RU2497930C1 - Способ пиролиза углеводородного сырья - Google Patents

Способ пиролиза углеводородного сырья Download PDF

Info

Publication number
RU2497930C1
RU2497930C1 RU2012111938/04A RU2012111938A RU2497930C1 RU 2497930 C1 RU2497930 C1 RU 2497930C1 RU 2012111938/04 A RU2012111938/04 A RU 2012111938/04A RU 2012111938 A RU2012111938 A RU 2012111938A RU 2497930 C1 RU2497930 C1 RU 2497930C1
Authority
RU
Russia
Prior art keywords
pyrolysis
mixing
temperature
reactor
coolant
Prior art date
Application number
RU2012111938/04A
Other languages
English (en)
Other versions
RU2012111938A (ru
Inventor
Марат Григорьевич Кталхерман
Владимир Андреевич Емелькин
Борис Алексеевич Поздняков
Игорь Геннадьевич Намятов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН)
Priority to RU2012111938/04A priority Critical patent/RU2497930C1/ru
Publication of RU2012111938A publication Critical patent/RU2012111938A/ru
Application granted granted Critical
Publication of RU2497930C1 publication Critical patent/RU2497930C1/ru

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к термическому пиролизу углеводородного сырья и может быть использовано в нефтехимической промышленности. Изобретение касается способа пиролиза углеводородного сырья, включающего генерацию высокотемпературного потока теплоносителя путем сжигания в камере сгорания стехиометрической топливокислородной смеси, разбавленной перегретым водяным паром, смешение потока теплоносителя и углеводородного сырья в смесителе, пиролиз сырья в реакторе и последующую закалку продуктов реакции. Газообразное или жидкое углеводородное сырье, предварительно смешанное с водяным паром, инжектируют в зону смешения струями так, что струи сталкиваются между собой на оси смесителя, при этом время смешения струй с дозвуковым потоком теплоносителя составляет 0,05-0,2 мс, затем сырье подвергают пиролизу при параметрах процесса, обеспечивающих максимальный выход целевых продуктов: давление 0,1-1 МПа, температура 1200-1500K, время пребывания сырья в зоне пиролиза 5-100 мс. Технический результат - повышение выхода целевых продуктов пиролиза. 5 ил., 5 табл., 2 пр.

Description

Изобретение относится к термическому пиролизу углеводородного сырья, в частности, нафты, газойлей, этана, пропана, бутана и может быть использовано в нефтехимической промышленности.
В настоящее время нефтехимическая промышленность в больших объемах потребляет продукты пиролиза, которые используются для производства пластмасс, синтетических нитей, резины и т.д. При этом наибольшим спросом пользуются низшие олефины и, в первую очередь, этилен
Общая схема пиролиза описана в книге [Мухина Т.Н., Барабанов Н.Л., Меньшиков В. А., Аврех Г.Л. Пиролиз углеводородного сырья. - М.: Химия, 1987]. Сырьем для процесса пиролиза служат газообразные (этан, пропан, бутан) и жидкие (нафта. газойли). углеводороды. Процесс состоит в том, что сырье, подогретое в конвекционной части печи, смешивается с перегретым водяным паром и поступает в реакционный змеевик, расположенный в радиантной части печи. За счет тепла продуктов сгорания топливовоздушной смеси, подведенного к стенкам змеевика, происходит разложение сырья с образованием различных (в основном, более легких) продуктов. При этом температура реагирующего потока постепенно повышается до 1100-1200K, после чего смесь быстро охлаждается, чтобы предотвратить потерю наиболее ценных продуктов в ходе вторичных реакций. Затем охлажденная смесь поступает в узлы компримирования, сепарации и газоразделения.
Производство низших олефинов характеризуется большим потреблением углеводородного сырья, и сырьевая составляющая является основной в структуре цены этилена, определяющая эффективность всего процесса. Возможности увеличения выхода этилена в рамках современной схемы пиролиза в настоящее время исчерпаны.
Один из наиболее перспективных альтернативных способов увеличения выхода этилена связан с увеличением температуры в реакторе с одновременным снижением времени пребывания сырья в зоне реакций. Росту температур в зоне реакции препятствует ограничение по теплостойкости материала труб змеевика. Это ограничение можно преодолеть, если тепло к сырью подводить не со стенок труб змеевика, а передать его ему путем смешения с высокотемпературным теплоносителем, запаса тепла в котором достаточно для осуществления реакций пиролиза при повышенных температурах.
Известен метод инициирования реакций пиролиза по патенту США №5300216 (опубл. 05.04.1994). В качестве теплоносителя используется перегретый пар с давлением 2,7 МПа и температурой 1009ºС, нагреваемый сторонним источником тепла. Пиролизируемое сырье (этан, пропан) подогревается до 627ºC под давлением 0,76 МПа. В секции смешения оба потока ускоряются в сверхзвуковых соплах, расположенных поочередно. При этом их температура снижается до значений, при которых реакции пиролиза не идут. Перемешивание сырья с теплоносителем осуществляется за счет различия скоростей потоков. После завершения смешения течение в системе скачков уплотнения переходит в дозвуковое и соответствующий рост температуры инициирует начало реакций. На выходе из реактора продукты реакций быстро охлаждаются. Важным элементом данной схемы является клапан, расположенный ниже по потоку, с помощью которого регулируется давление на выходе реактора, определяющее положение зон смешения и реакций в установке пиролиза.
Данный метод применим для пиролиза только газообразного сырья. Способ генерации теплоносителя не позволяет вести процесс при более высоких температурах, а большие потери давления в скачках уплотнения снижают энергоэффективность процесса.
Известны данные экспериментов, проведенных ВНИИОС и опубликованные в монографии [Мухина Т.Н., Барабанов Н.Л., Меньшиков В. А., Аврех Г.Л. Пиролиз углеводородного сырья. - М.: Химия, 1987. С.199-200]. На пилотной установке исследовался процесс пиролиза тяжелых нефтяных фракций (вакуумного газойля и мазута) в потоке теплоносителя с температурой 1600-1900ºC, получаемого путем смешения перегретого водяного пара с продуктами сгорания водородовоздушной смеси с избытком водорода. Сырье вводилось в поток по оси цилиндрического канала. Температура в зоне реакции 1050-850ºC, время пребывания в реакторе 1-40 мс. Результаты экспериментов близки к полученным на установке Union Carbide с реактором ACR.
Наиболее близким к предлагаемому изобретению является способ термического крекинга углеводородов в реакторе ACR, описанный в патенте США №4136015 (23.01.1979). Способ заключается в следующем. Теплоноситель генерируется в камере сгорания, куда подаются топливо (водород, метан) и кислород. Продукты сгорания разбавляются перегретым паром, при этом формируется поток теплоносителя с температурой к 2200ºC. Поток теплоносителя поступает в сужающе-расширяющийся канал (сопло Лаваля), в дозвуковой части которого в поток теплоносителя со стенок сопла инжектируются струи подогретого сырья (дистилляты нефти). Проходя критическое сечение сопла, смесь сырья с теплоносителем ускоряется до сверхзвуковых скоростей. При этом температура потока (по направлению течения) снижается. После завершения идущих одновременно процессов испарения капель, смешения и частичного пиролиза сырья сверхзвуковой поток в системе скачков уплотнения быстро переходит в дозвуковой. В результате температура потока увеличивается, и начинается заключительная стадия пиролиза. Температура на выходе реактора составляет 820-900°C. Далее смесь быстро охлаждается в теплообменнике. Время пребывания в реакторе 15-18 мс, давление ≈0,5 МПа.
Недостатками рассмотренных процессов пиролиза углеводородного сырья является: в экспериментах ВНИИОС процесс пиролиза протекает полностью, а в способе термического крекинга углеводородов в реакторе ACR частично и одновременно с процессами испарения сырья и его смешения с теплоносителем, и поэтому он плохо поддается контролю и управлению. В результате реакции пиролиза частично идут в области температур, превышающих оптимальные значения, что снижает выход целевых продуктов.
Задачей предлагаемого изобретения является повышение выхода целевых продуктов пиролиза и, в первую очередь этилена, за счет увеличения температуры процесса и одновременного уменьшения времени смешения сырья с теплоносителем.
Для достижения такого технического результата в предлагаемом способе пиролиза углеводородного сырья, включающем генерацию высокотемпературного потока теплоносителя путем сжигания стехиометрической топливо-кислородной смеси, разбавленной перегретым водяным паром, смешение потока теплоносителя и углеводородного сырья, пиролиз и последующую закалку продуктов реакции, новым является то, что газообразное или жидкое углеводородное сырье, предварительно смешанное с водяным паром, инжектируют в зону смешения струями так, что струи сталкиваются между собой на оси смесителя, при этом время смешения струй с дозвуковым потоком теплоносителя, составляет 0,05-0,2 мс, затем сырье подвергают пиролизу при параметрах процесса, обеспечивающих максимальный выход целевых продуктов: давление 0,1-1 МПа, температура 1200-1500K, время пребывания сырья в зоне пиролиза 5-100 мс. Смешение углеводородного сырья с дозвуковым потоком теплоносителя осуществляют в интервале 0,05-0,2 мс, и в связи с малым временем перемешивания сырья с теплоносителем, реакции в области смешения не успевают пройти.
Процесс пиролиза углеводородного сырья осуществляют при давлении в реакторе от 0,1 до 1 МПа, что позволяет выбирать нужное значение давление в зависимости от состава оборудования и необходимой производительности установки пиролиза.
Время пребывания сырья в реакторе составляет 5-100 мс, что позволяет оптимизировать и в определенных пределах менять состав продуктов пиролиза.
Процесс пиролиза углеводородного сырья осуществляют при температуре на входе в реактор 1250-1500K, что позволяет увеличить выход наиболее ценных для нефтехимической промышленности продуктов.
В предлагаемом способе термическое разложение углеводородного сырья осуществляется в дозвуковом потоке, сформированном в результате быстрого и эффективного смешения сырья с высокотемпературным теплоносителем, запаса тепла в котором достаточно для проведения реакций пиролиза в диапазоне высоких температур. Причем скорость нагрева сырья настолько велика, что в процессе перемешивания степень конверсии сырья остается незначительной, в результате чего процесс в реакторе идет при полностью контролируемых условиях.
Предлагаемый способ поясняется чертежами, на которых изображены:
на фиг.1 - блок-схема процесса, где показаны основные узлы установки пиролиза: камера сгорания, смеситель, реактор и закалочно-испарительный аппарат;
на фиг.2 - схема устройства для осуществления предложенного способа, на которой показано горелочное устройство 1, камера сгорания 2, соединенная со смесителем 3, представляющий собой цилиндрический канал, в стенках которого имеются отверстия 4 для подачи в поток теплоносителя смеси углеводородного сырья с перегретым водяным паром, смеситель соединен с реактором 5, представляющий собой цилиндрический канал и закалочно-испарительный аппарат (на фиг.2 не показан);
на фиг.3 - представлен график иллюстрирующий ход процесса пиролиза;
на фиг.4 - показан состав продуктов пиролиза в реакторе быстрого смешения при использовании в качестве сырья сжиженных нефтяных газов, а на фиг.5 то же при использовании нафты.
Способ реализуется следующим образом
В горелочное устройство 1 (фиг.2) камеры сгорания 2 подают топливо (например, водород и/или метан, выделяемые из пирогаза, либо жидкие дистилляты нефти), и окислитель - кислород. Перегретый водяной пар, также подаваемый в камеру сгорания 2, генерируется за счет утилизации тепла продуктов пиролиза. В процессе сгорания топлива, температура потока на выходе камеры сгорания 2 составляет 1700-2100K, а предпочтительное его значение находится в интервале 1750 - 1850К. Полученный дозвуковой поток теплоносителя из камеры сгорания 2 поступает в смеситель 3. Далее углеводородное сырье (нафта, газойль, этан, пропан, бутан) или смесь сырья с водяным паром, через отверстия 4 в стенках смесителя 3, инжектируется в зону смешения струями, сталкивающимися между собой на оси смесителя 3 с дозвуковым потоком теплоносителя, получаемым в камере сгорания 2 при сжигании топлива с кислородом и разбавлении продуктов сгорания перегретым водяным паром. Углеводородное сырье в смеситель 3 подают в газообразном виде, а в случае, если при работе используют жидкое сырье, то оно предварительно испаряется в потоке перегретого водяного пара. Причем пар добавляют и при пиролизе газообразного сырья, когда это необходимо для улучшения качества смешения. Диаметр канала смесителя 3, диаметр и количество отверстий 4 для вдува сырья, а также количество подмешиваемого к сырью водяного пара определяют из условия проникновения струй в центр смесителя 3, при этом количество отверстий 4 должно быть не менее четырех, а предпочтительно 6-8. Отверстия 4 располагают строго равномерно по периметру сечения канала смесителя 3, так чтобы обеспечить лучшее смешение струй с дозвуковым потоком теплоносителя в режиме их столкновения на оси. Длина зоны смешения в смесителе 3 составляет 1÷1,5 его диаметра. При этом время пребывания сырья в зоне смешения смесителя 3, определяемое длиной смесителя 3 и средней скоростью в нем, которое составляет 0,05-0,2 мс. За это время осуществляется быстрое перемешивание сырья с теплоносителем. Температура на выходе смесителя 3 (на входе в реактор 5) составляет 1200-1500K. Время пребывания сырья в реакторе 5-100 мс определяется длиной реактора и скоростью потока в нем, а давление в реакторе поддерживают на уровне от 0,1 до 1 МПа. На всем протяжении процесс высокотемпературного пиролиза ведут при дозвуковой скорости потока. Использование в предлагаемом способе пиролиза параметров процесса, таких как: ультракороткое время смешения сырья с теплоносителем и высокая температура на входе в реактор, позволяют разделить пространственно зоны смешения и осуществления реакций пиролиза и, таким образом, вести процесс в полностью контролируемых оптимальных условиях, при повышенной температуре на входе в реактор. Это позволяет увеличить выход целевых продуктов, и, в первую очередь этилена.
Ниже приведены примеры практического использования предлагаемого способа на экспериментальной установке. Отличие условий экспериментов от предлагаемых в изобретении, состоит лишь в замене состава теплоносителя: вместо продуктов сгорания углеводоро-докислородной смеси, разбавленных водяным паром (CO2+H2O), в экспериментах использовались продукты сгорания смеси водород - воздух, т.е. N2+H2O. Однако, поскольку компоненты теплоносителя в реакциях не участвуют, такая замена практически не влияет на выход целевых продуктов, но значительно упростила проведение экспериментов. Подтверждением этого служат данные фиг.3. Здесь результаты экспериментов с модельным теплоносителем (продукты сгорания водородовоздушной смеси) сопоставлены с результатами расчета процесса при использовании реального теплоносителя (продукты сгорония метанокислородной смеси, разбавленные водяным паром). Расчет выполнен по разработанной авторами программе. Температура смеси нафта/теплоноситель (1320K) в обоих случаях одинакова. Все остальные исходные параметры за исключением состава теплоносителя также одинаковы. Из фиг 3 следует, что отличие модельного состава теплоносителя, используемого в наших экспериментах, от реального (соответствующего предлагаемой схеме процесса) слабо влияет на ход процесса: зависимости концентраций целевых продуктов пиролиза от времени пребывания в реакторе в обоих случаях практически одинаковы. На. фиг.3 точки - эксперимент с модельным теплоносителем, линии - расчет с реальным теплоносителем, соответствующим заявляемой схеме процесса.
Пример 1. В эксперименте использовали сырье - сжиженный природный газ, а теплоносителем являлись продукты сгорания смеси водород - воздух, т.е. N2+H2O.
Таблица 1
Геометрические размеры установки
Диаметр реактора, мм:
1-я секция 40
2-я секция 80
Общая длина реактора, мм 2810
Диаметр смесителя, мм 15
Длина смесителя, мм 25
Диаметр сопел вдува, мм 0,75
Количество сопел 8
Таблица 2
Массовый состав сырья (сжиженный природный газ)
С3Н8,% 71,3
n-C4H10,% 4,1
i-C4H10,% 4,2
C2H6,% 19,7
С3Н6,% 0,3
C4H8,% 0,4
Таблица 3
Условия эксперимента
Давление в камере сгорания, МПа 0,125
Температура продуктов сгорания, K 2400
Температура на входе в смеситель, K 1750
Температура на выходе смесителя (на входе в реактор), K 1400
Давление в реакторе, МПа 0,1
Время смешения сырья с теплоносителем, мс 0,05
Время пребывания в реакторе, мс до 125
Результаты эксперимента при температуре смеси на входе в реактор 1400K и времени смешения 0,05 мс показаны на фиг.4, где представлен состав основных продуктов пиролиза сжиженных природных газов при времени пребывания в реакторе 0,125 с.
Пример 2. Использовали углеводородное сырье - прямогонный бензин (нафта): плотность 0,720 кг/м3, начало кипения 35°C, конец кипения 167°C. Теплоноситель - продукты сгорания водородовоздущной смеси. Сырье перед подачей испарялось в потоке нагретого азота. Азот, используемый для испарения сырья, является составной частью общего потока теплоносителя.
Таблица 4
Геометрические размеры установки
Диаметр реактора, мм 40
Длина реактора, мм 1520
Длина смесителя, мм 15
Диаметр сопел вдува, мм 1,0
Количество сопел вдува, шт 8
Таблица 5
Условия эксперимента
Давление в камере сгорания, МПа 0,152
Температура продуктов сгорания, K 2400
Температура на входе в смеситель, K 1750
Температура на выходе смесителя (на входе в реактор), K 1320
Давление в реакторе, МПа 0,1
Температура вдуваемой смеси (нафта+N2), K 560
Время смешения сырья с теплоносителем, мс 0,05
Время пребывания в реакторе, мс до 35
Результаты эксперимента по пиролизу нафты представлены на фиг.5, где показан состав продуктов при времени смешения сырья с теплоносителем 0,05 мс, времени пребывания в реакторе 35 мс и температуре на входе в реактор 1320K.
Выход наиболее ценного продукта нефтехимии - этилена в приведенных выше примерах, существенно превышает достигнутый в традиционном методе печного пиролиза.

Claims (1)

  1. Способ пиролиза углеводородного сырья, включающий генерацию высокотемпературного потока теплоносителя путем сжигания в камере сгорания стехиометрической топливокислородной смеси, разбавленной перегретым водяным паром, смешение потока теплоносителя и углеводородного сырья в смесителе, пиролиз сырья в реакторе и последующую закалку продуктов реакции, отличающийся тем, что газообразное или жидкое углеводородное сырье, предварительно смешанное с водяным паром, инжектируют в зону смешения струями так, что струи сталкиваются между собой на оси смесителя, при этом время смешения струй с дозвуковым потоком теплоносителя составляет 0,05-0,2 мс, затем сырье подвергают пиролизу при параметрах процесса, обеспечивающих максимальный выход целевых продуктов: давление 0,1-1 МПа, температура 1200-1500 K, время пребывания сырья в зоне пиролиза 5-100 мс.
RU2012111938/04A 2012-03-27 2012-03-27 Способ пиролиза углеводородного сырья RU2497930C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012111938/04A RU2497930C1 (ru) 2012-03-27 2012-03-27 Способ пиролиза углеводородного сырья

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012111938/04A RU2497930C1 (ru) 2012-03-27 2012-03-27 Способ пиролиза углеводородного сырья

Publications (2)

Publication Number Publication Date
RU2012111938A RU2012111938A (ru) 2013-10-10
RU2497930C1 true RU2497930C1 (ru) 2013-11-10

Family

ID=49302507

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012111938/04A RU2497930C1 (ru) 2012-03-27 2012-03-27 Способ пиролиза углеводородного сырья

Country Status (1)

Country Link
RU (1) RU2497930C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2545378C1 (ru) * 2013-11-12 2015-03-27 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "Научно-производственная компания Кедр-89" Устройство для осуществления термодеструктивных процессов переработки тяжелых нефтяных остатков

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136015A (en) * 1977-06-07 1979-01-23 Union Carbide Corporation Process for the thermal cracking of hydrocarbons

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4136015A (en) * 1977-06-07 1979-01-23 Union Carbide Corporation Process for the thermal cracking of hydrocarbons

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Кталхерман М.Г., Намятов И.Г., Емелькин В.А., Поздняков Б.А. Исследование высокотемпературного пиролиза пропана в реакторе быстрого смешения, Теплофизика высоких температур, 2009, т. 47, №5, с.741-751. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2545378C1 (ru) * 2013-11-12 2015-03-27 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "Научно-производственная компания Кедр-89" Устройство для осуществления термодеструктивных процессов переработки тяжелых нефтяных остатков

Also Published As

Publication number Publication date
RU2012111938A (ru) 2013-10-10

Similar Documents

Publication Publication Date Title
RU2282784C2 (ru) Способ и устройство для обогащения тяжелой нефти
RU2618051C2 (ru) Способ получения технического углерода с использованием разбавительной текучей среды
CA2930838C (en) Supersonic shock wave reactors, and associated systems and methods
US7977524B2 (en) Process for decoking a furnace for cracking a hydrocarbon feed
US20150165414A1 (en) Methods and reactors for producing acetylene
US3557241A (en) Decoking of onstream thermal cracking tubes with h20 and h2
RU2640592C2 (ru) Способ парового крекинга
US3498753A (en) Apparatus for thermal cracking of hydrocarbon
US20150361010A1 (en) Apparatus and process for the conversion of methane into acetylene
CN105622313A (zh) 一种蒸汽裂解方法
CN101920187B (zh) 一种裂解反应制备低碳烯烃的设备及方法
RU2497930C1 (ru) Способ пиролиза углеводородного сырья
US2475093A (en) Process for multistage conversion of hydrocarbons
US20150165411A1 (en) Methods and reactors for producing acetylene
Ktalkherman et al. High-temperature pyrolysis of liquified petroleum gases in the fast-mixing reactor
CN105623709B (zh) 一种蒸汽裂解方法
US3019271A (en) Process and apparatus for treatment of hydrocarbons
CN111826173B (zh) 用于制备低碳烯烃的反应装置、生产***和生产方法
CN105622323A (zh) 一种蒸汽裂解方法
US2866836A (en) Process and apparatus for conversion of hydrocarbons
CN105622312A (zh) 一种蒸汽裂解方法
CN217600663U (zh) 一种热载体直接加热烃类裂解制取低碳烯烃的反应器
CN213623982U (zh) 用于制备低碳烯烃的反应装置和生产***
CN114423517B (zh) 用于生产高价值化学产品的反应器***
CN106635123A (zh) 采用富氧燃烧的多程炉管的裂解炉