RU2484591C2 - Способы и системы для слепого декодирования pdcch в мобильной связи - Google Patents

Способы и системы для слепого декодирования pdcch в мобильной связи Download PDF

Info

Publication number
RU2484591C2
RU2484591C2 RU2010121842/08A RU2010121842A RU2484591C2 RU 2484591 C2 RU2484591 C2 RU 2484591C2 RU 2010121842/08 A RU2010121842/08 A RU 2010121842/08A RU 2010121842 A RU2010121842 A RU 2010121842A RU 2484591 C2 RU2484591 C2 RU 2484591C2
Authority
RU
Russia
Prior art keywords
cce
aggregation
levels
pdcch
segment
Prior art date
Application number
RU2010121842/08A
Other languages
English (en)
Other versions
RU2010121842A (ru
Inventor
Дурга Прасад МАЛЛАДИ
Хуан МОНТОХО
Сандип САРКАР
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU2010121842A publication Critical patent/RU2010121842A/ru
Application granted granted Critical
Publication of RU2484591C2 publication Critical patent/RU2484591C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

Изобретение относится к мобильной связи и, конкретнее, к слепому декодированию физического нисходящего канала управления (PDCCH) для оборудования пользователя. Рассматривается и исследуется несколько форм расположения возможных комбинаций ССЕ. На основании оценки/информации о размере PDCCH можно придти к наиболее вероятным соединениям ССЕ (из ограниченных множеств). Основанные на древовидной структуре соединения также разрабатываются с использованием упорядочивания относительно наибольшего ССЕ с целью выравнивания меньших по размеру ССЕ с теми же границами. Посредством такого упорядочивания пространство поиска среди всех возможных упорядочиваний и размеров ССЕ может быть сокращено до эффективного дерева. Также описывается отображение между множествами возможных CCE/RE с использованием отображения первого множества на вторичное и третичное множества. Также подробно рассматриваются различные другие схемы упорядочивания и сортировки, которые позволяют осуществлять эффективное слепое декодирование PDCCH-канала. Технический результат - сокращение издержек на обработку для слепого декодирования сигнала PDCCH. 4 н. и 8 з.п. ф-лы, 11 ил., 7 табл.

Description

РОДСТВЕННЫЕ ЗАЯВКИ
В настоящей заявке на патент испрашивается приоритет предварительной заявки на патент 60/983,907, поданной 30 октября 2007, переуступленной патентообладателю настоящей заявки и поданной от имеет изобретателей настоящего изобретения, и которая включена в настоящий документ посредством ссылки.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Данное раскрытие в основном относится к мобильной связи и, конкретнее, к слепому декодированию физического нисходящего канала управления (PDCCH) для оборудования пользователя.
УРОВЕНЬ ТЕХНИКИ
Для целей настоящего документа применяются следующие сокращения:
AM подтвержденный режим
AMD данные подтвержденного режима
ARQ автоматический запрос на повторение
BCCH широковещательный канал управления
BCH широковещательный канал
C- управление-
CCCH канал общего управления
CCH канал управления
CCTrCH кодированный составной транспортный канал
CP циклический префикс
CRC циклический контроль избыточности
CTCH канал общего трафика
D-BCH динамический широковещательный канал
DCCH специализированный канал управления
DCH специализированный канал
DL нисходящий канал
DSCH совместно используемый нисходящий канал
DTCH специализированный информационный канал
FACH канал прямого доступа
FDD дуплекс с разделением по частоте
L1 уровень 1 (физический уровень)
L2 уровень 2 (канальный уровень)
L3 уровень 3 (сетевой уровень)
LI индикатор длины
LSB самый младший разряд
MAC управление доступом к среде
MBMS службы широковещательной и многоадресной передачи мультимедиа
MCCH канал управления MBMS «точка-множество точек»
MRW перемещение окна приема
MSB самый старший разряд
MSCH канал планирования MBMS «точка-множество точек»
MTCH канал трафика MBMS «точка-множество точек»
P-BCH первичный широковещательный канал
PCCH канал управления пейджингом
PCFICH физический канал индикатора контроля формата
PCH канал пейджинга
PDCCH физический нисходящий канал управления
PDU протокольный блок данных
PHY физический уровень
PHICH физический ARQ-гибридный индикаторный канал
PhyCH физические каналы
RACH канал с произвольным доступом
RE элемент ресурсов
RS опорный сигнал
RLC управление радиоканалом
RoHC надежное сжатие заголовков
RRC управление радиоресурсами
SAP сервисная точка доступа
SDU сервисный блок данных
SHCCH канал управления совместно используемым каналом
SN порядковый номер
SUFI суперполе
TCH канал трафика
TDD дуплекс с разделением по времени
TFI индикатор формата транспорта
TM прозрачный режим
TMD данные прозрачного режима
TTI временной интервал передачи
U- пользователь-
UE пользовательское оборудование
UL восходящий канал
UM неподтвержденный режим
UMD данные неподтвержденного режима
UMTS универсальная система мобильной связи
UTRA наземный радиодоступ UMTS
UTRAN сеть наземного радиодоступа UMTS.
Универсальная система мобильной связи (UMTS) представляет собой одну из технологий третьего поколения (3G) для беспроводных телефонов. В настоящее время самая распространенная форма UMTS использует W-CDMA в качестве основного воздушного интерфейса. UMTS стандартизована Проектом партнерства по развитию сетей третьего поколения (3GPP) и иногда позиционируется как 3GSM с целью подчеркивания комбинации 3G-природы технологии и стандарта GSM, для которого она была успешно спроектирована.
UTRAN (сеть наземного радиодоступа UMTS) является общим термином, охватывающим Узлы B и контроллеры радиосети, которые создают сеть радиодоступа UMTS. UTRAN позволяет осуществлять взаимодействие между UE и опорной сетью и может включать UE, Узлы B и контроллеры радиосети (RNC); следует отметить, что RNC и узел B может быть одним и тем же устройством, хотя типовые реализации содержат отдельный RNC, расположенный в центральном офисе, обслуживающем множество узлов B.
В UMTS широковещательный канал (BCH) может иметь заранее заданный фиксированный формат транспорта и может транслироваться во всей области покрытия соты. В системе долгосрочного развития (LTE), которая улучшает стандарт UMTS, широковещательный канал может использоваться для передачи «поля системной информации», необходимого для доступа к системе. Однако по причине большого размера поля системной информации BCH может быть разделен на две части, включающие первичный широковещательный канал (P-BCH) и динамический широковещательный канал (D-BCH). P-BCH может содержать базовые системные параметры уровня 1 (физический уровень)/уровня 2 (канальный уровень) (или "L1/L2"), подходящие для демодуляции D-BCH, который, в свою очередь, может содержать оставшуюся часть поля системной информации.
Может случиться, что UE будет иметь необходимость в слепом декодировании физического нисходящего канала управления (PDCCH) из нескольких возможных форматов и ассоциированных элементов канала управления (CCE). К сожалению, это может накладывать значительную нагрузку на UE, которая может превысить целесообразные ограничения аппаратного обеспечения и таким образом привести к повышению издержек и/или снижению производительности UE.
Следовательно, существует потребность в решении этой задачи. Соответственно, способы и системы для решения этой задачи и других задач изложены в настоящем документе.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Вышеуказанные потребности удовлетворяются, в значительной степени, настоящим раскрытием.
В одном из различных аспектов раскрытия представлен способ сокращения издержек на обработку для слепого декодирования сигнала PDCCH, содержащий: оценку CCE-сегмента подходящего размера в PDCCH-сигнале; генерацию древовидной структуры, содержащей непрерывные уровни агрегации CCE оцененного CCE-сегмента, при этом агрегации CCE являются кратными оцененному сегменту CCE; организацию уровней агрегации в иерархическом порядке, при этом начальная позиция каждого уровня совпадает со всеми остальными начальными позициями уровней; и декодирования PDCCH-сигнала путем использования границ, определенных древовидной структурой, при этом границы формируют маршрут поиска, допускающий сокращенный поиск для слепого декодирования.
В одном из различных аспектов раскрытия представлен машиночитаемый продукт, содержащий код для: оценки CCE-сегмента подходящего размера в PDCCH-сигнале; генерации древовидной структуры, содержащей непрерывные уровни агрегации CCE оцененного CCE-сегмента, при этом агрегации CCE являются кратными оцененному сегменту CCE; организации уровней агрегации в иерархическом порядке, при этом начальная позиция каждого уровня совпадает со всеми остальными начальными позициями уровней; и декодирования PDCCH-сигнала путем использования границ, определенных древовидной структурой, при этом границы формируют маршрут поиска, допускающий сокращенный поиск для слепого декодирования.
В одном из различных аспектов раскрытия представлено устройство, сконфигурированное для сокращения издержек на обработку для слепого декодирования PDCCH, содержащее: схему, сконфигурированную для слепого декодирования PDCCH-сигнала, при этом схема может осуществлять оценку CCE-сегмента подходящего размера в PDCCH-сигнале; может выполнять генерацию древовидной структуры, содержащей непрерывные уровни агрегации CCE оцененного CCE-сегмента, при этом агрегации CCE являются кратными оцененному сегменту CCE; может выполнять организацию уровней агрегации в иерархическом порядке, при этом начальная позиция каждого уровня совпадает со всеми остальными начальными позициями уровней; и может осуществлять декодирование PDCCH-сигнала путем использования границ, определенных древовидной структурой, при этом границы формируют маршрут поиска, допускающий сокращенный поиск для слепого декодирования.
В одном из различных аспектов раскрытия представлено устройство, сконфигурированное для сокращения издержек на обработку для слепого декодирования PDCCH, содержащее: средство оценки CCE-сегмента подходящего размера в PDCCH-сигнале; средство генерации древовидной структуры, содержащей непрерывные уровни агрегации CCE оцененного CCE-сегмента, при этом агрегации CCE являются кратными оцененному сегменту CCE; средство организации уровней агрегации в иерархическом порядке, при этом начальная позиция каждого уровня совпадает со всеми остальными начальными позициями уровней; и средство декодирования PDCCH-сигнала путем использования границ, определенных древовидной структурой, при этом границы формируют маршрут поиска, допускающий сокращенный поиск для слепого декодирования.
В одном из различных аспектов раскрытия представлен способ сокращения издержек на обработку для слепого декодирования PDCCH-сигнала с использованием первоначальной оценки наибольшего CCE к наименьшему CCE, содержащий: оценку подходящего CCE-сегмента наибольшего размера в PDCCH-сигнале; сортировку всех возможных в PDCCH комбинаций CCE во множества, при этом наибольший CCE находится в начале своего множества, а CCE меньшего размера во множестве упорядочиваются в порядке от большего к меньшему; упорядочивание всех отсортированных множеств в порядке от большего количества элементов к меньшему количеству элементов, или наоборот; и выполнение слепого поиска в сокращенном пространстве поиска с использованием элементов из отсортированных множеств, начиная с множества, содержащего наименьшее количество элементов.
В одном из различных аспектов раскрытия представлен машиночитаемый продукт, содержащий команды для сокращения издержек на обработку для слепого декодирования PDCCH-сигнала с использованием первоначальной оценки наибольшего CCE к наименьшему CCE, содержащие: сортировку всех возможных в PDCCH комбинаций CCE во множества, при этом наибольший CCE находится в начале своего множества, а CCE меньшего размера во множестве упорядочиваются в порядке от большего к меньшему; упорядочивание всех отсортированных множеств в порядке от большего количества элементов к меньшему количеству элементов, или наоборот; и выполнение слепого поиска в сокращенном пространстве поиска с использованием элементов из отсортированных множеств, начиная с множества, содержащего наименьшее количество элементов.
В одном из различных аспектов раскрытия представлено устройство, сконфигурированное для сокращения издержек на обработку для слепого декодирования PDCCH-сигнала с использованием первоначальной оценки наибольшего CCE к наименьшему CCE, содержащее: схему, сконфигурированную для слепого декодирования PDCCH-сигнала, при этом первоначальная оценка количества информационных разрядов PDCCH-сигнала основывается на сортировке всех возможных в PDCCH комбинаций CCE во множества, при этом наибольший CCE находится в начале своего множества, а CCE меньшего размера во множестве упорядочиваются в порядке от большего к меньшему, схему, имеющую возможность упорядочивания всех отсортированных множеств в порядке от большего количества элементов к меньшему количеству элементов, или наоборот, с образованием по меньшей мере одного множества, и схему, имеющую возможность выполнения слепого поиска в сокращенном пространстве поиска с использованием элементов из отсортированных множеств, начиная с множества, содержащего наименьшее количество элементов.
В одном из различных аспектов раскрытия представлено устройство, сконфигурированное для сокращения издержек на обработку для слепого декодирования PDCCH-сигнала с использованием первоначальной оценки наибольшего CCE к наименьшему CCE, содержащее: средство сортировки всех возможных в PDCCH комбинаций CCE во множества, при этом наибольший CCE находится в начале своего множества, а CCE меньшего размера во множестве упорядочиваются в порядке от большего к меньшему, средство упорядочивания всех отсортированных множеств в порядке от большего количества элементов к меньшему количеству элементов, или наоборот; и средство выполнения слепого поиска в сокращенном пространстве поиска с использованием элементов из отсортированных множеств, начиная с множества, содержащего наименьшее количество элементов.
В одном из различных аспектов раскрытия представлен способ сокращения издержек на обработку для слепого декодирования PDCCH, содержащий: прием PDCCH-сигнала; оценку максимального количества информационных разрядов, используемых в PDCCH-сигнале; ограничение предполагаемого количества информационных разрядов первым множеством информационных разрядов; отображение первого подмножества первого множества во второе множество, которое не является первым множеством; отображение второго подмножества первого множества в третье множество, которое не является первым множеством; ограничение соединения элементов множеств с целью формирования упорядочивания от большего к меньшему; и выполнение слепого декодирования, первоначально основанного на элементах в первом множестве, и продолжение для элементов второго множества и третьего множества.
В одном из различных аспектов раскрытия представлен машиночитаемый продукт, содержащий код для: приема PDCCH-сигнала; оценки максимального количества информационных разрядов, используемых в PDCCH-сигнале; ограничения предполагаемого количества информационных разрядов первым множеством информационных разрядов; отображения первого подмножества первого множества во второе множество, которое не является первым множеством; применения второго подмножества первого множества к третьему множеству, которое не является первым множеством; ограничения соединения элементов множеств с целью формирования упорядочивания от большего к меньшему; и выполнения слепого декодирования, первоначально основанного на элементах в первом множестве, и продолжения для элементов второго множества и третьего множества.
В одном из различных аспектов раскрытия представлено устройство, сконфигурированное для сокращения издержек на обработку для слепого декодирования PDCCH, содержащее: средство приема PDCCH-сигнала; средство оценки максимального количества информационных разрядов, используемых в PDCCH-сигнале; средство ограничения предполагаемого количества информационных разрядов первым множеством информационных разрядов; средство отображения первого подмножества первого множества во второе множество, которое не является первым множеством; средство отображения второго подмножества первого множества в третье множество, которое не является первым множеством; средство ограничения соединения элементов множеств с целью формирования упорядочивания от большего к меньшему; и средство выполнения слепого декодирования, первоначально основанного на элементах в первом множестве, и продолжения для элементов второго множества и третьего множества.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 представляет собой иллюстрацию системы беспроводной связи с множественным доступом.
Фиг.2 представляет собой структурную схему варианта осуществления передающей системы и принимающей системы в MIMO-конфигурации.
Фиг.3 представляет собой иллюстрацию системы беспроводной связи с множественным доступом.
Фиг.4A-B представляют собой диаграммы, иллюстрирующие PDCCH в подкадре размером 1 мс и иерархии CCE, соответственно.
Фиг.5-8 изображают графические представления количества PDCCH как функции от различных диапазонов частот, интервала PDCCH, и короткого CP.
Фиг.9 предоставляет графическую иллюстрацию непрерывного и основанного на древовидной структуре соединения.
Фиг.10 содержит блок-схему, иллюстрирующую типовой процесс.
ПОДРОБНОЕ ОПИСАНИЕ
Ниже различные варианты осуществления будут описаны со ссылкой на чертежи, при этом везде сходные цифровые обозначения используются для определения сходных элементов. В приведенном ниже описании, для целей объяснения, различные конкретные детали изложены с целью обеспечения полного понимания одного или более вариантов осуществления. Однако может быть очевидным, что такие варианты осуществления могут применяться на практике без этих конкретных деталей. В других случаях хорошо известные структуры и устройства показаны в форме блочных диаграмм с целью способствования описанию одного или более вариантов осуществления.
При использовании в данной заявке, предполагается, что термины «компонент», «модуль», «система» и им подобные относятся к связанной с компьютером сущности, представляющей собой аппаратное обеспечение, аппаратно-программное обеспечение, комбинацию аппаратного обеспечения и программного обеспечения, программное обеспечение или выполняемое программное обеспечение. Например, компонент может представлять собой процесс, выполняемый процессором, процессор, объект, исполняемый файл, поток выполнения, программу и/или компьютер, но не ограничивается перечисленным выше. В качестве иллюстрации как приложение, выполняемое на вычислительном устройстве, так и вычислительное устройство могут являться компонентами. Один или более компонентов может размещаться в пределах процесса и/или потока выполнения, и компонент может быть локализован на одном компьютере и/или быть распределенным между двумя или более компьютерами. Кроме того, эти компоненты могут выполняться с различных машиночитаемых носителей, на которых хранятся различные структуры данных. Компоненты могут взаимодействовать посредством локальных и/или удаленных процессов, например, в соответствии с сигналом, включающим один или более пакетов данных (например, данные от одного компонента, взаимодействующего посредством сигнала с другим компонентом в локальной системе, распределенной системе и/или через сеть, такую как Интернет, с другими системами).
Кроме того, различные варианты осуществления описаны в настоящем документе в связи с терминалом доступа. Терминал доступа также может называться системой, абонентской установкой, абонентской станцией, мобильной станцией, мобильным телефоном, удаленной станцией, удаленным терминалом, мобильным устройством, пользовательским терминалом, терминалом, устройством беспроводной связи, агентом пользователя, пользовательским устройством или пользовательским оборудованием (UE). Терминал доступа может представлять собой сотовый телефон, беспроводной телефон, телефон с протоколом установления сеанса (SIP), станцию беспроводного абонентского шлейфа (WLL), карманный персональный компьютер (КПК), портативное устройство, обладающее возможностью беспроводного соединения, вычислительное устройство или другое устройство обработки, соединенное с беспроводным модемом. Кроме того, различные варианты осуществления описаны в данном документе в связи с базовой станцией. Базовая станция может применяться для взаимодействия с терминалом(-ами) доступа и также может обозначаться как точка доступа, узел B, eNodeB(eNB) или некоторым другим термином. В зависимости от контекста приведенных ниже описаний термин «Узел B» может быть заменен eNB, и/или наоборот, в соответствии с применяемой системой связи.
Система связи с мультиплексированием с ортогональным частотным разделением каналов (OFDM) эффективно разделяет общую полосу пропускания системы на множество (NF) поднесущих, которые также могут называться подканалами частот, тональными сигналами или элементами дискретизации по частоте. В системе OFDM предназначенные для передачи данные (то есть, разряды информации) сначала кодируются с использованием определенной схемы кодирования с целью генерации закодированных разрядов, и затем закодированные разряды группируются в многоразрядные символы, которые затем отображаются в символы модуляции. Каждый символ модуляции соответствует точке в совокупности сигналов, определяемой конкретной схемой модуляции (например, M-PSK или M-QAM), используемой для передачи данных. В каждый временной интервал, который может зависеть от полосы пропускания каждой из частотных поднесущих, символ модуляции может передаваться по каждой из NF частотных поднесущих. OFDM может применяться для борьбы с межсимвольными наложениями (ISI), вызываемыми выборочным затуханием частоты, которое характеризуется различной величиной затухания для различных участков полосы пропускания системы.
Система связи с множеством входов - множеством выходов (MIMO) использует множество (NT) передающих антенн и множество (NR) принимающих антенн для передачи данных. MIMO-канал, образованный NT передающими и NR принимающими антеннами, может быть разбит на NS независимых каналов, которые также называются пространственными каналами, при этом NS≤min{NT, NR}. Каждый из NS независимых каналов соответствует измерению. MIMO-система может обеспечивать улучшенную производительность (например, более высокую пропускную способность) при использовании дополнительных измерений, созданных множеством передающих и принимающих антенн.
В MIMO-системе, использующей OFDM (то есть, MIMO-OFDM-системе), NF частотных поднесущих доступны в каждом из NS пространственных подканалов для передачи данных. Каждая частотная поднесущая каждого пространственного подканала может называться каналом передачи. Таким образом, имеется NF · Ns каналов передачи для передачи данных между NT передающими антеннами и NR принимающими антеннами.
В системе MIMO-OFDM NF частотных поднесущих каждого пространственного подканала могут иметь различные характеристики канала (например, различные эффекты затухания и многолучевого распространения) и могут достигать различных величин отношения сигнал/шум (SNR). Каждый переданный символ модуляции подвергается воздействию ответа канала передачи, через который осуществляется передача символа. В зависимости от профиля многолучевого распространения для канала связи между передатчиком и приемником частотная характеристика может значительно различаться для различных участков диапазона частот системы для каждого пространственного подканала и также может значительно различаться между пространственными подканалами.
Обратимся к Фиг.1, на которой система беспроводной связи с множественным доступом проиллюстрирована в соответствии с одним из вариантов осуществления. Точка доступа 100 (AP), также обозначаемая как e-Узел B или eNB, содержит множество групп антенн, одна из которых включает антенны 104 и 106, другая - 108 и 110, и дополнительная группа - 112 и 114. На Фиг.1 показано только две антенны для каждой из групп антенн, однако, в каждой из групп может быть использовано меньше или больше антенн. Терминал доступа 116 (AT), также называемый пользовательским оборудованием (UE), находится во взаимодействии с антеннами 112 и 114, при этом антенны 112 и 114 передают информацию на терминал доступа 116 через прямой канал 120 и принимают информацию от терминала доступа 116 через обратный канал 118. Терминал доступа 122 находится во взаимодействии с антеннами 106 и 108, при этом антенны 106 и 108 передают информацию на терминал доступа 122 через прямой канал 126 и принимают информацию от терминала доступа 122 через обратный канал 124. В системе FDD в каналах связи 118, 120, 124 и 126 для осуществления связи может использоваться различная частота. Например, в прямом канале 120 может использоваться частота, отличная от используемой в обратном канале 118.
Каждая группа антенн и/или область, в которой они должны осуществлять связь согласно плану, часто называется сектором точки доступа. В одном из вариантов осуществления предполагается, что каждая из групп антенн осуществляет связь с терминалами доступа в одном из секторов области покрытия точки доступа 100.
При осуществлении связи через прямые каналы 120 и 126 передающие антенны точки доступа 100 применяют формирование диаграммы направленности с целью улучшения отношения сигнал-шум для прямых каналов различных терминалов доступа 116 и 124. Также применение точкой доступа формирования диаграммы направленности для передачи на терминалы доступа, случайным образом рассеянные в ее зоне покрытия, вызывает меньшее количество помех для терминалов доступа в смежных сотах, чем в случае, если точка доступа осуществляет передачу на все свои терминалы доступа посредством единственной антенны.
Точка доступа может представлять собой неподвижную станцию, используемую для взаимодействия с терминалами, и также может называться точкой доступа, узлом B или некоторым другим термином. Терминал доступа также может называться терминалом доступа, пользовательским оборудованием (UE), устройством, терминалом или терминалом доступа беспроводной связи, или некоторым другим термином.
Фиг.2 представляет собой блочную диаграмму варианта осуществления передающей системы 210 (также известной как точка доступа) и принимающей системы 250 (также известной как терминал доступа) в MIMO-системе 200. В передающей системе 210 трафик данных для ряда потоков данных подается из источника данных 212 на процессор передаваемых данных (TX) 214.
В одном из вариантов осуществления каждый поток данных передается через соответствующую передающую антенну. Процессор TX-данных 214 форматирует, кодирует и чередует трафик данных для каждого потока данных на основании конкретной схемы кодирования, выбранной для этого потока данных, с целью выдачи закодированных данных.
Закодированные данные для каждого потока данных могут быть мультиплексированы с пилотными данными с использованием методик OFDM. Пилотные данные обычно представляют собой известную комбинацию данных, которая обрабатывается известным способом и может быть использована в принимающей системе для оценки ответа канала. Мультиплексированные пилотные и закодированные данные для каждого потока данных затем подвергаются модуляции (то есть, отображению символов) на основании конкретной схемы модуляции (например, BPSK, QSPK, M-PSK, или M-QAM), выбранной для этого потока данных с целью получения символов модуляции. Скорость выдачи данных, кодирование и модуляция данных для каждого потока данных могут быть определены посредством команд, выполняемых процессором 230. Память 232 может предоставлять поддержку сервисов памяти для процессора 230.
Символы модуляции для всех потоков данных затем подаются на TX MIMO-процессор 220, который может дополнительно обрабатывать символы модуляции (например, для OFDM). TX MIMO-процессор 220 затем выдает NT потоков символов модуляции на NT передатчиков (TMTR) 222a-222t. В некоторых аспектах TX MIMO-процессор 220 применяет веса диаграммы направленности для символов потоков данных и для антенны, с которой передается символ.
Каждый передатчик 222 принимает и обрабатывает соответствующий поток символов с целью выдачи одного или более аналоговых сигналов, а также дополнительно регулирует (например, усиливает, фильтрует и преобразует с повышением частоты) аналоговые сигналы с целью выдачи модулированного сигнала, подходящего для передачи через MIMO-канал. NT модулированных сигналов с передатчиков 222a-222t затем передаются с NT антенн 224a-224t, соответственно.
В принимающей системе 250 переданные модулированные сигналы принимаются NR антеннами 252a-252r, и полученный сигнал с каждой из антенн 252 передается соответствующему приемнику (RCVR) 254a-254r. Каждый приемник 254 регулирует (например, фильтрует, усиливает и преобразует с понижением частоты) соответствующий полученный сигнал, оцифровывает отрегулированный сигнал с целью получения дискретных отсчетов и дополнительно обрабатывает дискретные отсчеты с целью получения соответствующего "принятого" потока символов.
Процессор принимаемых (RX) данных 260 затем получает и обрабатывает NR принятых потоков символов от NR приемников 254 на основании методики обработки конкретного приемника с выдачей NT "распознанных" потоков символов. Процессор RX-данных 260 затем демодулирует, восстанавливает первоначальную последовательность и декодирует каждый распознанный поток символов с целью восстановления трафика данных для потока данных. Обработка процессором RX-данных 260 является комплементарной к обработке TX MIMO-процессором 220 и процессором TX-данных 214 в передающей системе 210.
Процессор 270 периодически определяет, какую матрицу предварительного кодирования следует использовать (обсуждается ниже). Процессор 270 формирует сообщение по обратному каналу, содержащее область индекса матрицы и область значения ранга. Память 262 может предоставлять поддержку сервисов памяти для процессора 270.
Сообщение по обратному каналу может содержать различные типы информации, относящейся к каналу связи и/или принятому потоку данных. Сообщение по обратному каналу затем обрабатывается процессором TX-данных 238, который также принимает трафик данных из ряда потоков данных с источника данных 236, модулируется модулятором 280, регулируется приемниками 254a-254r и передается обратно на передающую систему 210.
В передающей системе 210 модулированные сигналы от принимающей системы 250 принимаются антеннами 224, регулируются приемниками 222, демодулируются демодулятором 240 и обрабатываются процессором RX-данных 242 с целью извлечения сообщения по обратному каналу, переданного принимающей системой 250. Процессор 230 затем определяет, какую матрицу предварительного кодирования следует использовать для определения весов диаграммы направленности, затем обрабатывает извлеченное сообщение.
Обратимся к Фиг.3, на которой проиллюстрирована система беспроводной связи с множественным доступом 300 в соответствии с одним из аспектов. Система беспроводной связи с множественным доступом 300 включает множество областей, включая соты 302, 304 и 306. В аспекте на Фиг.3 каждая сота 302, 304, и 306 может содержать Узел B, который включает множество секторов. Множество секторов может быть сформировано группами антенн, где каждая антенна ответственна за связь с UE в пределах части соты. Например, в соте 302 каждая из групп антенн 312, 314 и 316 может соответствовать различному сектору. В соте 304 каждая из групп антенн 318, 320 и 322 может соответствовать различному сектору. В соте 306 каждая из групп антенн 324, 326 и 328 может соответствовать различному сектору.
Каждая сота 302, 304 и 306 может содержать несколько устройств беспроводной связи, например, пользовательское оборудование или UE, которое может находиться во взаимодействии с одним или более секторами каждой соты 302, 304 или 306. Например, UE 330 и 332 может находиться во взаимодействии с Узлом B 342, UE 334 и 336 может находиться во взаимодействии с Узлом B 344, и UE 338 и 340 может находиться во взаимодействии с Узлом B 346.
Информация и/или данные транспортируются по каналам. Эти каналы могут быть представлены физическим аппаратным обеспечением, частотами, временными диапазонами, логическими соединениями или абстрактными представлениями и т.д., в зависимости от контекста их применения. В стандарте UMTS логические каналы классифицируются как каналы управления и информационные каналы. Логические каналы управления включают широковещательный канал управления (BCCH), который представляет собой нисходящий канал для широковещательной передачи информации управления системой, канал управления пейджингом (PCCH), который представляет собой нисходящий канал, передающий информацию о пейджинге, канал управления многоадресной передачей (MCCH), который представляет собой нисходящий канал вида «точка-множество точек», используемый для передачи управляющей информации и информации планирования службы широковещательной и многоадресной передачи мультимедиа (MBMS) для одного или нескольких MTCH. Как правило, после установления соединения по RRC, этот канал используется только UE, которое получает MBMS (замечание: старые MCCH+MSCH). Специализированный канал управления (DCCH) представляет собой двухточечный двунаправленный канал, который передает специализированную информацию управления и используется UE, имеющим RRC-соединение. В одном из аспектов логические информационные каналы могут включать специализированный информационный канал (DTCH), который представляет собой двухточечный двунаправленный канал, выделенный для единичного UE в целях передачи информации пользователя. Также логические информационные каналы могут включать информационный канал многоадресной передачи (MTCH) для нисходящего канала вида «точка-множество точек» для передачи трафика данных.
В одном из аспектов транспортные каналы классифицируются как нисходящие (DL) и восходящие (UL). Транспортные каналы DL включают канал широковещательной передачи (BCH), нисходящий канал совместно используемых данных (DL-SDCH) и канал пейджинга (PCH); PCH может поддерживать функцию энергосбережения для UE (сетью для UE может быть назначен цикл DRX) путем широковещательной передачи на всю соту и отображения на ресурсы физического уровня (PHY), которые могут быть использованы для других каналов управления/информационных каналов. Транспортные каналы UL могут включать канал с произвольным доступом (RACH), канал запросов (REQCH), восходящий канал совместно используемых данных (UL-SDCH) и множество PHY-каналов. PHY-каналы включают множество DL-каналов и UL-каналов.
DL PHY-каналы включают:
общий пилотный канал (CPICH)
канал синхронизации (SCH)
канал общего управления (CCCH)
совместно используемый DL-канал управления (SDCCH)
канал управления многоадресной передачей (MCCH)
совместно используемый UL-канал назначения (SUACH)
канал подтверждения (ACKCH)
физический DL-канал совместно используемых данных(DL-PSDCH)
UL-канал управления питанием (UPCCH)
индикаторный канал пейджинга (PICH)
индикаторный канал загрузки (LICH)
UL PHY-каналы включают:
физический канал с произвольным доступом (PRACH)
канал индикации качества канала (CQICH)
канал подтверждения (ACKCH)
индикаторный канал для подмножества антенн (ASICH)
канал совместных запросов (SREQCH)
физический UL-канал совместно используемых данных(UL-PSDCH)
широкополосный пилотный канал (BPICH).
В одном из аспектов представлена структура канала, которая сохраняет низкие характеристики PAR (в любой заданный момент времени канал имеет непрерывную или расположенную через равные интервалы частоту) импульсов с одной несущей.
Для UMTS широковещательный канал (BCH) может иметь заранее заданный фиксированный транспортный формат и может транслироваться во всей области покрытия соты. В системе долгосрочного развития (LTE), которая улучшает стандарт UMTS, широковещательный канал может использоваться для передачи «поля системной информации», необходимого для доступа к системе. Однако, по причине большого размера поля системной информации, BCH может быть разделен на две части, включающие первичный широковещательный канал (P-BCH) и динамический широковещательный канал (D-BCH). P-BCH может содержать базовые системные параметры уровня 1 (физический уровень) / уровня 2 (канальный уровень) (или "L1/L2"), подходящие для демодуляции D-BCH, который, в свою очередь, может содержать остальную часть поля системной информации.
Пример множественного разделения BCH для сценария нисходящего пейджинга приведен на Фиг.4A, где PDCCH и PDSCH показаны в подкадре размером 1 мс. Фиг.4A нагляден в иллюстрации того, что передняя часть подкадра содержит элементы ресурсов (RE) 410, организованные во временные полосы 420. Понятно, что в среде OFDM структура PDCCH основывается на CCE, которые строятся из RE 410. В зависимости от системы существует 36 RE на один CCE, при этом каждый RE 410 основывается на тональном сигнале или символе модуляции. И каждый тональный сигнал или символ модуляции соответствует паре разрядов. То есть, каждый CCE состоит из 36 RE, которые, в свою очередь, состоят из 2 разрядов или 2 закодированных значений. Следовательно, для каждого конкретного CCE существует эквивалент из 72 закодированных разрядов/значений. PDCCH может вмещать множество CCE в различные периоды времени, когда характеристики канала ухудшаются с целью обеспечения повышенной целостности информации.
Фиг.4B представляет собой диаграмму, иллюстрирующую CCE и взаимосвязь их разрядов. Как ясно из Фиг.4B, комбинации CCE представляют собой пары в порядке возрастания, то есть, 1, 2, 4 и 8. Таким образом, CCE могут быть представлены как множество элементов {1, 2, 4, 8}, при этом самый нижний элемент содержит 72 закодированных разряда, и самый высокий элемент содержит 576 закодированных разрядов. Как упоминалось выше, структура PDCCH сформирована комбинациями CCE. Таким образом, блок PDCCH может содержать различные комбинации элементов из определенного выше множества. Например, блок PDCCH может содержать следующие элементы CCE - 1, 8, 8, 2, 4, 1, 8 и т.д. С точки зрения комбинаторики, для заданного размера CCE (X), в неограниченной перестановке, или перестановке с повторениями, существует (X 1)+(X 2)+(X 4)+(X 8) возможных комбинаций разрядов. Если размер CCE равен 32, то в PDDCH будет 10554788 возможных комбинаций разрядов. Следует отметить, что хотя на Фиг.4B проиллюстрирован максимальный размер CCE, равный 8, в некоторых вариантах осуществления может быть большее или даже меньшее количество CCE, согласно реализации проектного решения.
Может случиться, что UE будет иметь необходимость в слепом декодировании физического нисходящего канала управления (PDCCH) из нескольких возможных форматов и ассоциированных элементов канала управления (CCE). К сожалению, это может накладывать значительную нагрузку на UE, которая может превысить целесообразные ограничения аппаратного обеспечения, и таким образом привести к повышению издержек и/или снижению производительности UE. Принимая во внимание вышесказанное, представлены следующие типовые подходы для снижения количества возможных комбинаций посредством использования, по меньшей мере, ограничений процесса образования пар CCE.
Представлены исследования с целью понимания, каким образом производится соединение CCE и каким образом может быть выполнен «слепой» поиск с целью сокращения усилий, требуемых для выполнения слепого декодирования.
Один из примеров проектных решений может включать ограничение числа информационных разрядов в PDCCH различными возможными количествами множеств. Пять множеств является подходящим количеством элементов для примеров, приводимых в настоящем документе. Естественно, может быть использовано больше или меньше множеств в соответствии с предпочтениями проектирования. При использовании, в качестве примера, пяти множеств, задача может быть разделена на две части, включая: (1) идентификацию CCE, ассоциированных с PDCCH (разъединение CCE, ассоциированных с PHICH и PDCCH), и (2) слепое декодирование PDCCH в пределах ассоциированных с ним CCE.
Для изложенного подхода к слепому декодированию PDCCH может быть сделан ряд предположений, включая: (1) UE правильно декодировало конкретный P-BCH, и (2) декодированный P-BCH содержит информацию, относящуюся к идентификации CCE.
При отсутствии функционирования D-BCH без PDCCH идентификация соответствующих CCE для PDCCH может быть необходимой даже для UE, входящих в соту. Следовательно, нельзя предполагать передачу любых сигналов по D-BCH. Однако в случае если функционирование D-BCH без PDCCH допускается, то соответствующая информация может передаваться посредством сигналов по соответствующему D-BCH.
Обычно в E-UTRA могут рассматриваться три типа CCE:
• Мини-CCE,
• PHICH CCE и
• PDCCH CCE.
Мини-CCE может состоять из 4 элементов ресурсов (RE), при этом следует отметить, что определение может быть изменено на 2 RE ввиду структуры PHICH, имеющей место в сценариях с длинным циклическим префиксом (CP). Мини-CCE могут использоваться в качестве «строительных блоков» для каналов PCFICH, PDCCH и PHICH.
PHICH CCE может состоять из 12 элементов ресурсов, при этом следует отметить, что короткий CP может включать три полосы из 4 RE каждая, а длинный CP может включать 6 полос по 2 RE каждая. Стоит отметить, что из всех различных нисходящих каналов управления LTE для передачи ACK/NACK при восходящей передаче может использоваться PHICH.
PHICH может иметь гибридную CDM-FDM структуру. Сигналы гибридного CDM/FDM допускают управление питанием между подтверждениями для различных пользователей и обеспечивают хорошее усреднение помех. Кроме того, для различных пользователей также может быть обеспечено разнесение по частоте. Таким образом, отсутствует необходимость в балансировке загрузки диапазона частот и мощности для PHICH, и для идентификации CCE для PDCCH может рассматриваться только загрузка диапазона частот.
PDCCH CCE может иметь четыре типа RE. В данном примере эти четыре типа могут состоять из {36, 72, 144, 288} RE, соответственно.
На основании приведенного выше, пусть N обозначает число физических совместно используемых восходящих каналов (PUSCH), допускаемых для соединения по нисходящему каналу. Поскольку для передачи сигнала с циклическим сдвигом для коллективного доступа с пространственным разделением каналов (SDMA) может использоваться 3 разряда, то теоретическое максимальное значение N равняется 8 x количество пар физических блоков ресурсов (PRB) в восходящем канале (23 = 8).
При расчете количества доступных CCE для PDCCH (назначений) могут игнорироваться различные ресурсы, которые используются для другой управляющей информации. Другая контрольная информация может представлять собой DL ACK (PHICH) и PCFICH (физический канал индикатора контроля формата). Смысл этого состоит в том, чтобы понять, какое суммарное количество CCE доступно в PDCCH, и на основании ограничений, содержащихся в этой информации, соответствующим образом настроить слепое декодирование.
Начнем с определений: Nmax_prb_bw = количество блоков ресурсов для PUSCH-передачи; и f_PHICH = доля использования PHICH-ресурсов (физический индикаторный канал HARQ), и пусть Nmax_bw_rx указывает максимальное количество PUSCH, допустимое для заданной полосы частот и количества Rx-антенн (Nrx), тогда
Nmax_bw_rx=min(Nrx, 8)*Nmax_prb_bw; и Ур. (1)
N≤Nmax_bw_rx Ур. (2)
Проектное решение: во-первых, отметим, что загрузка полосы частот PHICH может быть указана в соответствующем PBCH. Для указания доли загрузки как функции Nmax_bw_rx может использоваться 2 разряда, таким образом, доля загрузки f_phich={1, 1/2, 1/4, 1/8}.
Количество RE, зарезервированных для PHICH (Nphich_re) является важной величиной, которую следует определить, и она может быть рассчитана, в зависимости от CP, как:
Nphich_re (короткий CP)=12*ceil(f_phich*Nmax_bw_rx/4) Ур. (3)
Nphich_re (длинный CP)=12*ceil(f_phich*Nmax_bw_rx/2) Ур. (4)
ceil=верхняя граница
Отметим, что количество RE, зарезервированных для нужд PHICH, не обязано быть согласованным со значением n, указанным в соответствующем PCFICH. На практике eNB может извлечь преимущество из принятия этого в расчет.
Например, для частоты = 5 МГц, Nrx=4, для короткого CP ⇔ Nmax_bw_rx=100, получаемое значение f_phich=1. Следовательно, с использованием приведенных выше формул, результирующее значение Nphich_re(короткий CP)=300. В случае, когда количество символов OFDM (n) в PDCCH=1 ⇔ Nphich_re (количество RE, доступных в 1-м символе)=200, что <Nphich_re (короткий CP). Следовательно, получено значительное сокращение возможных вариантов поиска.
Отметим, что n является количеством символов OFDM в интервалах PDCCH, и для представленных вариантов осуществления может равняться 1, 2 или 3. Соответственно, количество RE, зарезервированных для PHICH (Nphich)_re, может изменяться в зависимости от различных факторов.
Приведенные ниже таблицы 1-5 суммируют результаты для Nphich_re для ряда условий для различных CP и различных загрузок.
Таблица 1
Короткий CP - загрузка = 0,125
полоса частот количество Rx Nmax_bw_rx загрузка Nphich_re (количество ACK)
1,4 МГц 2 14 0,125 12(4)
5 МГц 2 50 0,125 24(8)
10 МГц 2 100 0,125 48(16)
20 МГц 2 200 0,125 84(28)
Таблица 2
Короткий CP - загрузка = 0,25
полоса частот количество Rx Nmax_bw_rx загрузка Nphich_re (количество ACK)
1,4 МГц 2 14 0,25 12(4)
5 МГц 2 50 0,25 48(16)
10 МГц 2 100 0,25 84(28)
20 МГц 2 200 0,25 156(52)
Таблица 3
Короткий CP - загрузка = 0,50
полоса частот количество Rx Nmax_bw_rx загрузка Nphich_re (количество ACK)
1,4 МГц 2 14 0,5 24(8)
5 МГц 2 50 0,5 84(28)
10 МГц 2 100 0,5 156(52)
20 МГц 2 200 0,5 300(100)
Таблица 4
Длинный CP - загрузка = 0,125
полоса частот количество Rx Nmax_bw_rx загрузка Nphich_re (количество ACK)
1,4 МГц 2 14 0,125 12(2)
5 МГц 2 50 0,125 48(8)
10 МГц 2 100 0,125 84(14)
20 МГц 2 200 0,125 156(26)
Таблица 5
Длинный CP - загрузка = 0,25
полоса частот количество Rx Nmax_bw_rx загрузка Nphich_re (количество ACK)
1,4 МГц 2 14 0,25 24(4)
5 МГц 2 50 0,25 84(14)
10 МГц 2 100 0,25 156(26)
20 МГц 2 200 0,25 300(50)
Теперь рассмотрим отображение PHICH CCE на RE. Отображение может быть выполнено «вокруг» RE для заданного RS даже при наличии только одной Tx-антенны. Это значительно упрощает отображение. Дадим следующие определения:
• N_re = количество элементов ресурсов
• Nrs_re: количество элементов ресурсов для RS (опорный сигнал)
• Npcfich_re: количество элементов ресурсов для PCFICH (физический канал индикатора контроля формата).
Отображение перемежителя может быть зафиксировано как функция Nphich_re и количества Tx-антенн. В следующем примере суммарное количество доступных для передачи по PDCCH ресурсов (назначений) рассчитывается без учета тональных сигналов (RE), которые используются для других задач (в пределах области управления). Следовательно, оставшиеся RE могут быть сделаны доступными для PDCCH, и для целей настоящего описания могут быть обозначены как Npdcch_re, при этом их количество может быть рассчитано как:
Npdcch_re = 36*нижняя_граница((Navail_re - Npcfich_re - Nphich_re)/36) Ур. (5)
и количество доступных RE рассчитывается как:
Navail_re = N_re - Nrs_re Ур. (6)
Ниже представлены таблицы 6 и 7 для демонстрации количества Npdcch_re для коротких CP и различной величины загрузок PHISH.
Таблица 6
Короткий CP - загрузка PHICH = 0,125
полоса частот количество Tx n Nphich_re (количество ACK) Npdcch_re (количество разрешений)
1,4 МГц {1,2} 1 12(4) 0(0)
5 МГц {1,2} 1 24(8) 144(4)
10 МГц {1,2} 1 48(16) 324(9)
20 МГц {1,2} 1 84(28) 684(19)
Таблица 7
Короткий CP - загрузка PHICH = 0,125
полоса частот количество Tx n Nphich_re (количество ACK) Npdcch_re (количество разрешений)
1,4 МГц {1,2} 3 12(4) 180(5)
5 МГц {1,2} 3 24(8) 756(21)
10 МГц {1,2} 3 48(16) 1512(42)
20 МГц {1,2} 3 84(28) 3096(86)
Далее, на Фиг.5-8 показано графическое представление количества PDCCH как функция числа подтверждений для различных полос частот, интервала PDCCH, для короткого CP. Можно видеть, что размер PDCCH (короткий/длинный) влияет на выбор CCE. Например, заданный размер PDCCH (1) может быть преобразован во множество CCE {1,2}, а заданный размер PDCCH (2) может быть преобразован во множество CCE {4,8}. Следовательно, в одном из примеров варианта осуществления размер PDCCH выступает в качестве метрики при определении множества соединения. С учетом этой информации количество комбинаций размеров CCE, среди которых UE должно осуществлять поиск при слепом декодировании, может быть сокращено за счет определения типа (размера) передаваемого PDCCH.
При слепом декодировании PDCCH количество форматов PDCCH может зависеть от конечного количества информационных разрядов. Предположим, что в вариантах осуществления может быть вплоть до 5 форматов, при этом количество информационных разрядов находится в диапазоне от 30 до 60, тогда потенциальное количество PDCCH (основывающееся на 36 RE) может быть рассчитано как:
Npdcch_max = нижняя граница(Npdcch_re/36) (7)
На практике, следует понимать, что число вариантов слепых декодирований может существенно возрастать с увеличением Npdcch_max. Например, для Npdcch_max=3 может быть {1,1,1}, {2,1}, {1,2} ⇔ 25 вариантов слепых декодирований, тогда как для Npdcch_max = 4 может быть {1,1,1,1}, {2,1,1}, {1,2,1}, {1,1,2}, {2,2}, {4} ⇔ 40 вариантов слепых декодирований, а для Npdcch_max = 5 может быть {1,1, 1,1,1}, {2,1, 1,1}, {1,2,1,1}, {1,1,2,1}, {1,1,1,2}, {1,4}, {4,1} ⇔ 55 вариантов слепых декодирований.
Принимая во внимание вышесказанное, может быть нецелесообразным ожидание от UE мониторинга всех возможных PDCCH. Однако может быть сделан ряд наблюдений с целью сокращения общего числа возможных вариантов.
Для собственной кодовой скорости циклически замкнутого сверточного кода (TBCC)=1/3, где количество информационных разрядов = 30-60 и где отсутствует выигрыш при кодировании за пределами 144 RE для всех форматов, можно ограничить количество RE множеством {36, 72, 144}.
В случае, если выигрыш при кодировании отсутствует за пределами 72 RE для менее чем 48 информационных разрядов, можно ограничить количество информационных разрядов величиной 30-60 и RE - множеством {36, 72}.
Отметим, что кодовая скорость может быть слишком высокой в случае, если 36 RE используются для более чем 48 информационных разрядов, при этом количество информационных разрядов может ограничиваться значением 48-60 и RE - множеством {72, 144}. Следовательно, использование, при наличии возможности, указанных выше ограничений, отдельно или совместно, позволяет значительно сократить количество RE или комбинаций.
Дополнительно сокращение количества комбинаций может быть достигнуто с использованием ряда подходов, например, путем обеспечения того, что соединение RE всегда выполняется в начале, а не в произвольном положении. Например, для Npdcch_max=4 мы имеем {1, 1, 1, 1}, {2, 1, 1}, {2,2}, {4} и для Npdcch_max = 5 получаем {1,1,1,1,1}, {2,1,1,1}, {2,2,1}, {4,1}.
Приведенные выше множества иллюстрируют пример, в котором сворачиваются первые «пары» идентичных элементов. Например, для случая Npdcch_max=4, первые две единицы множества {1,1,1,1} сворачиваются в первую двойку следующего множества {2,1,1}; и следующие две единицы множества {2,1,1} сворачиваются во вторую двойку следующего множества {2,2}; и первые две двойки множества {2,2} сворачиваются во множество {4}. Конечно, данный подход может быть применен для случая Npdcch_max=5, так же как и для других значений Npdcch_max. Такое расположение может рассматриваться как основанный на древовидной структуре подход, в котором границы CCE являются непрерывными и «состыкованными».
На Фиг.9 представлена в качестве примера графическая иллюстрация 900 непрерывного и основанного на древовидной структуре соединения в соответствии с описанным выше, с использованием 16 CCE. В этом примере самой большой группировкой является группировка 905 из 8 CCE, размещенная с образованием непрерывных сегментов. Следующая группировка сформирована множествами из 4 CCE 915, размещенных непрерывно относительно друг друга в «дереве» поверх пары из 8 CCE 905 сегментов, при этом границы 920 для пары из 4 CCE 915 с другой стороны соответствуют границам 910 сегментов из 8 CCE 905. Аналогично, сегменты из 2 CCE 925 расположены непрерывно друг относительно друга и границы 930 с другой стороны соответствуют границам 920 сегментов из 4 CCE 915. Границы 940 для сегментов из 1 CCE 935 аналогично размещены в виде древовидной структуры относительно наибольшего нижнего сегмента CCE.
За счет непрерывности и древовидной структуры CCE алгоритм поиска может быть упрощен. Например, если в PDDCH предполагается использование максимума из 4 CCE 915, то использование ограничения, заключающегося в непрерывности и древовидности соединения, позволяет упростить алгоритм поиска таким образом, что область поиска совпадает с границами 920 (и 910 - поскольку они также попадают на ту же границу) 4-х CCE 915. Если в PDDCH предполагается использование максимума из 2 CCE 925, то поиск может быть упрощен до границ 930 2-х CCE 925. Очевидно, что если размер CCE известен или оценен, то это устраняет необходимость поиска или декодирования границ с размером, не равным CCE.
Также следует отметить, что при использовании указанного выше размещения, граница для заданного CCE совпадает с границей для всех CCE-сегментов меньшего размера. Это дает значительное преимущество. Например, граница 910 для 8-и CCE 905 соответствует границе для каждого из 4-х CCE 915, 2-х CCE 925 и 1-го CCE 935. Аналогично, то же самое можно сказать о 4-х CCE 915 и всех CCE меньшего размера выше их. Следовательно, каждая граница CCE большего размера также образует по меньшей мере одну границу со всеми CCE меньшего размера. Таким образом, начиная с главной, или наибольшей, границы, все CCE меньшего размера, также находящиеся на этой границе, также могут быть захвачены при поиске.
Очевидно, что для непрерывной/древовидной группировки могут применяться различные способы поиска или сортировки, известные в технике, для ускорения или сокращения количества возможных поисков, включая упорядочивание в корневой, а не древовидной форме.
В еще одном варианте осуществления настоящего описания, пусть предполагаемое количество информационных разрядов составляет {32, 40, 48, 56, 64}, где {32, 40, 48} разрядов отображаются на {36, 72} RE и {56, 64} разрядов отображаются на {72, 144} RE.
В предположении, что Npdcch_max=4<=> упорядочивание RE имеет вид {1,1,1,1}, {2,1,1}, {2,2}, {4} и количество вариантов слепого декодирования = (4x3)+(2x5)+(lx2)=24 варианта слепого декодирования, что дает 40% сокращение количества вариантов слепого декодирования.
В предположении, что Npdcch_max=5<=>{1,1,1,1,1}, {2,1,1,1}, {2,2,1}, {4,1}, количество вариантов слепого декодирования = (5x3)+(2x5)+(lx2)=27 вариантов слепого декодирования, что дает 51% сокращение количества вариантов слепого декодирования.
В предположении, что Npdcch_max=6<=>{1,1,1,1,1,1}, {2,1,1,1,1}, {2,2,1,1}, {2,2,2}, {4,1,1}, {4,2}, количество вариантов слепого декодирования = (6x3)+(3x5)+(lx2)=27 вариантов слепого декодирования. Отметим, что количество не изменяется относительно случая Npdcch_max=5.
В продолжение, предположим Npdcch_max=8, тогда количество вариантов слепого декодирования = (8x3)+(4x5)+(2x2)=48 вариантов слепого декодирования.
Общее описание одной из возможных реализаций подробно описано ниже.
ШАГ 1: ограничение предполагаемого количества информационных разрядов множеством {32, 40, 48, 56, 64}, где {32, 40, 48} разрядов отображается на {36, 72} RE, и {56, 64} разрядов отображается на {72, 144} RE.
ШАГ 2: ограничение соединения RE таким образом, что оно всегда выполняется в начале, а не в произвольной позиции, например, {a, b, c, …}, где a≥b≥c≥…
ШАГ 3: ограничение количества PDCCH, отслеживаемых заданным UE, 8 или менее.
В целях дальнейшей оптимизации использование 36 RE может быть ограничено только случаем минимальной полезной нагрузки, то есть, когда {32} разряда отображаются на {36, 72} RE, {40, 48} разрядов отображаются на {72} RE, и {56, 64} разрядов отображаются на {72, 144} RE. Например, если предположить Npdcch_max=8, то результирующее количество вариантов слепого декодирования = (8×1)+(4×5)+(2×2)=32 варианта слепого декодирования.
Фиг.10 содержит блок-схему 1000, иллюстрирующую типовой процесс, основанный на приведенных выше описаниях. Типовой процесс, после инициализации 1010, ограничивает предполагаемое количество конечным множеством, как показано на шаге 1020. Конечное множество, в целях объяснения, может включать, например, {32, 40, 48, 56, 64}. На шаге 1020 различные комбинации элементов из конечного множества (то есть, подмножества) будут отображаться на другое множество чисел, которое не может быть элементом конечного множества. Например, подмножество {32, 40, 48} может быть отображено на «внешнее» множество {36, 72}, а оставшееся подмножество {56, 64} может быть отображено на «внешнее» множество {72, 144}. После шага 1020 типовой процесс переходит к шагу 1030, где он ограничивает соединение RE предварительным/начальным процессом, а не произвольной позицией. Посредством данного способа может быть осуществлено упорядочивание значений.
Затем типовой процесс переходит к шагу 1040, на котором количество PDCCH, отслеживаемых заданным UE, ограничивается, например, 8 или менее. Затем типовой процесс завершается на шаге 1050.
Описанные в настоящем документе способы могут быть реализованы с помощью различных средств. Например, эти способы могут быть реализованы в виде аппаратного обеспечения, программного обеспечения или их комбинации. При аппаратной реализации устройства обработки, применяемые для оценки канала, могут быть реализованы в пределах одной или нескольких специализированных интегральных микросхем (ASIC), процессоров цифровой обработки сигнала (DSP), устройств обработки цифровых сигналов (DSPD), программируемых логических устройств (PLD), программируемых пользователем вентильных матриц (FPGA), процессоров, контроллеров, микроконтроллеров, микропроцессоров, других электронных устройств, предназначенных для выполнения функций, описанных в настоящем документе, или комбинации вышеперечисленного. Программная реализация может быть выполнена посредством модулей (например, процедур, функций, и т.д.), которые выполняют описанные в настоящем документе функции. Код программного обеспечения может храниться на машиночитаемом носителе или в устройстве памяти и может выполняться процессорами.
Кроме того, различные аспекты или характеристики, описанные в данном документе, могут быть реализованы в виде способа, устройства или изделия с применением стандартных программистских и/или инженерных методик. Предполагается, что термин «изделие» при использовании в данном документе охватывает компьютерную программу, доступную с любого машиночитаемого устройства, носителя или средства. Например, машиночитаемый носитель может включать, но не ограничивается перечисленным ниже: магнитные запоминающие устройства (например, жесткий диск, флоппи-диск, магнитные полоски, и т.д.), оптические диски (например, компакт-диск (CD), универсальный цифровой диск (DVD), и т.д.), смарт-карты, и устройства флэш-памяти (например, EPROM, карту, флэш-карту, ключ-накопитель, и т.д.). Кроме того, различные накопители, описанные в данном документе, могут представлять собой одно или несколько устройств и/или машиночитаемых носителей для хранения информации. Термин «машиночитаемый носитель» может включать беспроводные каналы и различные другие носители, обладающие возможностью записи, хранения и/или транспортировки команд и/или данных, но не ограничивается перечисленным выше.
Описанное выше включает примеры одного или более вариантов осуществления. Очевидно, что невозможно описать все мыслимые комбинации компонентом или методологий с целью описания упомянутых выше вариантов осуществления, но при этом специалист в данной области техники может осознавать возможность различных дополнительных комбинаций и преобразования различных вариантов осуществления. Соответственно, предполагается, что описанные варианты осуществления охватывают все подобные изменения, модификации и вариации, которые находятся в рамках формы и объема прилагаемой формулы изобретения. Кроме того, при использовании термина "включает" в подробном описании и формуле изобретения, предполагается, что этот термин используется в том же значении, что и термин "содержащий", в соответствии с интерпретацией термина "содержащий" при использовании в качестве промежуточного слова в пункте формулы изобретения.

Claims (12)

1. Способ слепого декодирования сигнала физического канала управления нисходящей линии связи (PDCCH), содержащий этапы, на которых:
оценивают сегмент элементов канала управления (ССЕ) подходящего размера в PDCCH-сигнале;
формируют древовидную структуру, содержащую смежные уровни агрегирования ССЕ оцениваемого сегмента ССЕ, при этом уровни агрегирования ССЕ являются кратными оцениваемому сегменту ССЕ;
упорядочивают уровни агрегирования в иерархическом порядке, при этом начальная позиция каждого уровня совпадает с начальными позициями всех других уровней; и
декодируют PDCCH-сигнал, используя границы, определяемые древовидной структурой, при этом границы формируют маршрут поиска, обеспечивающий возможность сокращенного поиска для слепого декодирования.
2. Способ по п.1, в котором уровни агрегирования ССЕ являются четными кратными оцениваемого сегмента ССЕ.
3. Способ по п.1, в котором уровни агрегирования ССЕ являются взаимно обратными величинами четных кратных оцениваемого сегмента ССЕ.
4. Способ по п.1, в котором декодирование первоначально начинается при наибольшем уровне агрегирования ССЕ.
5. Способ по п.1, в котором первое агрегирование ССЕ заданного уровня является наибольшим агрегированием ССЕ этого уровня.
6. Способ по п.1, в котором все уровни упорядочены таким образом, что их первое агрегирование ССЕ является наибольшим агрегированием ССЕ этого уровня.
7. Машиночитаемый носитель, содержащий код для:
оценивания сегмента элементов канала управления (ССЕ) подходящего размера в сигнале физического канала управления нисходящей линии связи (PDCCH);
формирования древовидной структуры, содержащей смежные уровни агрегирования ССЕ оцениваемого сегмента ССЕ, при этом уровни агрегирования ССЕ являются кратными оцениваемому сегменту ССЕ;
упорядочивания уровней агрегирования в иерархическом порядке, при этом начальная позиция каждого уровня совпадает с начальными позициями всех других уровней; и
декодирования PDCCH-сигнала с использованием границ, определяемых древовидной структурой, при этом границы формируют маршрут поиска, обеспечивающий возможность сокращенного поиска для слепого декодирования.
8. Машиночитаемый носитель по п.7, дополнительно содержащий код для выполнения слепого декодирования, начиная с наибольшего уровня агрегирования ССЕ.
9. Устройство для слепого декодирования сигнала физического канала управления нисходящей линии связи (PDCCH), содержащее
схему, выполненную с возможностью слепого декодирования PDCCH-сигнала, при этом схема выполнена с возможностью
оценивания сегмента элементов канала управления (ССЕ) подходящего размера в PDCCH-сигнале;
формирования древовидной структуры, содержащей смежные уровни агрегирования ССЕ оцениваемого сегмента ССЕ, при этом уровни агрегирования ССЕ являются кратными оцениваемому сегменту ССЕ;
упорядочивания уровней агрегирования в иерархическом порядке, при этом начальная позиция каждого уровня совпадает с начальными позициями всех других уровней; и
декодирования PDCCH-сигнала с использованием границ, определяемых древовидной структурой, при этом границы формируют маршрут поиска, обеспечивающий возможность сокращенного поиска для слепого декодирования.
10. Устройство по п.9, в котором схема выполняет слепое декодирование, начиная с границы наибольшего сегмента ССЕ.
11. Устройство для слепого декодирования сигнала физического канала управления нисходящей линии связи (PDCCH), содержащее:
средство оценивания сегмента элементов канала управления (ССЕ) подходящего размера в PDCCH-сигнале;
средство формирования структуры, содержащей смежные уровни агрегирования ССЕ оцениваемого сегмента ССЕ, при этом уровни агрегирования ССЕ являются кратными оцениваемому сегменту ССЕ;
средство упорядочивания уровней агрегирования в иерархическом порядке, при этом начальная позиция каждого уровня совпадает с начальными позициями всех других уровней; и
средство декодирования PDCCH-сигнала с использованием границ, определяемых структурой, при этом границы формируют маршрут поиска, обеспечивающий возможность сокращенного поиска для слепого декодирования.
12. Устройство по п.11, в котором уровни агрегирования ССЕ являются четными кратными оцениваемого сегмента ССЕ.
RU2010121842/08A 2007-10-30 2008-10-29 Способы и системы для слепого декодирования pdcch в мобильной связи RU2484591C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US98390707P 2007-10-30 2007-10-30
US60/983,907 2007-10-30
US12/259,798 US8238475B2 (en) 2007-10-30 2008-10-28 Methods and systems for PDCCH blind decoding in mobile communications
US12/259,798 2008-10-28
PCT/US2008/081641 WO2009058905A2 (en) 2007-10-30 2008-10-29 Methods and systems for pdcch blind decoding in mobile communications

Related Child Applications (3)

Application Number Title Priority Date Filing Date
RU2013105442/08A Division RU2575391C2 (ru) 2007-10-30 2008-10-29 Способы и системы для слепого декодирования pdcch в мобильной связи
RU2012107693/08A Division RU2523170C2 (ru) 2007-10-30 2012-02-29 Способы и системы для слепого декодирования pdcch в мобильной связи
RU2012107770/08A Division RU2519462C2 (ru) 2007-10-30 2012-02-29 Способы и системы для слепого декодирования pdcch в мобильной связи

Publications (2)

Publication Number Publication Date
RU2010121842A RU2010121842A (ru) 2011-12-10
RU2484591C2 true RU2484591C2 (ru) 2013-06-10

Family

ID=40549883

Family Applications (3)

Application Number Title Priority Date Filing Date
RU2010121842/08A RU2484591C2 (ru) 2007-10-30 2008-10-29 Способы и системы для слепого декодирования pdcch в мобильной связи
RU2012107770/08A RU2519462C2 (ru) 2007-10-30 2012-02-29 Способы и системы для слепого декодирования pdcch в мобильной связи
RU2012107693/08A RU2523170C2 (ru) 2007-10-30 2012-02-29 Способы и системы для слепого декодирования pdcch в мобильной связи

Family Applications After (2)

Application Number Title Priority Date Filing Date
RU2012107770/08A RU2519462C2 (ru) 2007-10-30 2012-02-29 Способы и системы для слепого декодирования pdcch в мобильной связи
RU2012107693/08A RU2523170C2 (ru) 2007-10-30 2012-02-29 Способы и системы для слепого декодирования pdcch в мобильной связи

Country Status (10)

Country Link
US (3) US8238475B2 (ru)
EP (1) EP2206260A2 (ru)
JP (2) JP5496903B2 (ru)
KR (6) KR20150109497A (ru)
CN (3) CN101843022A (ru)
BR (1) BRPI0818256A2 (ru)
CA (3) CA2799975C (ru)
RU (3) RU2484591C2 (ru)
TW (1) TWI495303B (ru)
WO (1) WO2009058905A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9699773B2 (en) 2012-09-27 2017-07-04 Huawei Technologies Co., Ltd. Method and apparatus for allocating control channel candidates

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7782749B2 (en) * 2007-03-21 2010-08-24 Samsung Electronics Co., Ltd Method for mapping physical downlink control channel to resources and apparatus for transmitting/receiving the mapped physical downlink control channel in a wireless communication system
EP2103017B1 (en) 2007-03-29 2014-01-08 LG Electronics Inc. Method of transmitting sounding reference signal in wireless communication system
KR101468490B1 (ko) * 2007-05-02 2014-12-10 삼성전자주식회사 무선 통신 시스템에서 제어 채널들의 집합을 한정하여 송수신하는 방법 및 장치
KR101380558B1 (ko) 2007-06-19 2014-04-02 엘지전자 주식회사 사운딩 기준신호의 전송방법
KR101397039B1 (ko) * 2007-08-14 2014-05-20 엘지전자 주식회사 전송 다이버시티를 사용하는 다중안테나 시스템에서 채널예측 오류의 영향을 감소시키기 위한 cdm 방식 신호전송 방법
KR101430267B1 (ko) * 2007-08-14 2014-08-18 엘지전자 주식회사 무선통신시스템에서의 데이터 전송방법
CN101669304B (zh) * 2007-08-14 2013-08-28 Lg电子株式会社 用于获取用于phich的资源范围信息的方法和接收pdcch的方法
KR101405974B1 (ko) * 2007-08-16 2014-06-27 엘지전자 주식회사 다중입력 다중출력 시스템에서 코드워드를 전송하는 방법
KR101507785B1 (ko) 2007-08-16 2015-04-03 엘지전자 주식회사 다중 입출력 시스템에서, 채널품질정보를 송신하는 방법
KR101531416B1 (ko) 2007-09-13 2015-06-24 옵티스 셀룰러 테크놀로지, 엘엘씨 상향링크 신호 전송 방법
CN103747533B (zh) 2007-10-29 2018-06-01 交互数字专利控股公司 一种无线网络设备
US8238475B2 (en) 2007-10-30 2012-08-07 Qualcomm Incorporated Methods and systems for PDCCH blind decoding in mobile communications
US8687745B2 (en) * 2007-12-13 2014-04-01 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for blind decoding
US8929304B2 (en) * 2008-01-04 2015-01-06 Optis Wireless Technology, Llc Radio communication base station device, radio communication mobile station device, and control channel allocation method
CN101505208A (zh) 2008-02-04 2009-08-12 三星电子株式会社 分配上行ack/nack信道的方法
KR100943908B1 (ko) 2008-02-19 2010-02-24 엘지전자 주식회사 Pdcch를 통한 제어 정보 송수신 방법
KR100913473B1 (ko) * 2008-03-20 2009-08-25 엘지전자 주식회사 무선 통신 시스템에서 pdcch 모니터링 방법
WO2009131037A1 (ja) 2008-04-24 2009-10-29 シャープ株式会社 移動局装置、移動通信システムおよび通信方法
EP2306661B1 (en) * 2008-07-30 2015-02-25 LG Electronics Inc. Relay station in radio communication system and operating method for the relay station
KR101589600B1 (ko) * 2008-08-05 2016-01-28 삼성전자주식회사 직교 주파수 분할 다중 접속 방식의 이동통신 시스템에서 하향링크 데이터 채널에 대한 상향링크 응답 채널 송수신 방법 및 장치
ES2782332T3 (es) * 2008-10-31 2020-09-14 Godo Kaisha Ip Bridge 1 Equipo de estación base de comunicación inalámbrica y procedimiento de configuración de espacios de búsqueda
EP3157285B1 (en) 2008-10-31 2018-10-17 Sun Patent Trust Communication apparatus and method
US8937913B2 (en) * 2008-12-11 2015-01-20 Lg Electronics Inc. Method for control channel detection in a multicarrier system
US9450727B2 (en) * 2009-02-03 2016-09-20 Google Technology Holdings LLC Physical layer acknowledgement signaling resource allocation in wireless communication systems
US8780833B2 (en) * 2009-02-23 2014-07-15 Lg Electronics Inc. Control channel monitoring apparatus in multi-carrier system and method thereof
US8441996B2 (en) * 2009-04-02 2013-05-14 Lg Electronics Inc. Method and apparatus for monitoring control channel in multiple carrier system
WO2010120142A2 (ko) * 2009-04-16 2010-10-21 엘지전자주식회사 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법
CN101925109B (zh) 2009-06-16 2012-12-26 华为技术有限公司 一种控制信道映射的方法和装置
PL2445289T3 (pl) 2009-06-16 2016-02-29 Huawei Tech Co Ltd Sposób mapowania kanału sterowania, sposób wykrywania kanału sterowania i ich urządzenie
US20100329200A1 (en) * 2009-06-24 2010-12-30 Industrial Tehnology Research Institute Apparatus and method for allocating uplink resources
US8441976B2 (en) * 2009-06-29 2013-05-14 Htc Corporation Method of managing multimedia broadcast multicast service reception and related communication device
CN101998509B (zh) * 2009-08-28 2013-01-23 华为技术有限公司 确定搜索空间、候选控制信道资源的方法及装置
EP2296408A1 (en) * 2009-09-14 2011-03-16 Alcatel Lucent A method for scheduling transmissions between a base station and user terminals, a base station and a communication network therefor
CN101702828B (zh) * 2009-11-03 2013-01-02 中兴通讯股份有限公司 资源分配方法及***、盲检测方法、基站、用户设备
US8804633B2 (en) * 2009-11-05 2014-08-12 Innovative Sonic Corporation Method and apparatus to trigger a random access procedure for carrier aggregation in a wireless communication network
KR101863922B1 (ko) * 2010-02-14 2018-06-01 엘지전자 주식회사 Cce 혼동을 해소하기 위한 방법 및 이를 위한 장치
JP5850826B2 (ja) * 2010-03-19 2016-02-03 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 基地局及び送信方法
AU2014202400B2 (en) * 2010-04-05 2016-05-19 Ntt Docomo, Inc. Base station apparatus and user terminal
US20110243059A1 (en) * 2010-04-05 2011-10-06 Samsung Electronics Co., Ltd. Apparatus and method for interleaving data in a relay physical downlink control channel (r-pdcch)
KR20110122033A (ko) * 2010-05-03 2011-11-09 주식회사 팬택 다중 요소반송파 시스템에서 제어정보의 전송장치 및 방법
CN102263604B (zh) * 2010-05-25 2014-07-16 中兴通讯股份有限公司 Lte下行控制信道解映射的方法及装置
US8548514B2 (en) * 2010-08-11 2013-10-01 Lg-Ericsson Co., Ltd. Method for resource element group downsizing of R-PDCCH and mobile telecommunication system for the same
CN102111884B (zh) * 2010-12-15 2014-04-02 大唐移动通信设备有限公司 载波聚合场景下的r-pdcch传输方法和设备
CN103430501A (zh) * 2011-04-01 2013-12-04 英特尔公司 用于无线通信网络中的灵活秩自适应的方法、设备和***
CN102821421A (zh) * 2011-06-10 2012-12-12 中兴通讯股份有限公司 下行控制信道格式的配置方法及装置
CN102843748B (zh) * 2011-06-22 2017-09-12 中兴通讯股份有限公司 一种确定搜索空间的方法及装置
WO2013002471A1 (ko) * 2011-06-29 2013-01-03 엘지전자 주식회사 무선통신시스템에서 하향링크제어정보를 송수신하는 방법 및 장치
US8369280B2 (en) 2011-07-01 2013-02-05 Ofinno Techologies, LLC Control channels in multicarrier OFDM transmission
WO2013006379A1 (en) 2011-07-01 2013-01-10 Dinan Esmael Hejazi Synchronization signal and control messages in multicarrier ofdm
US8582527B2 (en) 2011-07-01 2013-11-12 Ofinno Technologies, Llc Hybrid automatic repeat request in multicarrier systems
WO2013006593A1 (en) 2011-07-04 2013-01-10 Dinan Esmael Hejazi Broadcast channel in multicarrier systems
WO2013009035A2 (ko) * 2011-07-08 2013-01-17 엘지전자 주식회사 무선 통신 시스템에서 기지국이 하향링크 제어 채널을 송신하는 방법 및 이를 위한 장치
US9572146B2 (en) 2011-07-15 2017-02-14 Lg Electronics Inc. Downlink signal receiving method and user equipment, and downlink signal transmitting method and base station
KR101903209B1 (ko) 2011-08-12 2018-10-01 선 페이턴트 트러스트 송신 장치, 수신 장치, 송신 방법, 및 수신 방법
EP2587754B1 (en) * 2011-10-25 2016-07-06 Alcatel Lucent Hierarchical And Adaptive Multi-Carrier Digital Modulation And Demodulation
US8937906B2 (en) 2011-11-04 2015-01-20 Qualcomm Incorporated Structure of enhanced physical downlink control channel (e-PDCCH) in long term evolution (LTE)
US8842637B2 (en) 2011-12-04 2014-09-23 Ofinno Technologies, Llc Carrier information transmission to wireless devices
EP2830255B1 (en) * 2011-12-20 2015-12-16 HTC Corporation Method of blind decoding of control channel for a wireless communication system
CN105490796B (zh) 2012-01-09 2018-11-09 华为技术有限公司 一种控制信道传输、接收方法及基站、用户设备
US8606286B2 (en) 2012-01-16 2013-12-10 Blackberry Limited E-PDCCH design for reducing blind decoding
US9565665B2 (en) * 2012-01-30 2017-02-07 Lg Electronics Inc. Method for resource allocation for downlink control channel in wireless communication system and apparatus therefor
US9374166B2 (en) * 2012-02-13 2016-06-21 Ciena Corporation High speed optical communication systems and methods with flexible bandwidth adaptation
US10257596B2 (en) 2012-02-13 2019-04-09 Ciena Corporation Systems and methods for managing excess optical capacity and margin in optical networks
US9215058B2 (en) 2012-03-06 2015-12-15 Blackberry Limited Enhanced PHICH transmission for LTE-advanced
BR112014022523B1 (pt) 2012-03-16 2022-05-03 Nokia Solutions And Networks Oy Descodificação cega
EP2639989A1 (en) * 2012-03-16 2013-09-18 Panasonic Corporation Search space for ePDCCH control information in an OFDM-based mobile communication system
US9198181B2 (en) 2012-03-19 2015-11-24 Blackberry Limited Enhanced common downlink control channels
US9497756B2 (en) 2012-03-25 2016-11-15 Comcast Cable Communications, Llc Base station radio resource management
US9660783B2 (en) 2012-03-30 2017-05-23 Lg Electronics Inc. Method and device for receiving control information in wireless communication system
KR102086506B1 (ko) * 2012-03-30 2020-03-09 엘지전자 주식회사 무선 통신 시스템에서 제어정보 수신 방법 및 장치
US9949265B2 (en) 2012-05-04 2018-04-17 Comcast Cable Communications, Llc Control channel in a wireless communication system
CN106059738B (zh) * 2012-05-10 2019-11-26 华为终端有限公司 在增强型物理下行控制信道上传输信息的方法及设备
WO2013183956A1 (ko) * 2012-06-07 2013-12-12 엘지전자 주식회사 무선 통신 시스템에서 epdcch를 통한 제어정보 수신 방법 및 장치
CN104205981B (zh) * 2012-06-25 2018-01-09 Lg 电子株式会社 在无线通信***中分配用于下行链路控制信道的资源的方法和装置及其设备
US20140071935A1 (en) 2012-09-07 2014-03-13 Samsung Electronics Co., Ltd. Multiplexing resource element groups for control channel elements of control channels
WO2014042456A1 (ko) * 2012-09-17 2014-03-20 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호 수신 방법 및 장치
JP2015532546A (ja) 2012-09-27 2015-11-09 アルカテル−ルーセント 物理ダウンリンク制御チャネルのリソースを判定する方法
KR101562704B1 (ko) * 2012-09-28 2015-10-22 주식회사 케이티 하향링크 제어채널에서의 블라인드 디코딩을 조절하는 방법 및 장치
JP5771177B2 (ja) * 2012-09-28 2015-08-26 株式会社Nttドコモ 無線基地局、ユーザ端末、無線通信システム及び無線通信方法
WO2014051293A1 (ko) 2012-09-28 2014-04-03 주식회사 케이티 하향링크 제어채널에서의 블라인드 디코딩을 조절하는 방법 및 장치
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
WO2015009123A1 (ko) * 2013-07-19 2015-01-22 엘지전자 주식회사 무선 통신 시스템에서 d2d(device-to-device) 통신을 위한 탐색 신호 검출방법 및 이를 위한 장치
US10200982B2 (en) * 2014-09-26 2019-02-05 Intel Corporation Structured super-positioning coding to enhance control channel capacity
WO2017001025A1 (en) * 2015-07-02 2017-01-05 Huawei Technologies Co., Ltd. Receiver device and methods thereof
US10356770B2 (en) * 2015-10-01 2019-07-16 Qualcomm Incorporated Techniques for using an enhanced physical control format indicator channel to identify characteristics of a control region including a set of physical downlink control channels
US9831947B2 (en) 2016-04-20 2017-11-28 Ciena Corporation Margin determination systems and methods in optical networks
KR102547476B1 (ko) 2016-07-22 2023-06-27 삼성전자주식회사 경로 메트릭 값 기반의 디코딩 프로세스 제어 방법, 연산 장치 및 모바일 장치
EP3509234A4 (en) * 2016-09-02 2020-01-08 LG Electronics Inc. -1- METHOD AND DEVICE FOR DETERMINING THE ORDER OF BLIND DECODING FOR SEVERAL SEARCH SPACES
EP3515024B1 (en) 2016-09-30 2021-11-03 Huawei Technologies Co., Ltd. Method of transmitting control channel, network device and terminal device
KR102653269B1 (ko) * 2016-12-14 2024-04-02 삼성전자 주식회사 무선 통신 시스템에서 하향링크 제어채널 모니터링 방법 및 장치
EP3557923A4 (en) * 2016-12-19 2020-07-22 Ntt Docomo, Inc. USER TERMINAL
KR20190116293A (ko) * 2017-02-06 2019-10-14 모토로라 모빌리티 엘엘씨 짧은 pdcch 동작을 위한 방법 및 장치
US10326578B2 (en) 2017-02-13 2019-06-18 At&T Intellectual Property I, L.P. Early termination scheme for blind decoding of a downlink control channel
CN108574558B (zh) * 2017-03-13 2020-08-14 华为技术有限公司 传输控制信息的方法和装置
US10986647B2 (en) 2017-05-04 2021-04-20 At&T Intellectual Property I, L.P. Management of group common downlink control channels in a wireless communications system
KR20190137150A (ko) * 2017-05-12 2019-12-10 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 검색 공간 모니터링
CN109391967B (zh) 2017-08-11 2021-04-06 维沃移动通信有限公司 一种信息上报及信息处理方法、终端及网络设备
CN109391355B (zh) 2017-08-11 2020-10-23 华为技术有限公司 无线通信的方法、芯片和***
KR102573235B1 (ko) 2017-08-11 2023-09-01 한국전자통신연구원 하향링크 제어 채널의 송수신 방법 및 이를 이용하는 장치
JP2021510969A (ja) * 2018-01-11 2021-04-30 ノキア テクノロジーズ オサケユイチア ブラインド探索を管理するための装置および方法
KR20200038065A (ko) 2018-10-02 2020-04-10 한국전자통신연구원 주파수 이용 현황 분석 방법 및 장치
US10587339B1 (en) 2018-11-27 2020-03-10 Ciena Corporation Systems and methods for achieving best effort home route capacity on protection paths during optical restoration
US11968698B2 (en) * 2020-05-04 2024-04-23 Qualcomm Incorporated Rate-matching shared channel resources around control channels for multiple users in a control resource set

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2239950C2 (ru) * 1998-09-01 2004-11-10 Телефонактиеболагет Лм Эрикссон (Пабл) Способ декодирования режимов работы кодека с использованием априорного знания
WO2006106377A1 (en) * 2005-04-07 2006-10-12 Nokia Corporation Blind transport format detection based on decoder metric
GB2428545A (en) * 2005-07-18 2007-01-31 Ind Tech Res Inst Blind transport format detection with cyclic redundancy check and a variable threshold value

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1135877B1 (en) 1999-10-05 2008-02-06 Samsung Electronics Co., Ltd. Turbo Decoding with soft-output Viterbi decoder
RU2247471C2 (ru) * 1999-10-05 2005-02-27 Самсунг Электроникс Ко., Лтд Компонентный декодер и способ декодирования в системе мобильной связи
US7072926B2 (en) * 2001-06-08 2006-07-04 Texas Instruments Incorporated Blind transport format detection system and method with logarithm approximation for reliability figure
RU2214094C2 (ru) * 2001-07-17 2003-10-20 Орловский государственный технический университет Кондиционер расстойной камеры
US7653028B2 (en) * 2002-10-03 2010-01-26 Qualcomm Incorporated Scheduling techniques for a packet-access network
US7317917B2 (en) * 2003-10-14 2008-01-08 Via Telecom, Inc. Mobile station connection management utilizing suitable parameter information
EP1986364A1 (en) 2007-04-25 2008-10-29 Mitsubishi Electric Information Technology Centre Europe B.V. Method and device for allocating, by a telecommunication device, at least a first and a second consecutive channel elements of a group of channel elements of a channel resource to a destination
PL1990926T3 (pl) 2007-05-07 2014-01-31 Wireless Future Tech Inc Kanały sterujące w systemach sieci komunikacyjnych
US7995661B2 (en) * 2007-08-13 2011-08-09 Sharp Laboratories Of America, Inc. Systems and methods for conserving the power supply of a communications device
US7924755B2 (en) * 2007-09-14 2011-04-12 Sharp Laboratories Of America, Inc. Systems and methods for restricting the location of control information in physical layer signaling
US7940795B2 (en) 2007-09-26 2011-05-10 Nokia Corporation Signaling limitation of multiple payload sizes for resource assignments
KR101448309B1 (ko) 2007-09-28 2014-10-08 엘지전자 주식회사 무선통신 시스템에서 하향링크 제어채널 모니터링 방법
JP4555892B2 (ja) * 2007-10-29 2010-10-06 パナソニック株式会社 移動局装置、基地局装置、制御チャネル復号方法および制御チャネル割当方法
US8238475B2 (en) 2007-10-30 2012-08-07 Qualcomm Incorporated Methods and systems for PDCCH blind decoding in mobile communications
US8155683B2 (en) * 2008-02-05 2012-04-10 Motorola Mobility, Inc. Physical downlink control channel specific scrambling
US8326292B2 (en) * 2008-06-03 2012-12-04 Innovative Sonic Limited Method and apparatus for determining dedicate searching space in physical downlink control channel
KR101863922B1 (ko) * 2010-02-14 2018-06-01 엘지전자 주식회사 Cce 혼동을 해소하기 위한 방법 및 이를 위한 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2239950C2 (ru) * 1998-09-01 2004-11-10 Телефонактиеболагет Лм Эрикссон (Пабл) Способ декодирования режимов работы кодека с использованием априорного знания
WO2006106377A1 (en) * 2005-04-07 2006-10-12 Nokia Corporation Blind transport format detection based on decoder metric
GB2428545A (en) * 2005-07-18 2007-01-31 Ind Tech Res Inst Blind transport format detection with cyclic redundancy check and a variable threshold value

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Structure and transport of the Downlink Control Channels, 3GPP TSG-RAN WG1 Meeting #48bis, R1-071003, 12.02.2007-16.02.2007. *
Tree Structure for the DE Control Channel, 3GPP TSG-RAN WG1 Meeting #48bis, R1-071683, 26.03.2007-30.03.2007. *
Tree Structure for the DE Control Channel, 3GPP TSG-RAN WG1 Meeting #48bis, R1-071683, 26.03.2007-30.03.2007. Structure and transport of the Downlink Control Channels, 3GPP TSG-RAN WG1 Meeting #48bis, R1-071003, 12.02.2007-16.02.2007. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9699773B2 (en) 2012-09-27 2017-07-04 Huawei Technologies Co., Ltd. Method and apparatus for allocating control channel candidates
US10009889B2 (en) 2012-09-27 2018-06-26 Huawei Technologies Co., Ltd. Method and apparatus for allocating control channel candidates
US10237864B2 (en) 2012-09-27 2019-03-19 Huawei Technologies Co., Ltd. Method and apparatus for allocating control channel candidates
US10856285B2 (en) 2012-09-27 2020-12-01 Huawei Technologies Co., Ltd. Method and apparatus for allocating control channel candidates

Also Published As

Publication number Publication date
US20090168922A1 (en) 2009-07-02
KR20140054264A (ko) 2014-05-08
KR20100084683A (ko) 2010-07-27
KR20150109497A (ko) 2015-10-01
KR20120125390A (ko) 2012-11-14
RU2012107770A (ru) 2013-09-10
US8681906B2 (en) 2014-03-25
WO2009058905A3 (en) 2009-11-26
CN103095416B (zh) 2016-09-07
CN103095415B (zh) 2016-03-23
CA2702123A1 (en) 2009-05-07
JP2013141269A (ja) 2013-07-18
US8238475B2 (en) 2012-08-07
CA2702123C (en) 2013-02-12
RU2012107693A (ru) 2013-09-10
KR101227585B1 (ko) 2013-01-29
CA2798528C (en) 2016-09-06
RU2519462C2 (ru) 2014-06-10
RU2013105442A (ru) 2014-08-20
TWI495303B (zh) 2015-08-01
EP2206260A2 (en) 2010-07-14
KR20130031382A (ko) 2013-03-28
US20120263134A1 (en) 2012-10-18
RU2010121842A (ru) 2011-12-10
CN101843022A (zh) 2010-09-22
BRPI0818256A2 (pt) 2015-10-13
KR101517796B1 (ko) 2015-05-06
CN103095415A (zh) 2013-05-08
CA2798528A1 (en) 2009-05-07
JP2011502439A (ja) 2011-01-20
RU2523170C2 (ru) 2014-07-20
JP5646662B2 (ja) 2014-12-24
CA2799975A1 (en) 2009-05-07
TW200931898A (en) 2009-07-16
CA2799975C (en) 2017-02-28
KR20150039862A (ko) 2015-04-13
US9160484B2 (en) 2015-10-13
CN103095416A (zh) 2013-05-08
US20140140306A1 (en) 2014-05-22
WO2009058905A2 (en) 2009-05-07
JP5496903B2 (ja) 2014-05-21

Similar Documents

Publication Publication Date Title
RU2484591C2 (ru) Способы и системы для слепого декодирования pdcch в мобильной связи
TWI455552B (zh) 控制資訊訊令
KR101437518B1 (ko) 협력형 멀티-포인트 송신을 위한 자원 할당 및 송신
KR101381855B1 (ko) Lte-a를 위한 업링크 자원 할당
TWI491294B (zh) 多載波指示和下行鏈路控制資訊互動
RU2575391C2 (ru) Способы и системы для слепого декодирования pdcch в мобильной связи

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161030