RU2496246C2 - Способ и устройство для передачи опорного сигнала местоположения - Google Patents

Способ и устройство для передачи опорного сигнала местоположения Download PDF

Info

Publication number
RU2496246C2
RU2496246C2 RU2012101203/07A RU2012101203A RU2496246C2 RU 2496246 C2 RU2496246 C2 RU 2496246C2 RU 2012101203/07 A RU2012101203/07 A RU 2012101203/07A RU 2012101203 A RU2012101203 A RU 2012101203A RU 2496246 C2 RU2496246 C2 RU 2496246C2
Authority
RU
Russia
Prior art keywords
reference signal
transmitting
location
physical resource
resource blocks
Prior art date
Application number
RU2012101203/07A
Other languages
English (en)
Other versions
RU2012101203A (ru
Inventor
Бо ДАИ
Гуангуй ЙЮ
Уэйжун ЛИ
Йижиан ЧЕН
Original Assignee
Зте Корпорейшен
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зте Корпорейшен filed Critical Зте Корпорейшен
Publication of RU2012101203A publication Critical patent/RU2012101203A/ru
Application granted granted Critical
Publication of RU2496246C2 publication Critical patent/RU2496246C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Изобретение относится к технике связи и может использоваться для передачи опорного сигнала местоположения. Технический результат состоит в повышении точности определения местоположения абонентского оборудования. Для этого способ включает представление местоположений частотной области для передачи опорного сигнала местоположения n физическими ресурсными блоками и получение значения n согласно сигнальному сообщению, представление местоположений временной области для передачи опорного сигнала местоположения остающимися символами мультиплексирования с ортогональным частотным разделением в подкадре, за исключением символов мультиплексирования с ортогональным частотным разделением для передачи физического нисходящего канала управления и символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала, характеризующего ячейку, и передачу опорного сигнала местоположения в соответствии с местоположением частотной области и местоположением временной области. С применением способа и устройства по настоящему изобретению реализована передача опорного сигнала местоположения. 4 н. и 15 з.п. ф-лы, 6 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к области мобильных систем связи, в частности к способам и устройствам для передачи опорного сигнала местоположения.
УРОВЕНЬ ТЕХНИКИ
Технология мультиплексирования с ортогональным частотным разделением сигналов (Orthogonal Frequency Division Multiplexing - OFDM) является по существу коммуникационной технологией модуляции на нескольких несущих и является одной из основных технологий для четвертого поколения мобильной связи. Многолучевой канал OFDM имеет характеристику частотно-избирательного затухания в частотной области. Для преодоления частотно-избирательного затухания канал разделяют на множество субканалов в частотной области, где частотная спектральная характеристика каждого субканала является приблизительно плоской, и все субканалы являются ортогональными относительно друг друга, вследствие этого предоставляется возможность частотным спектрам субканалов частично перекрывать друг друга, таким образом не только преодолевается проблема избирательного затухания, но также улучшается степень использования частотного спектра источника.
Система «Эволюция в течение длительного времени» (Long Term Evolution - LTE) является важной программой «Партнерский Проект по системам 3-го поколения» (3rd Generation Partnership Project-3GPP). Когда устройство LTE принимает нормальный циклический префикс, временной сегмент включает 7 передаваемых/принимаемых символов и имеет длину 7 передаваемых/принимаемых символов, а когда устройство LTE принимает удлиненный циклический префикс, временной сегмент включает 6 передаваемых/принимаемых символов и имеет длину 6 передаваемых/принимаемых символов.
Ресурсный элемент (Resource Element - RE) есть поднесущая на OFDM символе, 12 смежных поднесущих и 7 смежных OFDM символов представляют собой принимаемый ресурсный блок (Resource Block - RB), который занимает 180 kHz в частотной области и имеет длительность нормального временного сегмента во временной области, как показано на Фиг.1. Когда устройство LTE выполняет распределение ресурса, ресурсный блок выбирают для распределения в качестве основного блока. При этом когда принимается удлиненный циклический префикс, число смежных OFDM символов, образующих RB, есть 6.
Устройство LTE поддерживает использование многоканального входа - многоканального выхода (MIMO) четырех антенн, и соответствующие антенный порт №0, антенный порт №1 антенный порт №2 и антенный порт №3 соответственно принимают методом полной полосы частот опорных сигналов, характеризующих ячейку (Cell-Specific Reference Signals - CRSs). Когда циклический префикс является нормальным циклическим префиксом, положения этих опорных сигналов, характеризующих ячейку, в физическом ресурсном блоке показаны на Фиг.2(a). Когда циклический префикс является удлиненным циклическим префиксом, положения этих опорных сигналов, характеризующих ячейку, в физическом ресурсном блоке показаны на Фиг.2(b). На Фиг.2(a) и на Фиг.2(b) горизонтальная координата 1 представляет порядковый номер подкадра на OFDM символе.
Кроме того, также обеспечивается специфический опорный сигнал абонентского оборудования (User Equipment - UE), который передают только в положении частотно-временной области, где расположен UE-специфический физический нисходящий общий канал (UE-spedric Physical Downlink Shared Channel - PDSCH). При этом функции опорных сигналов, характеризующих ячейку, включают измерение характеристик качества для нисходящего канала и установление нисходящего канала, то есть измерение характеристик качества и демодуляцию для нисходящего канала.
Базовой станции требуется определить положение абонентского оборудования (UE) в сети, с тем, чтобы осуществить эффективную конфигурацию и очередность обслуживания UE. В настоящее время CRS применяют для измерения терминала, при этом существует ряд следующих ограничений:
(1) CRS последовательность повторяется в каждом кадре, так что взаимная корреляция слабая;
(2) когда осуществляется передача с помощью двух антенн, максимальный коэффициент мультиплексирования равен 3, и интерференция между соседними ячейками оказывается большой;
(3) мощность CRS сигналов имеет полупостоянную конфигурацию, так что ограничено определение местоположения.
Сегодня решением, использованным для разрешения указанных выше проблем, является определение местоположения UE посредством передачи опорного сигнала местоположения (PRS), тем самым обеспечивая точность местоположения UE. Однако в существующих технологиях определяют только физический ресурс, который использует ресурсный блок в качестве элемента для передачи опорного сигнала местоположения, и местоположения во всех ресурсных блоках, в которых передается опорный сигнал местоположения, являются одинаковыми, тогда как в том, что касается передачи опорного сигнала местоположения, в частности передачи индекса ресурсного блока опорного сигнала местоположения, конкретного временного-частотного расположения в ресурсном блоке, порядка следования опорного сигнала и тому подобное, то определенного решения еще не найдено.
По этой причине является актуальным разработать определенный способ передачи опорного сигнала местоположения в отрасли, чтобы гарантировать точность местоположения UE.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Задачей, которая решается настоящим изобретением, является создание способа передачи опорного сигнала местоположения, гарантирующего точность определения местоположения UE.
Поставленная задача решается тем, что способ передачи опорного сигнала местоположения включает:
представление местоположений частотной области для передачи опорного сигнала местоположения n физическими ресурсными блоками, значения n которых получают согласно сигнальному сообщению;
представление местоположений временной области для передачи опорного сигнала местоположения остающимися в подкадре символами мультиплексирования с ортогональным частотным разделением, за исключением символов мультиплексирования с ортогональным частотным разделением для передачи физического нисходящего канала управления и символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала, характеризующего ячейку, и
передачу опорного сигнала местоположения в соответствии с местоположением частотной области и местоположением временной области.
Предпочтительно способ может дополнительно включать процесс определения символов мультиплексирования с ортогональным частотным разделением, использованных для передачи опорного сигнала, соответствующего местоположению частотной области и местоположению временной области, в соответствии с которым, например:
определяют матрицу А общей последовательности, имеющую размерность N×N, где А=[a0, a1, a2, …, ai, …, aN-1], при этом колонки и ряды нумеруют соответственно от 0; N элементов, отличных друг от друга, включают в матрицу A, значение каждого элемента располагают в целочисленный ряд от 0 до N-1, где элемент ai обозначает, что элемент в ai-м ряду i-й колонки есть 1, а элементы в других местоположениях i-й колонки являются 0;
причем при идентификационном номере ячейки N I D c e l l
Figure 00000001
, индекс подкадра для передачи опорного сигнала, характеризующего ячейку, определяют как Subframelndex, и тогда матрицу В размерностью N×N, где B=[b0,b1,b2,…,bi,…,bN-1], соответствующую ячейке N I D c e l l
Figure 00000002
, представляют выражением:
h=X mod N, p=floor(X/N), bi=(a(i+h)mod N+p) mod N, i=0, 1, 2, …, N-1; или
p=X mod N, h=floor(X/N), bi=(a(i+h)mod N+p) mod N, i=0, 1, 2, …, N-1;
где x mod y представляет операцию для вычисления остаточного члена ряда, floor(x) представляет операцию округления до ближайшего целого в сторону уменьшения,
и X = N I D c e l l
Figure 00000003
, или X = N I D c e l l + S u b f r a m e I n d e x
Figure 00000004
;
устанавливают равным n число символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала местоположения в подкадре, выбирают первые n колонок или первые n рядов матрицы В или последние n колонок или последние n рядов матрицы В;
устанавливают точную соответствующую взаимосвязь между выбранными n колонками или n рядами и n символами мультиплексирования с ортогональным частотным разделением, при этом местоположение, где расположен элемент 1 в каждой колонке или каждом ряду, соответствует местоположению поднесущей, для которой опорный сигнал местоположения задан соответствующим символом мультиплексирования с ортогональным частотным разделением в каждом физическом ресурсном блоке для передачи опорного сигнала местоположения.
Предпочтительно физические ресурсные блоки могут быть n дискретными физическими ресурсными блоками, разделенными равными интервалами, или n смежными физическими ресурсными блоками.
Предпочтительно n дискретных физических ресурсных блоков, разделенных равными интервалами, могут быть пронумерованы соответственно как r, r+k, r+2×k, …, r+(n-1)×k, где r может представлять начальное местоположение n дискретных физических ресурсных блоков, разделенных равными интервалами, и k может представлять интервал между двумя соседними физическими ресурсными блоками.
Предпочтительно, когда ресурсным блоком, соответствующим текущей нисходящей полосе частот, является т, все физические ресурсные блоки могут быть пронумерованы от 0, r=0, k=m/n; где x представляет операцию округления до ближайшего целого в сторону уменьшения.
Предпочтительно n смежных физических ресурсных блоков могут быть n смежными физическими ресурсными блоками, начинающимися от низкой частоты, или n смежными физическими ресурсными блоками с нулевой частотой в центре, n смежными физическими ресурсными блоками с граничной высокой частотой, или n смежными физическими ресурсными блоками, полученными согласно уведомляющему сигнальному сообщению.
Предпочтительно все доступные физические ресурсные блоки могут быть пронумерованы от 0 по порядку от низкой частоты к высокой частоте, и последний физический ресурсный блок может быть пронумерован как r; при этом:
n смежных физических ресурсных блоков, начинающихся от низкой частоты, могут быть n смежными физическими ресурсными блоками, пронумерованными от 0 до n-1; в отношении n смежных физических ресурсных блоков с нулевой частотой в центре поднесущая с нулевой частотой может быть расположена у центра n смежных физических ресурсных блоков, и n смежных физических ресурсных блоков могут включать 12n смежных поднесущих, то есть 6n поднесущих низкой частоты, прилежащих к нулевой частоте, и 6n поднесущих высокой частоты, прилежащих к нулевой частоте;
n смежных физических ресурсных блоков с граничной высокой частотой могут быть n смежными физическими ресурсными блоками, пронумерованными от r-n+1 до r.
Предпочтительно число n и начальное местоположение физических ресурсных блоков могут быть получены согласно одному или двум сигнальным сообщениям.
Предпочтительно, когда ресурсный блок, соответствующий текущей нисходящей полосе частот, может быть m, тогда значения n могут быть 1, 5, 10 и 20; или 6, 12, 25 и 50; или 10, 20, 40 и m; или 2, 5, 10 и 20; или 5, 10, 20 и 40; или m/6, m/4, m/2 и m; или m/12, m/6, m/3 and m; где x представляет операцию округления до ближайшего целого в сторону уменьшения.
Предпочтительно в MBSFN подкадре (Multimedia Broadcasting Single Frequency Network - MBSFN - мультимедийный широковещательный сервис для одночастотной сети) местоположениями временной области для передачи опорного сигнала местоположения могут быть 10 смежных символов мультиплексирования с ортогональным частотным разделением, которыми являются от третьего до последнего символа в MBSFN подкадре.
Предпочтительно в подкадре для передачи опорного сигнала местоположения, не являющимся MBSFN подкадром, число символов мультиплексирования с ортогональным частотным разделением для передачи физического нисходящего канала управления может быть 2, и антенный порт базовой станции может быть 4 или 2.
Предпочтительно, когда устройство принимает нормальный циклический префикс, местоположения временной области для передачи опорного сигнала местоположения могут быть третьим, четвертым, шестым и седьмым символами мультиплексирования с ортогональным частотным разделением, так же как десятым, одиннадцатым, тринадцатым и четырнадцатым символами мультиплексирования с ортогональным частотным разделением в подкадре, не являющимся MBSFN подкадром; или
местоположения временной области для передачи опорного сигнала местоположения могут быть третьим, четвертым, шестым и седьмым символами мультиплексирования с ортогональным частотным разделением, так же как девятым, десятым, одиннадцатым, тринадцатым и четырнадцатым символами мультиплексирования с ортогональным частотным разделением в подкадре, не являющимся MBSFN подкадром.
Предпочтительно, когда устройство принимает удлиненный циклический префикс, местоположения временной области для передачи опорного сигнала местоположения могут быть третьим, пятым и шестым символами мультиплексирования с ортогональным частотным разделением, так же как девятым, одиннадцатым и двенадцатым символами мультиплексирования с ортогональным частотным разделением в подкадре, не являющимся MBSFN подкадром; или
местоположения временной области для передачи опорного сигнала местоположения могут быть третьим, пятым и шестым символами мультиплексирования с ортогональным частотным разделением, так же как восьмым, девятым, одиннадцатым и двенадцатым символами мультиплексирования с ортогональным частотным разделением в подкадре, не являющимся MBSFN подкадром,
Предпочтительно в каждом физическом ресурсном блоке для передачи опорного сигнала местоположения может быть использована только одна поднесущая на символе мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала местоположения.
Предпочтительно опорный сигнал местоположения может быть представлен псевдослучайной последовательностью, которую сначала отображают соответствующим физическим ресурсным блоком в частотной области и затем отображают соответствующим физическим ресурсным блоком во временной области.
Поставленная выше задача решается тем, что устройство для передачи опорного сигнала местоположения включает передающий блок, выполненный с возможностью передачи опорного сигнала местоположения с использованием местоположения частотной области и местоположения временной области,
в котором местоположениями частотной области для передачи опорного сигнала местоположения являются n физических ресурсных блоков, значение n которых - получение согласно сигнальному сообщению;
местоположениями временной области для передачи опорного сигнала местоположения являются остающиеся символы мультиплексирования с ортогональным частотным разделением в подкадре, за исключением символов мультиплексирования с ортогональным частотным разделением для передачи физического нисходящего канала управления и символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала, характеризующего ячейку.
Предпочтительно устройство может дополнительно включать определяющий блок, выполненный с возможностью определения символов мультиплексирования с ортогональным частотным разделением, использованных для передачи опорного сигнала местоположения в местоположении частотной области и местоположении временной области,
в котором процесс определения включает, например, определение матрицы А общей последовательности, имеющей размерность N×N, где A=[a0, a1, a2, …, ai, …, aN-1], нумерацию колонок и рядов соответственно от 0, включение в матрицу А N элементов, отличных друг от друга, расположение значения каждого элемента в целочисленный ряд от 0 до N-1, где элемент ai обозначает, что элемент в ai-м ряду i-й колонки есть 1, а элементы в других местоположениях i-й колонки являются 0;
причем при идентификационном номере ячейки N I D c e l l
Figure 00000005
индекс подкадра для передачи опорного сигнала, характеризующего ячейку, определяют как Subframelndex, и тогда матрица В размерностью N×N, где B=[b0, b1, b2, …, bi, …, bN-1], соответствующую ячейке N I D c e l l
Figure 00000006
, может быть представлена выражением:
h=X mod N, p=floor(X/N), bi=(a(i+h)mod N+p)mod N, i=0, 1, 2, …, N-1; или
p=X mod N, h=floor(X/N), bi=(а(i+h)mod N+p)mod N, i=0, 1, 2, …, N-1;
где x mod y представляет операцию для вычисления остаточного члена ряда, floor(x) представляет операцию округления до ближайшего целого в сторону уменьшения,
и X = N I D c e l l
Figure 00000007
, или X = N I D c e l l + S u b f r a m e I n d e x
Figure 00000008
;
установление равным n числа символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала местоположения в подкадре, и выбор первых n колонок или первых n рядов матрицы В или последних n колонок или последних n рядов матрицы В;
установление точной соответствующей взаимосвязи между выбранными n колонками или n рядами и n символами мультиплексирования с ортогональным частотным разделением, при этом местоположение, где элемент 1 в каждой колонке или в каждом ряду расположен, соответствует местоположению поднесущей для которой опорный сигнал местоположения задан соответствующим символом мультиплексирования с ортогональным частотным разделением в каждом физическом ресурсном блоке для передачи опорного сигнала местоположения.
Поставленная выше задача решается тем, что способ передачи опорного сигнала местоположения включает следующие операции:
назначение соответствующего значения индекса комбинации периода и соответствующего ему сдвига подкадра, которые используют для передачи опорного сигнала местоположения, и установление соответствующей взаимосвязи комбинации и соответствующего значения индекса;
представление местоположений частотной области для передачи опорного сигнала n физическими ресурсными блоками, значения n которых получают согласно сигнальному сообщению, представление местоположений временной области для передачи опорного сигнала местоположения остающимися символами мультиплексирования с ортогональным частотным разделением в подкадре, за исключением символов мультиплексирования с ортогональным частотным разделением для передачи физического нисходящего канала управления и символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала, характеризующего ячейку, и
передачу опорного сигнала местоположения в соответствии с установленной соответствующей взаимосвязью, назначенным значением индекса, местоположением частотной области и местоположением временной области.
Предпочтительно способ может дополнительно включать следующие операции:
комбинацию и соответствующее значение индекса, и соответствующую взаимосвязь соответственно запоминают в базовой станции и в терминале;
после конфигурирования периода и соответствующего сдвига подкадра опорного сигнала местоположения базовая станция определяет значение индекса согласно соответствующей взаимосвязи и передает значение индекса терминалу.
Предпочтительно способ может дополнительно включать следующие операции:
терминал получает период и соответствующий сдвиг подкадра опорного сигнала местоположения, которые сконфигурированы базовой станцией согласно полученному значению индекса и соответствующей взаимосвязи, и получает опорный сигнал местоположения, передаваемый базовой станцией согласно полученному периоду и сдвигу подкадра.
Предпочтительно период может включать {16, 32, 64, 128} мс или {16, 32, 64, 128, "Выкл"} мс; где "Выкл" означает, что функция местоположения выключена;
при периоде 16 мс, величина сдвига подкадра является целым числом от 0 до 15;
при периоде 32 мс, величина сдвига подкадра является целым числом от 0 до 31;
при периоде 64 мс, величина сдвига подкадра является целым числом от 0 до 63;
при периоде 128 мс, величина сдвига подкадра является целым числом от 0 до 127;
при периоде "Выкл" сдвиг подкадра является значением "по умолчанию".
Предпочтительно при периоде 16 мс комбинациями периода и соответствующего сдвига подкадра могут быть {16, 0}, {16, 1}, {16, 2}, …, {16, 14}, {16, 15}, и соответствующие значения индекса в последовательности могут быть соответственно от 0 до 15;
при периоде 32 мс комбинациями периода и соответствующего сдвига подкадра могут быть {32, 0}, {32, 1}, {32, 2}, …, {32, 30}, {32, 31}, и соответствующие значения индекса в последовательности могут быть соответственно от 16 до 47;
при периоде 64 мс комбинациями периода и соответствующего сдвига подкадра могут быть {64, 0}, {64, 1}, {64, 2}, …, {64, 62}, {64, 63}, и соответствующие значения индекса в последовательности могут быть соответственно от 48 до 111;
при периоде 128 мс комбинациями периода и соответствующего сдвига подкадра могут быть {128, 0}, {128, 1}, {128, 2}, …, {128, 126}, {128, 127}, и соответствующие значения индекса в последовательности могут быть соответственно от 112 до 239;
при периоде "Выкл" комбинацией периода и соответствующего сдвига подкадра может быть {"Выкл", значение "по умолчанию"}, и соответствующее значение индекса в последовательности может быть 240.
Поставленная выше задача решается тем, что устройство для передачи опорного сигнала местоположения включает передающий блок, выполненный с возможностью передачи опорного сигнала местоположения в соответствии с установленной соответствующей взаимосвязью, полученным значением индекса, местоположением частотной области и местоположением временной области, в котором
соответствующее значение индекса назначают для комбинации периода и соответствующего сдвига подкадра, которые используют для передачи опорного сигнала местоположения, и соответствующую взаимосвязь устанавливают для комбинации и соответствующего значения индекса;
местоположениями частотной области для передачи опорного сигнала местоположения являются n физических ресурсных блоков, полученных согласно сигнальному сообщению;
местоположениями временной области для передачи опорного сигнала местоположения являются остающиеся символы мультиплексирования с ортогональным частотным разделением в подкадре, за исключением символов мультиплексирования с ортогональным частотным разделением для передачи физического нисходящего канала управления и символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала, характеризующего ячейку.
Предпочтительно устройство может дополнительно включать блок памяти и блок для передачи значения индекса, где:
блок памяти выполнен с возможностью хранения комбинации и соответствующего значения индекса, и соответствующей взаимосвязи в базовой станции и в терминале;
блок для передачи значения индекса выполнен с возможностью определения значения индекса согласно соответствующей взаимосвязи и передачи значения индекса терминалу.
Предпочтительно устройство может далее включать приемный блок, который используется терминалом для приема периода и соответствующего сдвига подкадра опорного сигнала местоположения, которые сформированы базовой станцией согласно полученного значения индекса и соответствующей взаимосвязи, и используется для приема опорного сигнала местоположения, переданного базовой станцией согласно полученным значениям периода и сдвига подкадра.
По сравнению с аналогичными технологиями настоящее изобретение обеспечивает различные временные-частотные местоположения для передачи опорного сигнала местоположения в смежные ячейки, тем самым уменьшая интерференцию между ячейками, обеспечивая точность местоположения UE и улучшения общего функционирования устройства. Кроме того, настоящее изобретение также обеспечивает передачу значений периода опорного сигнала местоположения и сдвига подкадра при передаче опорного сигнала местоположения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На Фиг.1 показана схематическая диаграмма, иллюстрирующая физический ресурсный блок LTE системы с полосой частот 5 МГц в аналогичных технологиях.
На Фиг.2(a) и на Фиг.2(b) приведены схематические диаграммы, иллюстрирующие местоположения опорного сигнала, характеризующего ячейку LTE устройства в физическом ресурсном блоке в аналогичных технологиях.
На Фиг.3 - Фиг.5 показаны схематические диаграммы характерных местоположений несущих в ресурсном блоке, когда опорные сигналы местоположения расположены согласно первому-третьему примерам воплощения настоящего изобретения соответственно.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
В следующем описании настоящее изобретение будет раскрыто в деталях в комбинации с сопровождающими чертежами и воплощениями, так что специалисты в данной области могут полностью понять осуществляемый процесс, как настоящее изобретение решает техническую проблему, используя технические средства, как достигается технический результат и как можно воплотить настоящее изобретение согласно осуществляемому процессу.
В соответствии с настоящим изобретением местоположениями частотной области для передачи опорного сигнала местоположения являются n физических ресурсных блоков, где величину n получают согласно уведомлению сигнального сообщения. Здесь вышеупомянутый ресурсный блок только представляет местоположение частотной области опорного сигнала местоположения.
n физических ресурсных блоков могут быть n физическими ресурсными блоками, которые являются дискретными, разделенными равными интервалами, т.е. n физических ресурсных блоков соответствуют n физическим ресурсным блокам, пронумерованным с r, r+k, r+2×k, …, r+(n-1)×k, где r представляет номер начального местоположения n физических ресурсных блоков, k представляет интервал между двумя смежными физическими ресурсными блоками. Ресурсный блок, соответствующий текущему диапазону частот, задают равным m, все физические ресурсные блоки нумеруют от 0, тогда r=0 и k=m/n, где x представляет операцию округления в сторону уменьшения.
n физических ресурсных блоков могут также быть n смежными физическими ресурсными блоками, как например, n смежными физическими ресурсными блоками, начинающимися от низкой частоты, или могут быть n смежными физическими ресурсными блоками с нулевой частотой в центре, или могут также быть n смежными физическими ресурсными блоками с граничной высокой частотой. Значение n получают согласно уведомлению сигнального сообщения, величина заголовка сигнального сообщения может быть 2 бита.
n смежных физических ресурсных блоков могут также быть n смежными физическими ресурсными блоками, полученными согласно уведомлению сигнального сообщения; и начальное местоположение n смежных физических ресурсных блоков может быть получено вместе с сигнальным сообщением, но может быть также получено согласно другим сигнальным сообщениям. Когда одно сигнальное сообщение выбирают для уведомления числа (а именно n) и начального местоположения физических ресурсных блоков, заголовок сигнального сообщения есть log 2 ( N R B D L ( N R B D L + 1 ) / 2 )
Figure 00000009
, где N R B D L
Figure 00000010
представляет число ресурсных блоков, соответствующих нисходящей частотной области.
Соответствующая взаимосвязь выражается следующим образом: например, все доступные физические ресурсные блоки нумеруют от 0 по порядку от низкой частоты к высокой частоте, последнее число r, и тогда:
n смежных физических ресурсных блоков, начиная от низкой частоты, есть n смежных физических ресурсных блоков, пронумерованных от 0 до n-1;
что касается n смежных физических ресурсных блоков с нулевой частотой в центре, поднесущая нулевой частоты расположена у центра n смежных физических ресурсных блоков, и n смежных физических ресурсных блоков включают 12n смежных поднесущих, то есть 6 поднесущих низкой частоты, смежных с нулевой частотой и 6 поднесущих высокой частоты, смежных с нулевой частотой;
n смежных физических ресурсных блоков с граничной высокой частотой являются n смежными физическими ресурсными блоками, пронумерованными от r-n+1 до r, с r как граничным числом физического ресурсного блока.
Например, если ресурсных блоков, соответствующих текущей нисходящей частотной области, есть m, тогда величины n, соответствующие сигнальному сообщению 2 бита, есть 1, 5, 10 и 20; или 6, 12, 25 и 50; или 10, 20, 40 и m; или 2, 5, 10 и 20; или 5, 10, 20 и 40; или m/6, m/4, m/2 и m; или m/12, m/6, m/3 и m.
Местоположения временной области для передачи опорного сигнала местоположения являются остающиеся OFDM символы в подкадре, за исключением OFDM символов для передачи физического нисходящего канала управления и OFDM символов для передачи опорного сигнала, характеризующего ячейку.
Далее, в MBSFN подкадре (Multimedia Broadcasting Single Frequency Network - MBSFN - мультимедийный широковещательный сервис для одночастотной сети) местоположениями временной области для передачи опорного сигнала местоположения являются 10 смежных OFDM символов, которыми являются OFDM символы от третьего до последнего в MBSFN подкадре.
В обычном подкадре (не являющемся MBSFN подкадром), когда устройство принимает нормальный циклический префикс, местоположениями временной области для передачи опорного сигнала местоположения являются третий, четвертый, шестой и седьмой OFDM символы, равно как и десятый, одиннадцатый тринадцатый и четырнадцатый OFDM символы в подкадре; или
местоположениями временной области для передачи опорного сигнала местоположения являются третий, четвертый, шестой и седьмой OFDM символы, равно как и девятый, десятый, одиннадцатый, тринадцатый и четырнадцатый OFDM символы в подкадре.
В обычном подкадре (не являющемся MBSFN подкадром), когда устройство принимает удлиненный циклический префикс местоположениями временной области для передачи опорного сигнала местоположения являются третий, пятый и шестой OFDM символы, равно как и девятый, одиннадцатый и двенадцатый OFDM символы в подкадре; или
местоположениями временной области для передачи опорного сигнала местоположения являются третий, пятый и шестой OFDM символы, равно как и восьмой, девятый, одиннадцатый и двенадцатый OFDM символы в подкадре.
Следует сказать, что в обычном подкадре (не являющемся MBSFN подкадром) число OFDM символов для передачи физического нисходящего канала управления есть 2 в подкадре для передачи опорного сигнала местоположения, и текущим антенным портом базовой станции является 4 антенный порт; или
в обычном подкадре (не являющемся MBSFN подкадром) число OFDM символов для передачи физического нисходящего канала управления есть 2 в подкадре для передачи опорного сигнала местоположения, и текущим антенным портом базовой станции является 2 антенный порт.
Кроме того, в каждом ресурсном блоке для передачи опорного сигнала местоположения используется только одна поднесущая на OFDM символе для передачи опорного сигнала местоположения.
Кроме того, последовательность опорного сигнала местоположения является псевдослучайной последовательностью, которую сначала отображают соответствующим физическим ресурсным блоком в частотной области и затем отображают соответствующим физическим ресурсным блоком во временной области.
Значение соответствующего индекса назначают каждой комбинации периода и соответствующего ему сдвига подкадра, которые используют для передачи опорного сигнала местоположения, и устанавливают соответствующую взаимосвязь между значением индекса и комбинацией периода и соответствующего ему сдвига подкадра, и соответствующую взаимосвязь запоминают на двух сторонах: на базовой станции и терминале, а также запоминают значение индекса и комбинации периода и сдвига подкадра.
После формирования для терминала периода и соответствующего сдвига подкадра, которые используют для передачи опорного сигнала местоположения, базовая станция может определить соответствующее значение индекса согласно информации о соответствующей взаимосвязи и затем передать значение индекса терминалу. Терминал может получить период и сдвиг подкадра, которые используют для передачи опорного сигнала местоположения и сформированы базовой станцией согласно запомненных соответствующей взаимосвязи и значения индекса, и может закончить получение опорного сигнала местоположения согласно полученному периоду и сдвигу подкадра.
Период передачи опорного сигнала местоположения может быть {16, 32, 64, 128} мс и может также быть {16, 32, 64, 128, "Выкл"} мс, где "Выкл" представляет, что функция местоположения выключена, то есть местоположение не производится.
Когда период передачи опорного сигнала местоположения есть 16 мс, значение сдвига подкадра для передачи опорного сигнала местоположения есть целое число, заключающееся в пределах от 0 до 15, представленных 16 комбинациями {период, сдвиг подкадра}, то есть {16, 0}, {16, 1}, {16, 2}, …, {16, 14} и {16, 15}, и соответствующими значениями индекса в последовательности соответственно являются от 0 до 15.
Когда периодом передачи опорного сигнала местоположения есть 32 мс, значение сдвига подкадра для передачи опорного сигнала местоположения есть целое число, заключающееся в пределах от 0 до 31, представленных 32 комбинациями {период, сдвиг подкадра}, то есть {32, 0}, {32, 1}, {32, 2}, …, {32, 30} и {32, 31}, и соответствующими значениями индекса в последовательности соответственно являются от 16 до 47.
Когда периодом передачи опорного сигнала местоположения есть 64 мс, значение сдвига подкадра для передачи опорного сигнала местоположения есть целое число, заключающееся в пределах от 0 до 63, представленных 64 комбинациями {период, сдвиг подкадра}, то есть {64, 0}, {64, 1}, {64, 2}, …, {64, 62} и {64, 63}, и соответствующими значениями индекса в последовательности соответственно являются от 48 до 111.
Когда периодом передачи опорного сигнала местоположения есть 128 мс, значение сдвига подкадра для передачи опорного сигнала местоположения есть целое число, заключающееся в пределах от 0 до 127, представленных 128 комбинациями {период, сдвиг подкадра}, то есть {128, 0}, {128, 1}, {128, 2}, …, {128, 126} и {128, 127}, и соответствующими значениями индекса в последовательности соответственно являются от 112 до 239.
Если период передачи опорного сигнала местоположения также включает "Выкл", соответствующий сдвига подкадра может быть значением "по умолчанию", значение индекса, соответствующее составленной комбинации {период, сдвиг подкадра}, то {"Выкл", значение "по умолчанию"} есть 240.
Конкретная соответствующая взаимосвязь между значением индекса и комбинацией периода и сдвига подкадра, которые используют для передачи опорного сигнала местоположения, показана в таблице 1 или таблице 2:
Таблица 1
Значение индекса IPRS Период (мс) Сдвиг подкадра
0-15 16 iPRS
16-47 32 iPRS - 16(0-31)
48-111 64 iPRS - 48(0-63)
112-239 128 iPRS - 112(0-127)
240 "Выкл" Значение "по умолчанию"
241-255 Зарезервирован Зарезервирован
Период и сдвиг подкадра, которые используют для передачи опорного сигнала местоположения, могут быть соответственно сообщены приемом различных сигнальных сообщений.
Таблица 2
Значение индекса IPRS Период (мс) Сдвиг подкадра
0-15 16 iPRS
16-47 32 iPRS - 16(0-31)
48-111 64 iPRS - 48(0-63)
112-239 128 iPRS - 112(0-127)
240-255 Зарезервирован Зарезервирован
Дополнительно, опорный сигнал местоположения может быть послан на h смежных нисходящих подкадрах, и значением h могут быть 1, 2, 4 или 6, полученные согласно сигнальному сообщению.
Базовая станция передает терминалу сформированную информацию, относящуюся к опорному сигналу местоположения, и затем передает опорный сигнал местоположения в соответствующем частотно-временном местоположении, затем терминал принимает опорный сигнал местоположения согласно полученной сформированной информации и завершает позиционирование в соответствии с принятым опорным сигналом местоположения.
В следующем описании технические функции настоящего изобретения будут ясно описаны с использованием математических выражений.
Если допустить, что есть матрица А общей последовательности, имеющая размерность N×N, где A=[a0, a1, a2, …, ai, …, aN-1], при этом колонки и ряды нумеруют соответственно от 0, N элементов, отличных друг от друга, включают в матрицу A, значение каждого элемента располагают в целочисленный ряд от 0 до N-1, где элемент ai обозначает, что элемент в ai-м ряду i-й колонки есть 1, а элементы в других местоположениях i-й колонки являются 0.
При идентификационном номере ячейки N I D c e l l
Figure 00000006
индекс подкадра для передачи опорного сигнала, характеризующего ячейку, определяют как Subframelndex, тогда матрицу В размерностью N×N, где B=[b0, b1, b2, …, bi, …, bN-1], соответствующую ячейке N I D c e l l
Figure 00000006
, представляют выражениями:
h = X mod N                                                               ( 1 )
Figure 00000011
p = f l o o r ( X / N )                                                          ( 2 )
Figure 00000012
b i = ( a ( i + h ) mod N + p ) mod N , i = 0,   1,   2,   ,   N 1             ( 3 )
Figure 00000013
или
p = X mod N                                                                   ( 4 )
Figure 00000014
h = f l o o r ( X / N )                                                         ( 5 )
Figure 00000015
b i = ( a ( i + h ) mod N + p ) mod N , i = 0,   1,   2,   ,   N 1             ( 6 )
Figure 00000016
где:
X mod y представляет операцию для вычисления остаточного члена ряда, floor(x) представляет операцию округления до ближайшего целого в сторону уменьшения и
X = N I D c e l l
Figure 00000017
, или X = N I D c e l l + S u b f r a m e I n d e x
Figure 00000018
.
На каждом OFDM символе для передачи опорного сигнала местоположения используют только одну поднесущую для передачи данных опорного сигнала местоположения, между тем как местоположение поднесущей в ресурсном блоке для передачи опорного сигнала местоположения генерируется матрицей B.
Например, если поднесущие в ресурсном блоке пронумерованы от 0 до 11, согласно числу n OFDM символов для передачи опорного сигнала местоположения в подкадре, выбирают первые n колонок или первые n рядов матрицы B, или выбирают последние n колонок или последние n рядов матрицы B.
Имеется взаимно однозначное соответствие между выбранными n колонками или n рядами и n OFDM символами, и местоположение, где расположен элемент 1 в каждой колонке или каждом ряду, соответствует местоположению поднесущей на соответствующем OFDM символе в ресурсном блоке, где расположен опорный сигнал местоположения. Таким образом, в выбранной матрице, если полагают, что элемент 1 расположен в j-м ряду в i-й колонке (или в j-й колонке в i-м ряду), местоположение опорного сигнала местоположения соответственно расположено на j-й поднесущей на соответствующем OFDM символе k в i-ой колонке (или на j-й поднесущей на соответствующем OFDM символе k в i-м ряду) в выбранной матрице.
Первый пример воплощения изобретения
В данном примере воплощения изобретения опорный сигнал местоположения, сформированный через сигнальное сообщение, посылают в полной полосе частот, а именно опорный сигнал местоположения передают на каждом ресурсном блоке, и частотно-временное местоположение опорного сигнала местоположения в каждом ресурсном блоке является одинаковым.
В MBSFM подкадре местоположениями временной области являются десять смежных OFDM символов в MBSFM подкадре, которыми являются символы от третьего OFDM символа до последнего OFDM символа в подкадре.
Когда матрица А есть [1, 3, 7, 4, 5, 2, 10, 9, 12, 8, 6, 11], идентификационный номер ячейки N I D c e l l
Figure 00000006
есть 1, N=12, X = N I D c e l l
Figure 00000019
, тогда:
h = N I D c e l l mod 12
Figure 00000020
;
p = f l o o r ( N I D c e l l / 12 )
Figure 00000021
;
bi=(a(i+h)modN+p) mod N, i=0, 1, 2, …, N-1;
то есть, B=[b0, b1, b2, …, bN-1];
получаем, что:
B=[3, 7, 4, 5, 2, 10, 9, 12, 8, 6, 11, 1].
В MBSFM подкадре выбирают первые 10 колонок в матрице, конкретные местоположения соответствующих опорных сигналов местоположения в ресурсном блоке показаны на Фиг.3, где символ Т представляет местоположение поднесущей, там где расположен опорный сигнал местоположения. Абсцисса 1, показанная на Фиг.3, представляет номер последовательности подкадра на OFDM символе.
Второй пример воплощения изобретения
В данном примере опорный сигнал местоположения, сформированный через сигнальное сообщение, посылают в полной полосе частот, а именно опорный сигнал местоположения передают на каждом ресурсном блоке, и частотно-временное местоположение опорного сигнала местоположения в каждом ресурсном блоке является одинаковым.
Когда устройство принимает нормальный циклический префикс, местоположениями временной области для передачи опорного сигнала местоположения являются третий, четвертый, шестой и седьмой OFDM символы, также как десятый, одиннадцатый, тринадцатый и четырнадцатый OFDM символы в подкадре.
Когда матрица А есть [1, 3, 7, 4, 5, 2, 10, 9, 12, 8, 6, 11], идентификационный номер ячейки N I D c e l l
Figure 00000006
есть 1, N=12, X = N I D c e l l
Figure 00000022
, тогда
h = N I D c e l l mod 12
Figure 00000020
;
p = f l o o r ( N I D c e l l / 12 )
Figure 00000023
;
bi=(a(i+h)modN+p)mod N, i=0, 1, 2, …, N-1;
то есть, B=[b0, b1, b2, …, bN-1];
получаем, что:
B=[3, 7, 4, 5, 2, 10, 9, 12, 8, 6, 11, 1].
Когда устройство принимает нормальный циклический префикс, выбирают первые 8 колонок в матрице, и конкретные местоположения соответствующих опорных сигналов местоположения в ресурсном блоке показаны на Фиг.4. Абсцисса 1, показанная на Фиг.4, представляет номер последовательности подкадра на OFDM символе.
Третий пример воплощения изобретения
В данном примере опорный сигнал местоположения, сформированный через сигнальное сообщение, посылают в полной полосе частот, а именно опорный сигнал местоположения передают на каждом ресурсном блоке, и временное-частотное местоположение опорного сигнала местоположения в каждом ресурсном блоке является одинаковым.
Когда устройство принимает удлиненный циклический префикс, местоположениями временной области для передачи опорного сигнала местоположения являются третий, пятый и шестой OFDM символы, также как девятый, одиннадцатый и двенадцатый OFDM символы в подкадре.
Когда матрица А есть [1, 3, 7, 4, 5, 2, 10, 9, 12, 8, 6, 11], идентификационный номер ячейки N I D c e l l
Figure 00000006
есть 1, N=12, X = N I D c e l l
Figure 00000024
, тогда:
h = N I D c e l l mod 12
Figure 00000020
;
p = f l o o r ( N I D c e l l / 12 )
Figure 00000023
;
bi=(a(i+h)mod N+p)mod N, i=0, 1, 2, …, N-1;
то есть, B=[b0, b1, b2, …, bN-1];
получаем, что:
B=[3, 7, 4, 5, 2, 10, 9, 12, 8, 6, 11, 1].
Когда устройство принимает удлиненный циклический префикс, выбирают первые 6 колонок в матрице, и конкретные местоположения соответствующих опорных сигналов местоположения в ресурсном блоке показаны на Фиг.5. Абсцисса 1, показанная на Фиг.5, представляет номер последовательности подкадра на OFDM символе.
Значение общей последовательности А может быть [1, 3, 7, 4, 5, 2, 10, 9, 12, 8, 6, 11], а также может быть [1, 2, 5, 10, 12, 7, 8, 11, 4, 6, 3, 9], [1, 2, 4, 8, 5, 10, 9, 7, 3, 6], или [1, 2, 8, 11, 10, 4, 7, 12, 5, 3, 9, 6].
Необходимо отметить, что рассмотренные выше три примера воплощения изобретения описывают только частотно-временные местоположения в ресурсном блоке безотносительно местоположения ресурсного блока, и физический ресурсный блок взят для описания как полная полоса частот, по этой причине не включен выбор мод упомянутых выше трех физических ресурсных блоков.
Настоящее изобретение представляет устройство для передачи опорного сигнала местоположения, и устройство включает передающий блок, выполненный с возможностью передачи опорного сигнала местоположения согласно местоположения частотной области и местоположения временной области.
В устройстве местоположениями частотной области для передачи опорного сигнала местоположения являются n физических ресурсных блоков, и значение n получают согласно сигнальному сообщению. Местоположениями временной области для передачи опорного сигнала местоположения являются остающиеся символы мультиплексирования с ортогональным частотным разделением в подкадре, за исключением символов мультиплексирования с ортогональным частотным разделением для передачи физического нисходящего канала управления и символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала, характеризующего ячейку.
Предпочтительно устройство дополнительно включает определяющий блок, выполненный с возможностью определения символов мультиплексирования с ортогональным частотным разделением, использованных для передачи опорного сигнала местоположения в местоположении частотной области и местоположении временной области, в котором определение конкретно включает следующие операции:
определяют матрицу А общей последовательности размерностью N×N, где A=[a0, a1, a2, …, ai, …, aN-1], при этом колонки и ряды нумеруют соответственно от 0, N элементов, отличных друг от друга, включают в матрицу А, значение каждого элемента располагают в целочисленный ряд от 0 до N-1, где элемент ai обозначает, что элемент в ai-м ряду i-й колонки есть 1, а элементы в других местоположениях i-й колонки являются 0;
при идентификационном номере ячейки N I D c e l l
Figure 00000006
, индекс подкадра для передачи опорного сигнала, характеризующего ячейку, определяют как Subframelndex, тогда матрицу В размерностью N×N, где B=[b0, b1, b2, …, bi, …, bN-1], соответствующую ячейке N I D c e l l
Figure 00000006
, представляют выражением:
h=X mod N, p=floor(X/N), bi=(а(i+h)mod N+p)mod N, i=0, 1, 2, …, N-1; или
p=X mod N, h=floor(X/N), bi=(a(i+h)mod N+p)mod N, i=0, 1, 2, …, N-1;
где x mod y представляет операцию для вычисления остаточного члена ряда, floor(x) представляет операцию округления до ближайшего целого в сторону уменьшения, и X = N I D c e l l
Figure 00000025
, или X = N I D c e l l + S u b f r a m e I n d e x
Figure 00000026
;
устанавливают равным n число символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала местоположения в подкадре, и тогда выбирают первые n колонок или первые n рядов матрицы B или последние n колонок или последние n рядов матрицы B;
устанавливают точную соответствующую взаимосвязь между выбранными n колонками или n рядами и n символами мультиплексирования с ортогональным частотным разделением, при этом местоположение, где расположен элемент 1 в каждой колонке или каждом ряду, соответствует местоположению поднесущей, для которой опорный сигнал местоположения задан соответствующим символом мультиплексирования с ортогональным частотным разделением в каждом физическом ресурсном блоке для передачи опорного сигнала местоположения.
Настоящее изобретение представляет устройство для передачи опорного сигнала местоположения, и устройство включает передающий блок, выполненный с возможностью передачи опорного сигнала местоположения согласно установленной соответствующей взаимосвязи, назначенному значению индекса, местоположения частотной области и местоположения временной области.
В устройстве значение соответствующего индекса назначают для комбинации периода и соответствующего ему сдвига подкадра, которые используют для передачи опорного сигнала местоположения, и устанавливают соответствующую взаимосвязь комбинации и соответствующего значения индекса; местоположениями частотной области для передачи опорного сигнала являются n физических ресурсных блоков, и значение n получают согласно сигнальному сообщению; местоположениями временной области для передачи опорного сигнала местоположения являются остающиеся символы мультиплексирования с ортогональным частотным разделением в подкадре, за исключением символов мультиплексирования с ортогональным частотным разделением для передачи физического нисходящего канала управления и символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала, характеризующего ячейку.
Предпочтительно устройство дополнительно включает блок памяти и блок для передачи значения индекса. В устройстве блок памяти выполнен с возможностью хранения комбинации и соответствующего значения индекса, и соответствующей взаимосвязи соответственно в базовой станции и в терминале. Блок для передачи значения индекса выполнен с возможностью определения значения индекса согласно соответствующей взаимосвязи и передачи значения индекса терминалу.
Предпочтительно устройство дополнительно включает приемный блок, который используется терминалом для получения периода и соответствующего сдвига подкадра опорного сигнала местоположения, которые сформированы базовой станцией согласно полученного значения индекса и соответствующей взаимосвязи, и используется для приема опорного сигнала местоположения, переданного базовой станцией согласно полученному периоду и сдвигу подкадра.
Приведенное выше описание является только иллюстрацией воплощения настоящего изобретения и не использовано для ограничения настоящего изобретения. Для специалистов в данной области будет очевидно, что возможны различные другие изменения и модификации настоящего изобретения.
Прилагаемая формула изобретения предназначена для того, чтобы охватить любые модификации, эквивалентные замены и тому подобные усовершенствования без отступления от сущности и объема изобретения.

Claims (19)

1. Способ передачи опорного сигнала местоположения, содержащий представление местоположений частотной области для передачи опорного сигнала местоположения n физическими ресурсными блоками, значения n которых получают согласно сигнальному сообщению, представление местоположений временной области для передачи опорного сигнала местоположения остающимися в подкадре символами мультиплексирования с ортогональным частотным разделением, за исключением символов мультиплексирования с ортогональным частотным разделением для передачи физического нисходящего канала управления и символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала, характеризующего ячейку, и передачу опорного сигнала местоположения в соответствии с местоположением частотной области и местоположением временной области, при этом физические ресурсные блоки n являются дискретными физическими ресурсными блоками, разделенными равными интервалами, или n смежными физическими ресурсными блоками.
2. Способ по п.1, отличающийся тем, что включает процесс определения символов мультиплексирования с ортогональным частотным разделением, использованных для передачи опорного сигнала, соответствующего местоположению частотной области и местоположению временной области, в соответствии с которым определяют матрицу A общей последовательности, имеющую размерность N×N, где A=[а0, a1, а2, …, ai, …, aN1], при этом колонки и ряды нумеруют соответственно от 0, N элементов, отличных друг от друга, включают в матрицу A, значение каждого элемента располагают в целочисленный ряд от 0 до N-1, где элемент ai обозначает, что элемент в ai-м ряду i-й колонки есть 1, а элементы в других местоположениях i-й колонки являются 0, причем при идентификационном номере ячейки NIDcell индекс подкадра для передачи опорного сигнала, характеризующего ячейку, определяют как SubframeIndex, и тогда матрицу В размерностью N×N, где B=[b0, b1, b2, …, bi, …, bN1], соответствующую ячейке NIDcell, представляют выражением:
h=X mod N, p=floor(X/N), bi=(a(i+h)modN+p)mod N, i=0, 1, 2, …, N-l; или
p=X mod N, h=floor(X/N), bi=(a(i+h)modN+p)mod N, i=0, 1, 2, …, N-1;
где x mod y представляет операцию вычисления остаточного члена ряда, floor(x) представляет операцию округления до ближайшего целого в сторону уменьшения, и
X=NIDcell или X=NIDcell+SubframeIndex;
устанавливают равным n число символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала местоположения в подкадре, выбирают первые n колонок или первые n рядов матрицы B или последние n колонок или последние n рядов матрицы B, устанавливают точную соответствующую взаимосвязь между выбранными n колонками или n рядами и n символами мультиплексирования с ортогональным частотным разделением, при этом местоположение, где расположен элемент 1 в каждой колонке или каждом ряду, соответствует местоположению поднесущей, для которой опорный сигнал местоположения задан соответствующим символом мультиплексирования с ортогональным частотным разделением в каждом физическом ресурсном блоке для передачи опорного сигнала местоположения.
3. Способ по п.1, отличающийся тем, что n физических ресурсных блоков, которые являются n дискретными физическими ресурсными блоками, разделенными равными интервалами, нумеруют соответственно как r, r+k, r+2×k, …, r+(n-1)×k, где r представляет начальное местоположение n дискретных физических ресурсных блоков, разделенных равными интервалами, и k представляет интервал между двумя соседними физическими ресурсными блоками.
4. Способ по п.3, отличающийся тем, что, когда физический ресурсный блок, соответствующий текущей нисходящей полосе частот, есть m, все физические ресурсные блоки нумеруют от 0, r=0, k=[m/n]; где [x] представляет операцию округления до ближайшего целого в сторону уменьшения.
5. Способ по п.1, отличающийся тем, что n смежных физических ресурсных блоков являются n смежными физическими ресурсными блоками, начинающимися от низкой частоты, или n смежными физическими ресурсными блоками с нулевой частотой в центре, или n смежными физическими ресурсными блоками с граничной высокой частотой, или n смежными физическими ресурсными блоками, полученными согласно уведомлению сигнального сообщения.
6. Способ по п.5, отличающийся тем, что все доступные физические ресурсные блоки нумеруют от 0 по порядку от низкой частоты к высокой частоте, и последний физический ресурсный блок нумеруют как r, при этом n смежных физических ресурсных блоков, начинающихся от низкой частоты, нумеруют от 0 до n1, в отношении n смежных физических ресурсных блоков с нулевой частотой в центре поднесущую с нулевой частотой располагают у центра n смежных физических ресурсных блоков, и n смежных физических ресурсных блоков включают 6n поднесущих низкой частоты, прилежащих к нулевой частоте, и 6n поднесущих высокой частоты, прилежащих к нулевой частоте, а n смежных физических ресурсных блоков с граничной высокой частотой нумеруют от r-n+1 до r.
7. Способ по п.5, отличающийся тем, что число n и начальное местоположение физических ресурсных блоков получают согласно одному или двум сигнальным сообщениям.
8. Способ по п.1 или 2, отличающийся тем, что в подкадре мультимедийного широковещательного сервиса для одночастотной сети (MBSFN) местоположениями временной области для передачи опорного сигнала местоположения являются 10 смежных символов мультиплексирования с ортогональным частотным разделением, которыми являются символы от третьего до последнего в MBSFN подкадре.
9. Способ по п.1 или 2, отличающийся тем, что в подкадре для передачи опорного сигнала местоположения, не являющемся MBSFN подкадром, число символов мультиплексирования с ортогональным частотным разделением для передачи физического нисходящего канала управления равно 2, а антенным портом базовой станции является 4 или 2.
10. Способ по п.1 или 2, характеризующийся тем, что в каждом физическом ресурсном блоке для передачи опорного сигнала местоположения используют только одну поднесущую на символе мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала местоположения.
11. Способ по п.1 или 2, отличающийся тем, что опорный сигнал местоположения представляют псевдослучайной последовательностью, которую сначала отображают соответствующим физическим ресурсным блоком в частотной области и затем отображают соответствующим физическим ресурсным блоком во временной области.
12. Устройство для передачи опорного сигнала местоположения, содержащее передающий блок, выполненный с возможностью передачи опорного сигнала местоположения с использованием местоположения частотной области и местоположения временной области, в котором местоположениями частотной области для передачи опорного сигнала местоположения являются n физических ресурсных блоков, значение n которых получено согласно сигнальному сообщению, при этом физические ресурсные блоки n являются дискретными физическими ресурсными блоками, разделенными равными интервалами, или n смежными физическими ресурсными блоками, местоположениями временной области для передачи опорного сигнала местоположения являются остающиеся символы мультиплексирования с ортогональным частотным разделением в подкадре, за исключением символов мультиплексирования с ортогональным частотным разделением для передачи физического нисходящего канала управления и символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала, характеризующего ячейку.
13. Устройство по п.12, отличающееся тем, что включает определяющий блок, выполненный с возможностью определения символов мультиплексирования с ортогональным частотным разделением, использованных для передачи опорного сигнала местоположения в местоположении частотной области и местоположении временной области, в котором процесс определения включает определение матрицы А общей последовательности, имеющей размерность N×N, где A=[a0, a1, а2, …, ai, …, aN1], нумерацию колонок и рядов соответственно от 0, включение в матрицу A N элементов, отличных друг от друга, расположение значения каждого элемента в целочисленный ряд от 0 до N-1, где элемент ai обозначает, что элемент в ai-м ряду i-й колонки есть 1, а элементы в других местоположениях i-й колонки являются 0, причем при идентификационном номере ячейки NIDcell индекс подкадра для передачи опорного сигнала, характеризующего ячейку, определяют как SubframeIndex и тогда матрицу В размерностью N×N, где B=[b0, b1, b2, …, bi, …, bN-1], соответствующую ячейке NIDcell, представляют выражением:
h=X mod N, p=floor(X/N), bi=(a(i+h)modN+p)mod N, i=0, 1, 2, …, N-l; или
p=X mod N, h=floor(X/N), bi=(a(i+h)modN+p)mod N, i=0, 1, 2, …, N-l;
где x mod y представляет операцию для вычисления остаточного члена ряда, floor(x) представляет операцию округления до ближайшего целого в сторону уменьшения, и X=NIDcell или X=NIDcell+SubframeIndex;
установление равным n числа символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала местоположения в подкадре и выбор первых n колонок или первых n рядов матрицы B, или последних n колонок или последних n рядов матрицы B, установление точной соответствующей взаимосвязи между выбранными n колонками или n рядами и n символами мультиплексирования с ортогональным частотным разделением, при этом местоположение, где расположен элемент 1 в каждой колонке или каждом ряду, соответствует местоположению поднесущей, для которой опорный сигнал местоположения задан соответствующим символом мультиплексирования с ортогональным частотным разделением в каждом физическом ресурсном блоке для передачи опорного сигнала местоположения.
14. Способ передачи опорного сигнала местоположения, содержащий назначение значения соответствующего индекса комбинации периода и соответствующего ему сдвига подкадра, которые используют для передачи опорного сигнала местоположения, и установление соответствующей взаимосвязи комбинации и соответствующего значения индекса, представление местоположений частотной области для передачи опорного сигнала n физическими ресурсными блоками, значения n которых получают согласно сигнальному сообщению, при этом физические ресурсные блоки n являются дискретными физическими ресурсными блоками, разделенными равными интервалами, или n смежными физическими ресурсными блоками, представление местоположений временной области для передачи опорного сигнала местоположения остающимися символами мультиплексирования с ортогональным частотным разделением в подкадре, за исключением символов мультиплексирования с ортогональным частотным разделением для передачи физического нисходящего канала управления и символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала, характеризующего ячейку, и передачу опорного сигнала местоположения в соответствии с установленной соответствующей взаимосвязью, назначенным значением индекса, местоположением частотной области и местоположением временной области.
15. Способ по п.14, отличающийся тем, что комбинацию, соответствующее значение индекса, а также соответствующую взаимосвязь соответственно запоминают в базовой станции и в терминале, после конфигурирования периода и соответствующего сдвига подкадра опорного сигнала местоположения базовая станция определяет значение индекса согласно соответствующей взаимосвязи и передает значение индекса терминалу.
16. Способ по п.15, отличающийся тем, что терминал получает период и соответствующий сдвиг подкадра опорного сигнала местоположения, которые сконфигурированы базовой станции согласно полученному значению индекса и соответствующей взаимосвязи, и получает опорный сигнал местоположения, передаваемый базовой станцией согласно полученному периоду и сдвигу подкадра.
17. Устройство для передачи опорного сигнала местоположения, содержащее передающий блок, выполненный с возможностью передачи опорного сигнала местоположения в соответствии с установленной соответствующей взаимосвязью, полученным значением индекса, местоположением частотной области и местоположением временной области, в котором соответствующее значение индекса назначают для комбинации периода и соответствующего сдвига подкадра, которые используют для передачи опорного сигнала местоположения, и соответствующую взаимосвязь устанавливают для комбинации и соответствующего значения индекса, местоположениями частотной области для передачи опорного сигнала местоположения являются n физических ресурсных блоков, значения n которых получают согласно сигнальному сообщению, при этом физические ресурсные блоки n являются дискретными физическими ресурсными блоками, разделенными равными интервалами, или n смежными физическими ресурсными блоками, местоположениями временной области для передачи опорного сигнала местоположения являются остающиеся символы мультиплексирования с ортогональным частотным разделением в подкадре, за исключением символов мультиплексирования с ортогональным частотным разделением для передачи физического нисходящего канала управления и символов мультиплексирования с ортогональным частотным разделением для передачи опорного сигнала, характеризующего ячейку.
18. Устройство по п.17, отличающееся тем, что включает блок памяти и блок для передачи значения индекса, где блок памяти выполнен с возможностью хранения комбинации и соответствующего значения индекса, и соответствующей взаимосвязи соответственно в базовой станции и в терминале; а блок для передачи значения индекса выполнен с возможностью определения значения индекса согласно соответствующей взаимосвязи и передачи значения индекса терминалу.
19. Устройство по п.18, отличающееся тем, что включает приемный блок, который используется терминалом для получения периода и соответствующего сдвига подкадра опорного сигнала местоположения, которые сформированы базовой станцией согласно полученного значения индекса и соответствующей взаимосвязи, и используется для приема опорного сигнала местоположения, переданного базовой станцией согласно полученному периоду и сдвигу подкадра.
RU2012101203/07A 2009-06-19 2009-12-30 Способ и устройство для передачи опорного сигнала местоположения RU2496246C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200910150606.2 2009-06-19
CN2009101506062A CN101594336B (zh) 2009-06-19 2009-06-19 一种定位参考信号的发送方法
PCT/CN2009/076298 WO2010145184A1 (zh) 2009-06-19 2009-12-30 一种定位参考信号的发送方法及***

Publications (2)

Publication Number Publication Date
RU2012101203A RU2012101203A (ru) 2013-07-27
RU2496246C2 true RU2496246C2 (ru) 2013-10-20

Family

ID=41408781

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012101203/07A RU2496246C2 (ru) 2009-06-19 2009-12-30 Способ и устройство для передачи опорного сигнала местоположения

Country Status (9)

Country Link
US (1) US8761116B2 (ru)
EP (1) EP2434710B1 (ru)
JP (1) JP5360942B2 (ru)
KR (1) KR101379645B1 (ru)
CN (1) CN101594336B (ru)
BR (1) BRPI0925067B1 (ru)
MX (1) MX2011013883A (ru)
RU (1) RU2496246C2 (ru)
WO (1) WO2010145184A1 (ru)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594336B (zh) 2009-06-19 2012-12-19 中兴通讯股份有限公司 一种定位参考信号的发送方法
US8457079B2 (en) * 2009-10-05 2013-06-04 Motorola Mobility Llc Method and apparatus for mitigating downlink control channel interference
CN101778068B (zh) * 2009-12-25 2014-01-01 中兴通讯股份有限公司 定位参考信号频域位置确定方法及装置
WO2011102769A1 (en) * 2010-02-19 2011-08-25 Telefonaktiebolaget L M Ericsson (Publ) Inter-frequency positioning measurements
WO2012002855A1 (en) * 2010-06-30 2012-01-05 Telefonaktiebolaget L M Ericsson (Publ) Method for channel estimation using cell specific reference symbols
US8743980B2 (en) * 2010-08-12 2014-06-03 Acer Incorporated Method of designing reference signal pattern and related communication device
CN102594756B (zh) * 2011-01-07 2016-09-07 中兴通讯股份有限公司 定位参考信号子帧的传输方法及***
CN102769593A (zh) * 2011-05-04 2012-11-07 普天信息技术研究院有限公司 一种用于通信***的下行参考信号的生成方法及装置
CN102883341B (zh) * 2011-07-11 2015-05-27 华为技术有限公司 信道信息的测量方法和相关装置
CN102573059B (zh) * 2012-01-16 2014-12-31 新邮通信设备有限公司 一种实现用户设备ue精确定位的方法和***
CN102547872B (zh) * 2012-01-18 2014-12-17 电信科学技术研究院 一种传输带宽信息的方法及装置
EP2830243B1 (en) 2012-03-23 2018-05-02 LG Electronics Inc. Method and apparatus for transmitting reference signals
CN103546413B (zh) * 2012-07-13 2017-02-08 工业和信息化部电信传输研究所 一种可用于3.5GHz TDD频段的载波方案
CN103634899B (zh) 2012-08-20 2018-04-27 华为技术有限公司 终端定位方法、基站及用户设备
CN109246822A (zh) * 2012-09-24 2019-01-18 华为技术有限公司 传输广播消息的方法、基站和用户设备
US9265068B2 (en) * 2012-12-06 2016-02-16 Intel Corporation Sequence generation for cell specific reference signal (CRS)
CN104010363B (zh) * 2013-02-26 2018-05-29 华为技术有限公司 一种定位参考信号子帧的发送、接收方法及装置
CN104348579B (zh) * 2013-08-05 2019-11-19 中兴通讯股份有限公司 下行信道时域位置确定方法和装置
CN112737759B (zh) * 2013-08-07 2023-03-24 华为技术有限公司 信息发送、接收方法及设备
US9426609B2 (en) * 2014-01-24 2016-08-23 Qualcomm Incorporated Methods, apparatuses, and devices for processing positioning reference signals
KR101871873B1 (ko) * 2014-03-03 2018-06-28 후아웨이 테크놀러지 컴퍼니 리미티드 정보 송신 방법, 수신 방법 및 장치
US9397769B2 (en) * 2014-11-28 2016-07-19 Qualcomm Incorporated Interference mitigation for positioning reference signals
CN105188025B (zh) * 2015-06-04 2018-08-21 深圳信息职业技术学院 一种定位参考信号的发送方法及***
CN106656443B (zh) * 2015-11-02 2019-11-19 华为技术有限公司 增加配对用户的方法及装置
CN109076484B (zh) * 2016-05-03 2020-07-21 华为技术有限公司 一种资源分配方法、网络侧设备和终端设备
CN107370588B (zh) * 2016-05-13 2021-04-20 华为技术有限公司 参考信号的发送方法及设备
US10716084B2 (en) * 2016-05-18 2020-07-14 Qualcomm Incorporated Narrowband positioning signal design and procedures
CN107465497B (zh) 2016-06-03 2021-08-06 中兴通讯股份有限公司 定位参考信号的传输方法和装置
WO2017206437A1 (zh) * 2016-06-03 2017-12-07 中兴通讯股份有限公司 定位参考信号的传输方法、装置及计算机存储介质
CN108886504B (zh) * 2016-09-30 2020-08-07 华为技术有限公司 传输定位参考信号的方法和设备
CN108282308B (zh) 2017-01-06 2022-10-14 中兴通讯股份有限公司 参考信号的处理方法及装置、设备
CN110365455B (zh) * 2018-04-09 2021-07-30 大唐移动通信设备有限公司 一种定位参考信号传输方法及装置
US11032044B2 (en) * 2018-06-29 2021-06-08 Qualcomm Incorporated Positioning reference signal transmission with controlled transmission power and bandwidth
CN112953699B (zh) * 2018-07-11 2023-06-02 北京小米移动软件有限公司 参考信号的发送和接收方法及装置、基站和用户设备
CN110749877B (zh) 2018-07-23 2024-04-09 中兴通讯股份有限公司 一种定位***及定位信号的生成和发送方法
CN110768761B (zh) * 2018-07-26 2022-07-15 中兴通讯股份有限公司 定位参考信号生成方法、装置、基站及可读存储介质
CN110535586B (zh) * 2018-08-20 2022-07-15 中兴通讯股份有限公司 Prs的生成方法、相关装置及通信***
US11563538B2 (en) * 2020-03-11 2023-01-24 Qualcomm Incorporated Signal structure for terrestrial timing and positioning system
WO2023114616A1 (en) * 2021-12-15 2023-06-22 Qualcomm Incorporated Positioning reference signal sequences for resource block chunks of a positioning reference signal occasion
CN116800391A (zh) * 2022-03-15 2023-09-22 华为技术有限公司 通信方法和通信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130966A (zh) * 1993-09-10 1996-09-11 德国汤姆逊-布朗特公司 在ofdm***中传输参考信号的方法
RU2092902C1 (ru) * 1993-12-27 1997-10-10 Российский научно-исследовательский институт космического приборостроения Способ определения местоположения транспортного средства и устройство, реализующее этот способ
WO2004080096A2 (en) * 2003-03-05 2004-09-16 Qualcomm, Incorporated User plane-based location services (lcs) system, method and apparatus
CN101305522A (zh) * 2006-04-28 2008-11-12 三菱电机研究实验室 利用传输时间间隔分组在ofdm***中处理参考信号的方法和***
US20080316947A1 (en) * 2007-06-21 2008-12-25 Bengt Lindoff METHOD AND APPARATUS FOR 3G LTE FDD and TDD DETECTION USING REFERENCE SIGNAL CORRELATION

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8289946B2 (en) 2007-08-14 2012-10-16 Qualcomm Incorporated Reference signal generation in a wireless communication system
KR101376233B1 (ko) * 2007-10-02 2014-03-21 삼성전자주식회사 주파수 분할 다중 접속 방식의 시스템에서 제어 채널의자원 할당 장치 및 방법
CN101309228B (zh) * 2008-07-02 2013-01-16 中兴通讯股份有限公司 物理随机接入信道频域初始位置的设置方法
CN101335713B (zh) * 2008-07-25 2012-05-09 中兴通讯股份有限公司 物理随机接入信道的传输方法及确定频域初始位置的方法
CN101335969B (zh) * 2008-08-01 2012-11-28 中兴通讯股份有限公司 一种时分双工***上行信道测量参考信号的发送方法
CN101404794B (zh) * 2008-09-24 2012-11-28 中兴通讯股份有限公司 测量参考信号的发送预处理方法、参数发送和接收方法
KR20110067052A (ko) 2008-10-01 2011-06-20 바이엘 크롭사이언스 아게 식물 보호제로서의 헤테로사이클릴 치환된 티아졸
CN101394263B (zh) * 2008-10-29 2012-02-29 中兴通讯股份有限公司 上行信道测量参考信号及其带宽范围频域位置的映射方法
US7940740B2 (en) * 2009-02-03 2011-05-10 Motorola Mobility, Inc. Apparatus and method for communicating and processing a positioning reference signal based on identifier associated with a base station
KR101476205B1 (ko) 2009-03-17 2014-12-24 엘지전자 주식회사 무선 통신 시스템에서 위치 기반 서비스를 위한 참조 신호 송신 방법 및 이를 위한 장치
WO2010117116A1 (ko) 2009-04-10 2010-10-14 (주)팬택 모듈러 소나 시퀀스를 이용한 신호 패턴의 생성방법 및 그 장치
CN101594336B (zh) 2009-06-19 2012-12-19 中兴通讯股份有限公司 一种定位参考信号的发送方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130966A (zh) * 1993-09-10 1996-09-11 德国汤姆逊-布朗特公司 在ofdm***中传输参考信号的方法
RU2092902C1 (ru) * 1993-12-27 1997-10-10 Российский научно-исследовательский институт космического приборостроения Способ определения местоположения транспортного средства и устройство, реализующее этот способ
WO2004080096A2 (en) * 2003-03-05 2004-09-16 Qualcomm, Incorporated User plane-based location services (lcs) system, method and apparatus
CN101305522A (zh) * 2006-04-28 2008-11-12 三菱电机研究实验室 利用传输时间间隔分组在ofdm***中处理参考信号的方法和***
US20080316947A1 (en) * 2007-06-21 2008-12-25 Bengt Lindoff METHOD AND APPARATUS FOR 3G LTE FDD and TDD DETECTION USING REFERENCE SIGNAL CORRELATION

Also Published As

Publication number Publication date
US8761116B2 (en) 2014-06-24
JP2012530416A (ja) 2012-11-29
EP2434710A1 (en) 2012-03-28
MX2011013883A (es) 2012-02-01
CN101594336A (zh) 2009-12-02
EP2434710B1 (en) 2018-09-19
RU2012101203A (ru) 2013-07-27
KR20120018223A (ko) 2012-02-29
JP5360942B2 (ja) 2013-12-04
BRPI0925067B1 (pt) 2020-11-10
KR101379645B1 (ko) 2014-03-28
EP2434710A4 (en) 2017-02-15
CN101594336B (zh) 2012-12-19
WO2010145184A1 (zh) 2010-12-23
US20120093122A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
RU2496246C2 (ru) Способ и устройство для передачи опорного сигнала местоположения
CN106376050B (zh) 子载波间隔的设置/确定方法、装置、基站和终端
EP3565349B1 (en) Reference signal transmission technology
RU2487492C1 (ru) Способ и система передачи опорного позиционного сигнала
RU2503128C2 (ru) Способ передачи зондирующего опорного сигнала восходящей линии связи для системы lte
KR102415212B1 (ko) 통신을 위한 방법 및 디바이스
CN101695191B (zh) 一种分配测量参考信号资源的***及方法
RU2589733C2 (ru) Способ обработки опорного сигнала демодуляции, базовая станция и оборудование пользователя
RU2528563C2 (ru) Способы и устройства для отправки опорных сигналов позиционирования при отправке данных и при получении данных
RU2450491C1 (ru) Способ для сигнализации размещения ресурсов для регулировки степени разбиения в системе сотовой связи с несколькими несущими
US8537729B2 (en) Method for sending a sounding reference signal of uplink channel in a time division duplex system
CN101547022B (zh) Lte tdd***中发送srs的方法和装置
KR101603651B1 (ko) 단일 주파수 대역만을 사용하는 제1 사용자 기기와 복수의 주파수 대역을 사용하는 제2 사용자 기기를 지원하는 무선 통신 시스템에 있어서, 사용자 기기와 기지국 간의 무선 통신 방법
US11917621B2 (en) Method, device, and apparatus for transporting common control information
CN101771444B (zh) 多天线***中参考信号的设置方法和基站
US20110103250A1 (en) Method and apparatus for transmitting dedicated reference signal
CN101778068B (zh) 定位参考信号频域位置确定方法及装置
US11930386B2 (en) Method and device for transmitting signal, and storage medium
CN106685503B (zh) 信道状态测量导频csi-rs的配置方法及装置
CN114786269A (zh) 一种随机接入物理资源的指示方法及装置
CN110351008B (zh) 上行时频资源集合的配置、接收方法及装置
WO2020029289A1 (zh) 通信方法、装置及***