
DE102012220738A1 (de) * 2012-11-14 2014-05-15 Robert Bosch Gmbh Messschaltung zum Bestimmen eines Widerstandswerts eines Sensorwider-standsbauelements
US9050010B2 (en) * 2012-12-31 2015-06-09 Biosense Webster (Israel) Ltd. Double loop lasso with single puller wire for bi-directional actuation
US10456051B2 (en) * 2012-12-31 2019-10-29 Volcano Corporation Pressure sensor calibration systems and methods
US9174023B2 (en) 2013-01-07 2015-11-03 Biosense Webster (Israel) Ltd. Unidirectional catheter control handle with tensioning control
US9849268B2 (en) * 2013-02-06 2017-12-26 Biosense Webster (Israel), Ltd. Catheter having flat beam deflection tip with fiber puller members
US9179971B2 (en) 2013-02-11 2015-11-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Printed electrode catheter
US9066726B2 (en) * 2013-03-15 2015-06-30 Medtronic Ardian Luxembourg S.A.R.L. Multi-electrode apposition judgment using pressure elements
US10034705B2 (en) * 2013-10-24 2018-07-31 St. Jude Medical, Cardiology Division, Inc. High strength electrode assembly for catheter system including novel electrode
US9817019B2 (en) 2013-11-13 2017-11-14 Intuitive Surgical Operations, Inc. Integrated fiber bragg grating accelerometer in a surgical instrument
EP4233946A3 (en) 2013-11-14 2023-11-15 Aquesys, Inc. Intraocular shunt inserter
USD726908S1 (en) 2014-02-06 2015-04-14 St. Jude Medical, Cardiology Division, Inc. Catheter handle
JP6356088B2 (ja) * 2015-03-31 2018-07-11 日本ライフライン株式会社 カテーテル
JP6945451B2 (ja) * 2015-04-14 2021-10-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. コア部材に巻きつけられた通信線の周りに形成されたポリマージャケットを有する血管内デバイス、システム及び方法
CA3193470A1 (en) 2015-06-03 2016-12-08 Aquesys, Inc. Ab externo intraocular shunt placement
WO2017027282A1 (en) * 2015-08-07 2017-02-16 Boston Scientific Scimed Inc. Force sensing catheters having super-elastic structural strain sensors
US10383543B2 (en) 2015-11-11 2019-08-20 Biosense Webster (Israel) Ltd. Symmetric short contact force sensor with four coils
WO2017112607A1 (en) 2015-12-20 2017-06-29 Boston Scientific Scimed Inc. Micro induction position sensor
JP6691602B2 (ja) 2016-01-07 2020-04-28 セント・ジュード・メディカル・インターナショナル・ホールディング・エスエーアールエルSt. Jude Medical International Holding S.a,r.l. 光学的感知のためのマルチ・コア・ファイバを有する医療デバイス
CN108601618B (zh) 2016-01-29 2021-05-25 波士顿科学医学有限公司 具有阻抗引导的取向的力感测导管
KR20180101597A (ko) * 2016-02-02 2018-09-12 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 패러데이 케이지의 변형 게이지를 사용하는 기구 힘 센서
US10350423B2 (en) 2016-02-04 2019-07-16 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
US10675442B2 (en) 2016-02-08 2020-06-09 Nextern, Inc. Robotically augmented catheter manipulation handle
WO2017146465A1 (ko) * 2016-02-22 2017-08-31 재단법인 아산사회복지재단 전기도금을 이용한 소작용 카테터 선단부의 제조 방법
JP2017150931A (ja) * 2016-02-24 2017-08-31 株式会社タニタ ひずみゲージ
JP2019517366A (ja) 2016-06-02 2019-06-24 アクシス、インコーポレイテッド 眼内薬物送達
US11369431B2 (en) 2016-06-11 2022-06-28 Boston Scientific Scimed Inc. Inductive double flat coil displacement sensor
CN106264719B (zh) * 2016-07-29 2019-07-23 上海微创电生理医疗科技股份有限公司 电生理导管
US11559349B2 (en) 2016-09-12 2023-01-24 Biosense Webster (Israel) Ltd. Ablation catheter with a flexible printed circuit board
US11911093B2 (en) 2016-09-12 2024-02-27 Biosense Webster (Israel) Ltd. Irrigation system for a catheter
US20180071009A1 (en) * 2016-09-12 2018-03-15 Biosense Webster (Israel) Ltd. Ablation catheter with strain gauges
WO2018081279A1 (en) 2016-10-27 2018-05-03 Dfine, Inc. Articulating osteotome with cement delivery channel
AU2017363356B2 (en) 2016-11-28 2023-02-09 Dfine, Inc. Tumor ablation devices and related methods
EP3551100B1 (en) 2016-12-09 2021-11-10 Dfine, Inc. Medical devices for treating hard tissues
WO2018109728A1 (en) * 2016-12-16 2018-06-21 St. Jude Medical International Holding S.á r.l. Wireless force sensor
US10660656B2 (en) 2017-01-06 2020-05-26 Dfine, Inc. Osteotome with a distal portion for simultaneous advancement and articulation
US11369301B2 (en) * 2017-01-27 2022-06-28 Medtronic Cryocath Lp Highly flexible mapping and treatment device
CN109141697B (zh) * 2017-06-15 2020-04-10 上海微创电生理医疗科技股份有限公司 应变片、压力传感器以及介入医疗导管
US20190117298A1 (en) * 2017-10-25 2019-04-25 Biosense Webster (Israel) Ltd. Catheter with improved temperature response
US11246753B2 (en) 2017-11-08 2022-02-15 Aquesys, Inc. Manually adjustable intraocular flow regulation
WO2019099562A1 (en) 2017-11-14 2019-05-23 Intuitive Surgical Operations, Inc. Split bridge circuit force sensor
US10675107B2 (en) 2017-11-15 2020-06-09 Intuitive Surgical Operations, Inc. Surgical instrument end effector with integral FBG
US11135089B2 (en) 2018-03-09 2021-10-05 Aquesys, Inc. Intraocular shunt inserter
US10952898B2 (en) 2018-03-09 2021-03-23 Aquesys, Inc. Intraocular shunt inserter
US10966783B2 (en) * 2018-03-19 2021-04-06 Biosense Webster (Israel) Ltd. Catheter with multifunctional microinjection—molded housing
US11896230B2 (en) * 2018-05-07 2024-02-13 Covidien Lp Handheld electromechanical surgical device including load sensor having spherical ball pivots
WO2019227032A1 (en) 2018-05-25 2019-11-28 Intuitive Surgical Operations, Inc. Fiber bragg grating end effector force sensor
US10874850B2 (en) 2018-09-28 2020-12-29 Medtronic, Inc. Impedance-based verification for delivery of implantable medical devices
US11510723B2 (en) 2018-11-08 2022-11-29 Dfine, Inc. Tumor ablation device and related systems and methods
EP3880102A1 (en) * 2018-11-15 2021-09-22 Intuitive Surgical Operations, Inc. Surgical instrument with sensor aligned cable guide
WO2020102778A1 (en) 2018-11-15 2020-05-22 Intuitive Surgical Operations, Inc. Strain sensor with contoured deflection surface
CN111317563B (zh) * 2018-12-17 2022-02-25 赛诺微医疗科技(浙江)有限公司 微波消融导管管体、制造方法及采用其的微波消融导管
US20200323585A1 (en) * 2019-04-10 2020-10-15 St. Jude Medical International Holding S.À R.L. Ablation catheter tip with flexible electronic circuitry
US11331475B2 (en) 2019-05-07 2022-05-17 Medtronic, Inc. Tether assemblies for medical device delivery systems
CN111973860B (zh) * 2019-05-21 2022-08-09 微创投资控股有限公司 医疗装置及其医疗导管
EP3979919A1 (en) * 2019-06-06 2022-04-13 VascoMed GmbH Catheter configured to measure a force acting on the catheter
EP4134035A1 (en) 2019-07-19 2023-02-15 Corindus Inc. Load sensing of elongated medical device in robotic actuation
WO2021055509A2 (en) 2019-09-17 2021-03-25 Intuitive Surgical Operations, Inc. Symmetric trimming of strain gauges
US11986229B2 (en) 2019-09-18 2024-05-21 Merit Medical Systems, Inc. Osteotome with inflatable portion and multiwire articulation
US11471650B2 (en) 2019-09-20 2022-10-18 Biosense Webster (Israel) Ltd. Mechanism for manipulating a puller wire
US20210093374A1 (en) 2019-09-26 2021-04-01 Biosense Webster (Israel) Ltd. Wiring for Multi-Electrode Catheter
CN112857632B (zh) * 2019-11-26 2023-05-23 上汽通用汽车有限公司 一种轴向力测量设备
US20210187254A1 (en) * 2019-12-24 2021-06-24 Biosense Webster (Israel) Ltd. Contact Force Spring with Mechanical Stops
US20220031386A1 (en) * 2020-07-28 2022-02-03 Biosense Webster (Israel) Ltd. Controlling irreversible electroporation ablation using a focal catheter having contact-force and temperature sensors
JP2023548972A (ja) 2020-11-09 2023-11-21 アジャイル デヴァイシーズ インコーポレイテッド カテーテルを操向する器具
US20220313961A1 (en) * 2021-03-31 2022-10-06 Biosense Webster (Israel) Ltd. Electrophysiology devices with deflection detection
CN113204851B (zh) * 2021-06-07 2022-02-11 中国核动力研究设计院 一种全焊接组件的公差优化方法
CN117958957A (zh) * 2024-02-08 2024-05-03 北京维康达心科技有限公司 除颤导管和除颤***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6272371B1 (en) * 1997-01-03 2001-08-07 Biosense Inc. Bend-responsive catheter
EA002415B1 (ru) * 1998-08-21 2002-04-25 Ага Медикал Корпорейшн Измерительный катетер для определения размеров дефектов перегородки
US20020165461A1 (en) * 2001-05-02 2002-11-07 Hayzelden Robert C. Steerable catheter with shaft support system for resisting axial compressive loads
EP1690564A1 (en) * 2005-02-14 2006-08-16 Biosense Webster Steerable catheter with in-plane deflection
US20080051704A1 (en) * 2006-08-28 2008-02-28 Patel Rajnikant V Catheter and system for using same
WO2009008570A1 (en) * 2007-07-12 2009-01-15 Ifeelu Inc. Small sized body-sonic vibration receiver

Family Cites Families (223)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841150A (en) 1973-11-02 1974-10-15 Honeywell Inc Strain gauge transducer signal conditioning circuitry
US3971364A (en) 1975-05-16 1976-07-27 Nasa Catheter tip force transducer for cardiovascular research
US4856993A (en) 1985-03-29 1989-08-15 Tekscan, Inc. Pressure and contact sensor system for measuring dental occlusion
US4764114A (en) 1986-01-13 1988-08-16 Foster-Miller, Inc. Analysis system
US4930494A (en) * 1988-03-09 1990-06-05 Olympus Optical Co., Ltd. Apparatus for bending an insertion section of an endoscope using a shape memory alloy
US5263493A (en) 1992-02-24 1993-11-23 Boaz Avitall Deflectable loop electrode array mapping and ablation catheter for cardiac chambers
US5562720A (en) 1992-05-01 1996-10-08 Vesta Medical, Inc. Bipolar/monopolar endometrial ablation device and method
US5441483A (en) * 1992-11-16 1995-08-15 Avitall; Boaz Catheter deflection control
US5462527A (en) 1993-06-29 1995-10-31 C.R. Bard, Inc. Actuator for use with steerable catheter
US5836894A (en) 1992-12-21 1998-11-17 Artann Laboratories Apparatus for measuring mechanical parameters of the prostate and for imaging the prostate using such parameters
US5368564A (en) * 1992-12-23 1994-11-29 Angeion Corporation Steerable catheter
IL108532A (en) 1993-02-02 1997-07-13 Vidamed Inc Transurethral needle ablation device
US5860974A (en) * 1993-07-01 1999-01-19 Boston Scientific Corporation Heart ablation catheter with expandable electrode and method of coupling energy to an electrode on a catheter shaft
US5487757A (en) * 1993-07-20 1996-01-30 Medtronic Cardiorhythm Multicurve deflectable catheter
US5391199A (en) * 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
IL116699A (en) * 1996-01-08 2001-09-13 Biosense Ltd Method of building a heart map
US5558091A (en) 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
US5673695A (en) 1995-08-02 1997-10-07 Ep Technologies, Inc. Methods for locating and ablating accessory pathways in the heart
WO1995010978A1 (en) * 1993-10-19 1995-04-27 Ep Technologies, Inc. Segmented electrode assemblies for ablation of tissue
US5730127A (en) * 1993-12-03 1998-03-24 Avitall; Boaz Mapping and ablation catheter system
US5499542A (en) * 1994-04-22 1996-03-19 Westinghouse Electric Corporation Diametral force sensor
US5680860A (en) 1994-07-07 1997-10-28 Cardiac Pathways Corporation Mapping and/or ablation catheter with coilable distal extremity and method for using same
AU1693095A (en) 1994-08-19 1996-03-14 Biosense, Inc. Medical diagnosis, treatment and imaging systems
US5876336A (en) 1994-10-11 1999-03-02 Ep Technologies, Inc. Systems and methods for guiding movable electrode elements within multiple-electrode structure
US5542434A (en) 1994-10-28 1996-08-06 Intelliwire Inc. Guide wire with deflectable tip and method
US6690963B2 (en) * 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
US5563354A (en) 1995-04-03 1996-10-08 Force Imaging Technologies, Inc. Large area sensing cell
US6272672B1 (en) 1995-09-06 2001-08-07 Melvin E. Conway Dataflow processing with events
US5685878A (en) * 1995-11-13 1997-11-11 C.R. Bard, Inc. Snap fit distal assembly for an ablation catheter
US5697377A (en) 1995-11-22 1997-12-16 Medtronic, Inc. Catheter mapping system and method
US5728149A (en) * 1995-12-20 1998-03-17 Medtronic, Inc. Integral spiral band electrode for transvenous defibrillation leads
US6915149B2 (en) 1996-01-08 2005-07-05 Biosense, Inc. Method of pacing a heart using implantable device
ES2195118T3 (es) 1996-02-15 2003-12-01 Biosense Inc Procedimiento para configurar y operar una sonda.
EP0932362B1 (en) 1996-02-15 2005-01-26 Biosense Webster, Inc. Method for calibrating a probe
DE69726415T2 (de) 1996-02-15 2004-09-16 Biosense, Inc., Miami Unabhängig einstellbare wandler für ortsbestimmungssysteme
JP4130226B2 (ja) * 1996-02-15 2008-08-06 バイオセンス・ウェブスター・インコーポレイテッド 内視鏡の正確な位置決定
WO1997029709A1 (en) 1996-02-15 1997-08-21 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US5769843A (en) * 1996-02-20 1998-06-23 Cormedica Percutaneous endomyocardial revascularization
US6177792B1 (en) * 1996-03-26 2001-01-23 Bisense, Inc. Mutual induction correction for radiator coils of an objects tracking system
IL126864A (en) * 1996-05-06 2003-05-29 Biosense Inc Method and apparatus for calibrating a magnetic field generator
US5662124A (en) 1996-06-19 1997-09-02 Wilk Patent Development Corp. Coronary artery by-pass method
US5826576A (en) * 1996-08-08 1998-10-27 Medtronic, Inc. Electrophysiology catheter with multifunction wire and method for making
US5902248A (en) * 1996-11-06 1999-05-11 Millar Instruments, Inc. Reduced size catheter tip measurement device
US6048329A (en) * 1996-12-19 2000-04-11 Ep Technologies, Inc. Catheter distal assembly with pull wires
IL126015A (en) * 1997-01-03 2003-07-06 Biosense Inc Bend responsive catheter
US5944022A (en) 1997-04-28 1999-08-31 American Cardiac Ablation Co. Inc. Catheter positioning system
US5974320A (en) 1997-05-21 1999-10-26 Telefonaktiebolaget Lm Ericsson (Publ) Providing a neighborhood zone within a mobile telecommunications network
US5861024A (en) * 1997-06-20 1999-01-19 Cardiac Assist Devices, Inc Electrophysiology catheter and remote actuator therefor
US6490474B1 (en) * 1997-08-01 2002-12-03 Cardiac Pathways Corporation System and method for electrode localization using ultrasound
US5964757A (en) 1997-09-05 1999-10-12 Cordis Webster, Inc. Steerable direct myocardial revascularization catheter
US6123699A (en) 1997-09-05 2000-09-26 Cordis Webster, Inc. Omni-directional steerable catheter
US5916147A (en) * 1997-09-22 1999-06-29 Boury; Harb N. Selectively manipulable catheter
AU712738B2 (en) * 1997-09-24 1999-11-18 Eclipse Surgical Technologies, Inc. Steerable catheter
US6201387B1 (en) * 1997-10-07 2001-03-13 Biosense, Inc. Miniaturized position sensor having photolithographic coils for tracking a medical probe
US6296615B1 (en) * 1999-03-05 2001-10-02 Data Sciences International, Inc. Catheter with physiological sensor
US6351549B1 (en) * 1997-10-24 2002-02-26 Ultratouch Corporation Detection head for an apparatus for detecting very small breast anomalies
DE19750441C2 (de) 1997-11-14 2000-01-27 Markus Becker Vorrichtung zur Erfassung und Steuerung von Körperhaltungen zur therapeutischen Anwendung in sitzender Haltung
US6120476A (en) 1997-12-01 2000-09-19 Cordis Webster, Inc. Irrigated tip catheter
US6183463B1 (en) 1997-12-01 2001-02-06 Cordis Webster, Inc. Bidirectional steerable cathether with bidirectional control handle
US6171277B1 (en) * 1997-12-01 2001-01-09 Cordis Webster, Inc. Bi-directional control handle for steerable catheter
US6239724B1 (en) * 1997-12-30 2001-05-29 Remon Medical Technologies, Ltd. System and method for telemetrically providing intrabody spatial position
US6231546B1 (en) * 1998-01-13 2001-05-15 Lumend, Inc. Methods and apparatus for crossing total occlusions in blood vessels
US6226542B1 (en) * 1998-07-24 2001-05-01 Biosense, Inc. Three-dimensional reconstruction of intrabody organs
US6301496B1 (en) 1998-07-24 2001-10-09 Biosense, Inc. Vector mapping of three-dimensionally reconstructed intrabody organs and method of display
US6593884B1 (en) 1998-08-02 2003-07-15 Super Dimension Ltd. Intrabody navigation system for medical applications
US6198974B1 (en) * 1998-08-14 2001-03-06 Cordis Webster, Inc. Bi-directional steerable catheter
WO2000016684A1 (en) * 1998-09-24 2000-03-30 Super Dimension Ltd. System and method for determining the location of a catheter during an intra-body medical procedure
JP3645107B2 (ja) 1998-10-27 2005-05-11 テルモ株式会社 医療用チューブ
US6173463B1 (en) * 1998-12-29 2001-01-16 Cabela's Inc. Cot accessory
US6292678B1 (en) 1999-05-13 2001-09-18 Stereotaxis, Inc. Method of magnetically navigating medical devices with magnetic fields and gradients, and medical devices adapted therefor
US6696844B2 (en) * 1999-06-04 2004-02-24 Engineering & Research Associates, Inc. Apparatus and method for real time determination of materials' electrical properties
US6892091B1 (en) * 2000-02-18 2005-05-10 Biosense, Inc. Catheter, method and apparatus for generating an electrical map of a chamber of the heart
US6612992B1 (en) * 2000-03-02 2003-09-02 Acuson Corp Medical diagnostic ultrasound catheter and method for position determination
WO2001070117A2 (en) * 2000-03-23 2001-09-27 Microheart, Inc. Pressure sensor for therapeutic delivery device and method
DE10015246A1 (de) * 2000-03-28 2001-10-04 Basf Ag Verfahren zur Umsetzung einer organischen Verbindung mit einem Hydroperoxid
US6569160B1 (en) 2000-07-07 2003-05-27 Biosense, Inc. System and method for detecting electrode-tissue contact
US7789876B2 (en) * 2000-08-14 2010-09-07 Tyco Healthcare Group, Lp Method and apparatus for positioning a catheter relative to an anatomical junction
US6584856B1 (en) 2000-08-30 2003-07-01 William J. Biter Method of sensing strain in a material by driving an embedded magnetoelastic film-coated wire to saturation
US6436059B1 (en) 2000-09-12 2002-08-20 Claudio I. Zanelli Detection of imd contact and alignment based on changes in frequency response characteristics
US6398738B1 (en) * 2000-09-25 2002-06-04 Millar Instruments, Inc. Method and apparatus for reconstructing a high fidelity pressure waveform with a balloon catheter
CA2333224A1 (en) * 2001-01-31 2002-07-31 University Technologies International Inc. Non-invasive diagnostic method and apparatus for musculoskeletal systems
US20020193781A1 (en) 2001-06-14 2002-12-19 Loeb Marvin P. Devices for interstitial delivery of thermal energy into tissue and methods of use thereof
NL1018874C2 (nl) 2001-09-03 2003-03-05 Michel Petronella Hub Vleugels Chirurgisch instrument.
US6835173B2 (en) * 2001-10-05 2004-12-28 Scimed Life Systems, Inc. Robotic endoscope
GB0126232D0 (en) 2001-11-01 2002-01-02 Renishaw Plc Calibration of an analogue probe
US6741878B2 (en) * 2001-12-14 2004-05-25 Biosense Webster, Inc. Basket catheter with improved expansion mechanism
US7729742B2 (en) * 2001-12-21 2010-06-01 Biosense, Inc. Wireless position sensor
DE10203371A1 (de) * 2002-01-29 2003-08-07 Siemens Ag Katheter, insbesondere intravaskulärer Katheter
US6814733B2 (en) 2002-01-31 2004-11-09 Biosense, Inc. Radio frequency pulmonary vein isolation
US6976967B2 (en) 2002-02-19 2005-12-20 Medtronic, Inc. Apparatus and method for sensing spatial displacement in a heart
US20030187389A1 (en) 2002-03-29 2003-10-02 Scimed Life Systems, Inc. Center support for steerable electrophysiology catheter
US6909919B2 (en) * 2002-09-06 2005-06-21 Cardiac Pacemakers, Inc. Cardiac lead incorporating strain gauge for assessing cardiac contractility
US20040068178A1 (en) * 2002-09-17 2004-04-08 Assaf Govari High-gradient recursive locating system
US6997924B2 (en) * 2002-09-17 2006-02-14 Biosense Inc. Laser pulmonary vein isolation
US6871085B2 (en) * 2002-09-30 2005-03-22 Medtronic, Inc. Cardiac vein lead and guide catheter
US7306593B2 (en) 2002-10-21 2007-12-11 Biosense, Inc. Prediction and assessment of ablation of cardiac tissue
US7599730B2 (en) * 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7156816B2 (en) * 2002-11-26 2007-01-02 Biosense, Inc. Ultrasound pulmonary vein isolation
US6945956B2 (en) * 2002-12-23 2005-09-20 Medtronic, Inc. Steerable catheter
WO2004062525A2 (en) 2003-01-16 2004-07-29 Galil Medical Ltd. Device, system, and method for detecting and localizing obstruction within a blood vessel
JP3966468B2 (ja) * 2003-02-12 2007-08-29 学校法人日本大学 生体組織の弾力特性測定装置
US7297116B2 (en) 2003-04-21 2007-11-20 Wisconsin Alumni Research Foundation Method and apparatus for imaging the cervix and uterine wall
US7090639B2 (en) 2003-05-29 2006-08-15 Biosense, Inc. Ultrasound catheter calibration system
US7235070B2 (en) * 2003-07-02 2007-06-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation fluid manifold for ablation catheter
JP4253540B2 (ja) 2003-07-24 2009-04-15 オリンパス株式会社 医療器械
US6973339B2 (en) * 2003-07-29 2005-12-06 Biosense, Inc Lasso for pulmonary vein mapping and ablation
US7763012B2 (en) 2003-09-02 2010-07-27 St. Jude Medical, Cardiology Division, Inc. Devices and methods for crossing a chronic total occlusion
US7435232B2 (en) 2003-09-05 2008-10-14 William Marsh Rice University Noninvasive tissue assessment
US7758587B2 (en) * 2003-10-08 2010-07-20 Boston Scientific Scimed, Inc. Medical device guidance from an anatomical reference
US7682358B2 (en) * 2003-10-30 2010-03-23 Medtronic, Inc. Steerable catheter
US7397364B2 (en) 2003-11-11 2008-07-08 Biosense Webster, Inc. Digital wireless position sensor
US7077823B2 (en) 2003-11-19 2006-07-18 Biosense Webster, Inc. Bidirectional steerable catheter with slidable mated puller wires
US6964205B2 (en) 2003-12-30 2005-11-15 Tekscan Incorporated Sensor with plurality of sensor elements arranged with respect to a substrate
US8046049B2 (en) 2004-02-23 2011-10-25 Biosense Webster, Inc. Robotically guided catheter
WO2005084542A1 (en) * 2004-03-04 2005-09-15 Agency For Science, Technology And Research Apparatus for medical and/or simulation procedures
DE102004017834B4 (de) 2004-04-13 2011-01-27 Siemens Ag Kathetereinrichtung
US7311704B2 (en) 2004-05-27 2007-12-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Spring-tip, flexible electrode catheter for tissue ablation
US7632265B2 (en) * 2004-05-28 2009-12-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Radio frequency ablation servo catheter and method
JP4441627B2 (ja) 2004-06-02 2010-03-31 独立行政法人産業技術総合研究所 圧力センサの動的校正装置および動的校正方法
US8043216B2 (en) 2004-06-09 2011-10-25 Hitachi Medical Corporation Method of displaying elastic image and diagnostic ultrasound system
US7377906B2 (en) 2004-06-15 2008-05-27 Biosense Webster, Inc. Steering mechanism for bi-directional catheter
EP1778337A4 (en) * 2004-06-29 2008-04-02 Stereotaxis Inc USE OF A CONTROL AND LENGTH VARIABLE TO NAVIGATE A MEDICAL REMOTE CONTROL DEVICE
JP4009621B2 (ja) * 2004-07-02 2007-11-21 オリンパス株式会社 内視鏡
US7627361B2 (en) * 2004-08-24 2009-12-01 Stereotaxis, Inc. Methods and apparatus for steering medical device in body lumens
JP4350004B2 (ja) 2004-08-25 2009-10-21 独立行政法人産業技術総合研究所 3次元抗力センサ
CN100337155C (zh) 2004-09-15 2007-09-12 华为技术有限公司 一种光传输***及在其中采用的光放大的方法
KR100579490B1 (ko) * 2004-09-20 2006-05-15 삼성전자주식회사 실리콘 절연체 실리콘 구조물 및 그 제조방법
WO2006043884A1 (en) 2004-10-20 2006-04-27 Alfa Laval Corporate Ab Permeate tube
WO2006052940A2 (en) 2004-11-05 2006-05-18 Asthmatx, Inc. Medical device with procedure improvement features
US20060173480A1 (en) 2005-01-31 2006-08-03 Yi Zhang Safety penetrating method and apparatus into body cavities, organs, or potential spaces
US8007440B2 (en) 2005-02-08 2011-08-30 Volcano Corporation Apparatus and methods for low-cost intravascular ultrasound imaging and for crossing severe vascular occlusions
US7699846B2 (en) 2005-03-04 2010-04-20 Gyrus Ent L.L.C. Surgical instrument and method
US8182433B2 (en) 2005-03-04 2012-05-22 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US8075498B2 (en) 2005-03-04 2011-12-13 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US8375808B2 (en) * 2005-12-30 2013-02-19 Intuitive Surgical Operations, Inc. Force sensing for surgical instruments
US7752920B2 (en) 2005-12-30 2010-07-13 Intuitive Surgical Operations, Inc. Modular force sensor
US8128621B2 (en) * 2005-05-16 2012-03-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated ablation electrode assembly and method for control of temperature
US7337085B2 (en) 2005-06-10 2008-02-26 Qsi Corporation Sensor baseline compensation in a force-based touch device
US7465288B2 (en) 2005-06-28 2008-12-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Actuation handle for a catheter
US7536218B2 (en) * 2005-07-15 2009-05-19 Biosense Webster, Inc. Hybrid magnetic-based and impedance-based position sensing
US8192374B2 (en) * 2005-07-18 2012-06-05 Stereotaxis, Inc. Estimation of contact force by a medical device
US20080200843A1 (en) 2005-08-09 2008-08-21 Ohio Universtiy Method and Apparatus for Measurement of Human Tissue Properties in Vivo
WO2007025230A2 (en) 2005-08-25 2007-03-01 Fluid Medical, Inc. Tubular compliant mechanisms for ultrasonic imaging systems and intravascular interventional devices
US7756576B2 (en) * 2005-08-26 2010-07-13 Biosense Webster, Inc. Position sensing and detection of skin impedance
US8187195B2 (en) * 2005-10-12 2012-05-29 Radi Medical Systems Ab Sensor wire assembly
US8679109B2 (en) * 2005-10-13 2014-03-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Dynamic contact assessment for electrode catheters
ATE548985T1 (de) 2005-10-27 2012-03-15 St Jude Medical Atrial Fibrill Systeme zur beurteilung von elektrodenkontakt
US20070106114A1 (en) * 2005-11-09 2007-05-10 Pentax Corporation Endoscope-shape monitoring system
EP1962710B1 (en) 2005-12-06 2015-08-12 St. Jude Medical, Atrial Fibrillation Division, Inc. Apparatus for displaying catheter electrode-tissue contact in electro-anatomic mapping and navigation system
US20090177111A1 (en) 2006-12-06 2009-07-09 Miller Stephan P System and method for displaying contact between a catheter and tissue
US8403925B2 (en) * 2006-12-06 2013-03-26 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for assessing lesions in tissue
US20070167818A1 (en) 2005-12-06 2007-07-19 Osborn Thomas W Iii Device and system for in-vivo measurement of biomechanical properties of internal tissues
US20070156114A1 (en) * 2005-12-29 2007-07-05 Worley Seth J Deflectable catheter with a flexibly attached tip section
US20070167740A1 (en) 2005-12-30 2007-07-19 Grunewald Debby E Magnetic stabilization of catheter location sensor
US20070161882A1 (en) 2006-01-06 2007-07-12 Carlo Pappone Electrophysiology catheter and system for gentle and firm wall contact
EP1973596A4 (en) 2006-01-09 2010-01-20 Windcrest Llc APPARATUS FOR CONTROLLING VASCULAR GUIDING WIRE
US7860553B2 (en) 2006-02-09 2010-12-28 Biosense Webster, Inc. Two-stage calibration of medical probes
US7662151B2 (en) * 2006-02-15 2010-02-16 Boston Scientific Scimed, Inc. Contact sensitive probes
US7976541B2 (en) 2006-02-15 2011-07-12 Boston Scientific Scimed, Inc. Contact sensitive probes with indicators
US7918850B2 (en) 2006-02-17 2011-04-05 Biosense Wabster, Inc. Lesion assessment by pacing
US8092397B2 (en) 2006-02-22 2012-01-10 Hansen Medical, Inc. Apparatus for measuring distal forces on a working instrument
JP4981023B2 (ja) 2006-03-02 2012-07-18 株式会社日立メディコ 自動圧迫装置及び同装置を用いた超音波診断装置
JP4878513B2 (ja) 2006-03-27 2012-02-15 国立大学法人 名古屋工業大学 可撓性線状体の圧縮力計測装置および方法
US7520858B2 (en) 2006-06-05 2009-04-21 Physical Logic Ag Catheter with pressure sensor and guidance system
US8048063B2 (en) * 2006-06-09 2011-11-01 Endosense Sa Catheter having tri-axial force sensor
US7911315B2 (en) * 2006-07-28 2011-03-22 Honeywell International Inc. Miniature pressure sensor assembly for catheter
US8728010B2 (en) * 2006-08-24 2014-05-20 Boston Scientific Scimed, Inc. Elongate medical device including deformable distal end
EP2091436A1 (en) 2006-11-03 2009-08-26 Koninklijke Philips Electronics N.V. Multiple rotation c-arm
US7681432B2 (en) * 2006-12-12 2010-03-23 Agilent Technologies, Inc. Calibrating force and displacement sensors of mechanical probes
US7996057B2 (en) 2007-01-31 2011-08-09 Biosense Webster, Inc. Ultrasound catheter calibration with enhanced accuracy
US8187267B2 (en) 2007-05-23 2012-05-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter with flexible tip and methods of making the same
US8517999B2 (en) 2007-04-04 2013-08-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Irrigated catheter with improved fluid flow
WO2008124643A1 (en) 2007-04-05 2008-10-16 Velomedix, Inc. Device and method for safe access to a body cavity
US8515521B2 (en) * 2007-05-01 2013-08-20 St. Jude Medical, Atrial Fibrillation Division, Inc. Coupler assembly for catheters
US8577447B2 (en) 2007-05-01 2013-11-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Optic-based contact sensing assembly and system
US8989842B2 (en) 2007-05-16 2015-03-24 General Electric Company System and method to register a tracking system with intracardiac echocardiography (ICE) imaging system
US8157789B2 (en) 2007-05-24 2012-04-17 Endosense Sa Touch sensing catheter
US8137275B2 (en) * 2007-06-28 2012-03-20 Siemens Medical Solutions Usa, Inc. Tissue complex modulus and/or viscosity ultrasound imaging
US20090010021A1 (en) * 2007-07-06 2009-01-08 Smith Jeffrey T Recreational apparatus and method of making the same
DE102007036084A1 (de) 2007-08-01 2009-02-05 Man Turbo Ag Verfahren zur Bestimmung von Emissionswerten einer Gasturbine und Vorrichtung zur Durchführung des Verfahrens
US8357152B2 (en) * 2007-10-08 2013-01-22 Biosense Webster (Israel), Ltd. Catheter with pressure sensing
US8535308B2 (en) * 2007-10-08 2013-09-17 Biosense Webster (Israel), Ltd. High-sensitivity pressure-sensing probe
EP2197377B1 (en) 2007-11-16 2017-11-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Device for real-time lesion estimation during ablation
JP5171535B2 (ja) 2007-12-14 2013-03-27 Ntn株式会社 荷重検出装置および荷重検出方法
US20090158511A1 (en) * 2007-12-20 2009-06-25 Maze Jack E Male urinal
US7985215B2 (en) 2007-12-28 2011-07-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Deflectable catheter with distal deflectable segment
US20090275966A1 (en) 2008-05-05 2009-11-05 Miroslav Mitusina Flexible inner members having flexible regions comprising a plurality of intertwined helical cuts
US8777870B2 (en) 2008-05-15 2014-07-15 Michel H. Malek Functional discography catheter
EP2127604A1 (en) 2008-05-30 2009-12-02 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO An instrument for minimally invasive surgery
GB0810317D0 (en) * 2008-06-05 2008-07-09 King S College London Sensor
US8437832B2 (en) 2008-06-06 2013-05-07 Biosense Webster, Inc. Catheter with bendable tip
CN101347331B (zh) 2008-06-06 2011-09-07 微创医疗器械(上海)有限公司 一种模拟导管弯曲形态的方法及磁感应导管
US8882761B2 (en) 2008-07-15 2014-11-11 Catheffects, Inc. Catheter and method for improved ablation
US9101734B2 (en) 2008-09-09 2015-08-11 Biosense Webster, Inc. Force-sensing catheter with bonded center strut
US8394026B2 (en) * 2008-11-03 2013-03-12 University Of British Columbia Method and apparatus for determining viscoelastic parameters in tissue
US8083691B2 (en) * 2008-11-12 2011-12-27 Hansen Medical, Inc. Apparatus and method for sensing force
US20100137845A1 (en) * 2008-12-03 2010-06-03 Immersion Corporation Tool Having Multiple Feedback Devices
US9326700B2 (en) * 2008-12-23 2016-05-03 Biosense Webster (Israel) Ltd. Catheter display showing tip angle and pressure
US8864757B2 (en) 2008-12-31 2014-10-21 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for measuring force and torque applied to a catheter electrode tip
US8374723B2 (en) 2008-12-31 2013-02-12 Intuitive Surgical Operations, Inc. Obtaining force information in a minimally invasive surgical procedure
CN104605928B (zh) 2009-05-08 2018-01-05 圣犹达医疗用品国际控股有限公司 用于在基于导管的消融治疗中控制损伤尺寸的***
WO2011028716A1 (en) * 2009-09-01 2011-03-10 Massachusetts Institute Of Technology Nonlinear system identification technique for testing the efficacy of skin care products
US8758271B2 (en) * 2009-09-01 2014-06-24 Massachusetts Institute Of Technology Nonlinear system identification techniques and devices for discovering dynamic and static tissue properties
JP5665040B2 (ja) 2009-09-10 2015-02-04 学校法人上智学院 変位計測方法及び装置、並びに、超音波診断装置
EP4332989A3 (en) 2009-10-12 2024-05-01 Corindus, Inc. Catheter system with percutaneous device movement algorithm
US10688278B2 (en) * 2009-11-30 2020-06-23 Biosense Webster (Israel), Ltd. Catheter with pressure measuring tip
US8374819B2 (en) * 2009-12-23 2013-02-12 Biosense Webster (Israel), Ltd. Actuator-based calibration system for a pressure-sensitive catheter
US8521462B2 (en) 2009-12-23 2013-08-27 Biosense Webster (Israel), Ltd. Calibration system for a pressure-sensitive catheter
US8529476B2 (en) 2009-12-28 2013-09-10 Biosense Webster (Israel), Ltd. Catheter with strain gauge sensor
US8374670B2 (en) 2010-01-22 2013-02-12 Biosense Webster, Inc. Catheter having a force sensing distal tip
US8798952B2 (en) 2010-06-10 2014-08-05 Biosense Webster (Israel) Ltd. Weight-based calibration system for a pressure sensitive catheter
US8226580B2 (en) * 2010-06-30 2012-07-24 Biosense Webster (Israel), Ltd. Pressure sensing for a multi-arm catheter
US8380276B2 (en) * 2010-08-16 2013-02-19 Biosense Webster, Inc. Catheter with thin film pressure sensing distal tip
US8731859B2 (en) * 2010-10-07 2014-05-20 Biosense Webster (Israel) Ltd. Calibration system for a force-sensing catheter
US8979772B2 (en) * 2010-11-03 2015-03-17 Biosense Webster (Israel), Ltd. Zero-drift detection and correction in contact force measurements
US9044244B2 (en) 2010-12-10 2015-06-02 Biosense Webster (Israel), Ltd. System and method for detection of metal disturbance based on mutual inductance measurement
US9211094B2 (en) 2010-12-10 2015-12-15 Biosense Webster (Israel), Ltd. System and method for detection of metal disturbance based on contact force measurement
US10307205B2 (en) 2010-12-10 2019-06-04 Biosense Webster (Israel) Ltd. System and method for detection of metal disturbance based on orthogonal field components
US9277872B2 (en) 2011-01-13 2016-03-08 Rhythmia Medical, Inc. Electroanatomical mapping
US8333103B2 (en) 2011-03-30 2012-12-18 Biosense Webster (Israel), Ltd. Calibration of a force measuring system for large bend angles of a catheter
US8523787B2 (en) 2011-06-03 2013-09-03 Biosense Webster (Israel), Ltd. Detection of tenting
US20120316407A1 (en) 2011-06-12 2012-12-13 Anthony Brian W Sonographer fatigue monitoring
US20130018306A1 (en) * 2011-07-13 2013-01-17 Doron Moshe Ludwin System for indicating catheter deflection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6272371B1 (en) * 1997-01-03 2001-08-07 Biosense Inc. Bend-responsive catheter
EA002415B1 (ru) * 1998-08-21 2002-04-25 Ага Медикал Корпорейшн Измерительный катетер для определения размеров дефектов перегородки
US20020165461A1 (en) * 2001-05-02 2002-11-07 Hayzelden Robert C. Steerable catheter with shaft support system for resisting axial compressive loads
EP1690564A1 (en) * 2005-02-14 2006-08-16 Biosense Webster Steerable catheter with in-plane deflection
US20080051704A1 (en) * 2006-08-28 2008-02-28 Patel Rajnikant V Catheter and system for using same
WO2009008570A1 (en) * 2007-07-12 2009-01-15 Ifeelu Inc. Small sized body-sonic vibration receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2799025C1 (ru) * 2019-11-21 2023-06-30 Шанхай Майкропорт Еп Медтек Ко., Лтд. Тензометрический датчик, датчик усилия и оперативный медицинский катетер
US12025436B2 (en) 2019-11-21 2024-07-02 Shanghai Microport Ep Medtech Co., Ltd. Strain gauge, force sensor and interventional medical catheter

Also Published As

Publication number Publication date
DK2172240T3 (da) 2013-04-02
CN101721246B (zh) 2015-04-01
US20100063478A1 (en) 2010-03-11
JP5523775B2 (ja) 2014-06-18
AU2009212972A1 (en) 2010-03-25
AU2009212972B2 (en) 2015-03-05
CA2678216C (en) 2018-02-27
RU2009133735A (ru) 2011-03-20
EP2172240A1 (en) 2010-04-07
EP2172240B1 (en) 2012-12-26
CN101721246A (zh) 2010-06-09
US9101734B2 (en) 2015-08-11
IL200751A (en) 2014-02-27
ES2398935T3 (es) 2013-03-22
IL200751A0 (en) 2010-05-17
JP2010063887A (ja) 2010-03-25
CA2678216A1 (en) 2010-03-09

Similar Documents

Publication Publication Date Title
RU2506965C2 (ru) Силоизмерительный катетер с присоединенной центральной распоркой
US11324410B2 (en) Intravascular devices, systems, and methods having a core wire with embedded conductors
EP3884898B1 (en) Force sensor and catheter
CN105636507B (zh) 血管内装置、***和方法
US20240215916A1 (en) Intravascular devices, systems, and methods having separate sections with engaged core components
JP6395826B2 (ja) センサ・ガイド・ワイヤ装置及びセンサ・ガイド・ワイヤ装置を備えたシステム
WO2015148383A1 (en) Intravascular devices, systems, and methods having a core wire formed of multiple materials
EP3324837B1 (en) Intravascular devices, systems, and methods with an adhesively attached shaping ribbon
Shin et al. Development of tri-axial fiber Bragg grating force sensor in catheter application
KR20220123380A (ko) 침습적 온도 센서 시스템
AU2011275994A1 (en) Sensor element with an insulation layer
Shin et al. Development and evaluation of tri-axial fiber Bragg grating in a measurement module for catheterization

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190909