RU2481673C1 - Способ изготовления тонкопленочного высокотемпературного сверхпроводящего материала - Google Patents

Способ изготовления тонкопленочного высокотемпературного сверхпроводящего материала Download PDF

Info

Publication number
RU2481673C1
RU2481673C1 RU2011143418/28A RU2011143418A RU2481673C1 RU 2481673 C1 RU2481673 C1 RU 2481673C1 RU 2011143418/28 A RU2011143418/28 A RU 2011143418/28A RU 2011143418 A RU2011143418 A RU 2011143418A RU 2481673 C1 RU2481673 C1 RU 2481673C1
Authority
RU
Russia
Prior art keywords
layer
layers
substrate
deposition
buffer
Prior art date
Application number
RU2011143418/28A
Other languages
English (en)
Inventor
Андрей Викторович Бледнов
Артём Михайлович Макаревич
Андрей Рафаилович Кауль
Сергей Владимирович Самойленков
Всеволод Николаевич Чепиков
Вадим Анатольевич Амеличев
Алексей Сергеевич Манкевич
Антон Викторович Маркелов
Original Assignee
Закрытое акционерное общество "СуперОкс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество "СуперОкс" filed Critical Закрытое акционерное общество "СуперОкс"
Priority to RU2011143418/28A priority Critical patent/RU2481673C1/ru
Application granted granted Critical
Publication of RU2481673C1 publication Critical patent/RU2481673C1/ru

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

Изобретение относится к технологии изготовления тонкопленочных высокотемпературных сверхпроводящих материалов и может быть использовано при промышленном производстве длинномерных сверхпроводящих лент для создания токопроводящих кабелей, токоограничителей, обмоток мощных электромагнитов, электродвигателей и т.д. Сущность изобретения: способ изготовления тонкопленочного высокотемпературного сверхпроводящего материала включает следующие стадии: (а) нанесение на подложку буферного слоя, содержащего последовательно расположенные биаксиально текстурированные слои оксида магния, бифторида стронция с толщиной, не превышающей 40 нм, и оксида церия или оксида иттрия, (б) нанесение на буферный слой высокотемпературного сверхпроводящего слоя. Техническим результатом является получение высокотемпературной сверхпроводящей гетероструктуры с совершенной биаксиальной текстурой всех слоев, включая буферные и слой сверхпроводника. Такая гетероструктура имеет максимально простую архитектуру (количество индивидуальных) буферных слоев, а осаждение каждого последующего слоя не приводит к росту шероховатости поверхности пленки. 5 з.п. ф-лы.

Description

Изобретение относится к технологии изготовления тонкопленочных высокотемпературных сверхпроводящих материалов и может быть использовано при промышленном производстве длинномерных сверхпроводящих лент для создания токопроводящих кабелей, токоограничителей, обмоток мощных электромагнитов, электродвигателей и т.д.
Высокотемпературные сверхпроводящие материалы представляют собой многослойные структуры на гибких металлических лентах-подложках.
Особенно перспективно для использования в качестве сверхпроводящего слоя в таких многослойных структурах такое химическое соединение как YBa2Cu3O7 (YBCO).
В качестве подложек традиционно используются металлические ленты, обладающие кубической текстурой, т.н. RABiTS (Rolling-Assisted Biaxially Textured Substrate) или не обладающие такой текстурой. На подложки наносится один или несколько эпитаксиальных буферных слоев, а на них, в свою очередь, наносится эпитаксиальный слой сверхпроводника. Первый буферный слой может наследовать текстуру подложки (в случае подложки RABiTS), либо же текстура нужного типа создается в нем иными способами. За счет передачи текстуры от подложки (в случае RABiTS) и от каждого предыдущего буферного слоя к последующему и далее к сверхпроводящему слою обеспечиваются высокие эксплуатационные характеристики всей сверхпроводящей ленты.
Эпитаксию легко осуществить, если различие постоянных решеток между слоями не превышает 5-7%. В противном случае эпитаксиальный рост сильно затруднен или невозможен.
С точки зрения структурного соответствия решетке YBCO наиболее перспективными материалами буферных слоев являются Y2O3 и CeO2.
Так, в международной заявке WO 0105726 (D1) раскрывается способ изготовления слоистого высокотемпературного сверхпроводящего материала, включающего осаждение на сапфировую подложку буферного слоя на основе CeO2 и последующий рост на данном буферном слое высокотемпературного сверхпроводящего слоя YBa2Cu3O7. Перед нанесением высокотемпературного сверхпроводящего слоя буферный слой на основе CeO2 отжигают при 960°C-1050°C, что приводит к улучшению поверхностных свойств, кристаллической структуры и поверхностного микроволнового сопротивления при высоких температурах.
Указанный метод неприменим для создания длинномерных ВТСП-проводников, поскольку осаждение CeO2 непосредственно на металлическкую ленту-подложку и дальнейшее осаждение на него слоя ВТСП в окислительной атмосфере непременно приведут к утрате всей структурой своих ориентационных и, как следствие, сверхпроводящих характеристик, вследствие диффузии кислорода в подложку сквозь слой CeO2, являющийся, как известно, крайне плохим диффузионным барьером для кислорода. Таким образом, предложенный подход может использоваться исключительно как часть комплексного подхода к созданию длинномерных ВТСП-проводников, включающего осаждение дополнительных, помимо CeO2, буферных слоев. Однако и в таком случае предложенный подход имеет существенные недостатки, в первую очередь, необходимость высокотемпературного отжига пленок, что, наряду с улучшением текстуры слоя CeO2, может негативно сказываться на характеристиках нижележащих слоев и даже самой подложки.
В какой-то мере данные недостатки могут быть устранены, если в качестве буферного слоя использовать слой, включающий как слой оксида магния, примыкающий к подложке, так и слой оксида церия, примыкающий к слою высокотемпературного сверхпроводника - последний в этом случае имеет меньшее рассогласование параметров кристаллической решетки, что способствует формированию более высокой степени текстуры в сверхпроводящем слое.
В этом случае при соблюдении определенных условий возможна передача кубической текстуры от слоя к слою.
Так, в заявке US 2007090342 (A1) раскрывается способ изготовления слоистого высокотемпературного сверхпроводящего материала, в котором рассогласование между кристаллическими решетками слоев уменьшается путем осаждения слоев, в которых оси кристаллических решеток MgO и YBCO направлены под определенными углами к подложке. Данный способ является наиболее близким к предложенному.
В соответствии с данным техническим решением на подложке имеется биаксиально текстурованный кристаллический слой MgO с C-осями, наклоненными по отношению к плоскости подложки. На слой MgO последовательно осаждают слой Y2O3, затем слой CeO2. На слой CeO2 наносят кристаллический слой сверхпроводника с С-осью, направленной по нормали к плоскости подложки. Предпочтительно, MgO имеет C-оси, наклоненные по отношению к нормали к подложке в интервале от 10 до 40°, а в качестве высокотемпературного сверхпроводника используется слой YBa2Cu3O7.
Данное техническое решение является наиболее близким к предложенному.
К недостаткам известного способа можно отнести следующие его аспекты. Во-первых, он предусматривает рост текстурированных покрытий оксидов церия и/или иттрия исключительно на слое оксида магния, полученном методом осаждения на наклонную подложку, в то время как этот метод является на сегодняшний день наименее широко используемым в силу своей дороговизны (для его осуществления требуется сложное и дорогое высоковакуумное оборудование и мощные ионные источники). Во-вторых, предлагаемая структура буферного слоя представляется достаточно сложной, она включает не менее трех индивидуальных слоев (в конечной структуре). В-третьих, значительный (от 10 до 40°) наклон оси с слоя MgO по отношению к нормали к поверхности подложки может затруднять рост всех последующих слоев (включая сверхпроводящий) в правильной ориентации, которая формируется вследствие наследования каждым последующим слоем текстуры предыдущего. Значительным недостатком существующего решения является и тот факт, что поверхность уже самого первого буферного слоя, MgO, оказывается имеющей достаточно высокую шероховатость вследствие того, что рост этого слоя происходит в виде колонн, имеющих плоскую поверхность, наклоненную по отношению к нормали к поверхности подложки, т.о. поверхность слоя MgO представлена многочисленными наклонно расположенными террасами. Значение среднеквадратичной шероховатости такой поверхности находится обычно на уровне 30 нм и более, что значительно хуже результатов, полученных на пленках MgO, осажденных другими методами (приемлемыми считаются значения среднекваратичной шероховатости, не превосходящие 10-12 нм). Высокая шероховатость поверхности буферного слоя неизбежно приводит, в свою очередь, к существенному снижению токонесущей способности сверхпроводящего слоя, поскольку затрудняет рост в правильной ориентации кристаллитов сверхпроводящей фазы, а также способствует появлению в ней примесных фаз.
Задачей изобретения является устранение присущих известному техническому решению недостатков и ограничений. Так, предлагается получать высокотемпературную сверхпроводящую гетероструктуру с совершенной биаксиальной текстурой всех слоев, включая буферные слои и слой сверхпроводника, причем в качестве исходного буфера используется биаксиально текстурированный слой оксида магния, полученный любым методом осаждения. Предлагаемая гетероструктура имеет максимально простую архитектуру (количество индивидуальных) буферных слоев, причем осаждение каждого последующего слоя не приводит к существенному росту шероховатости поверхности пленки.
Поставленная задача решается способом изготовления слоистого высокотемпературного сверхпроводящего материала, включающим следующие стадии:
(а) нанесение на подложку буферного слоя, содержащего последовательно расположенные биаксиально текстурированные слои оксида магния, бифторида стронция с толщиной, не превышающей 40 нм, и оксида церия или оксида иттрия;
(б) нанесение на буферный слой высокотемпературного сверхпроводящего слоя.
В частных воплощениях изобретения в качестве подложки на стадии (а) используют биаксиально текстурированную подложку, выполненную из металлического сплава.
Для других воплощений изобретения в качестве подложки на стадии (а) используют не текстурированную подложку, выполненную из металлического сплава.
В качестве высокотемпературного сверхпроводящего слоя на стадии (б) желательно нанесение слоя YBa2Cu3O7.
Нанесение слоев в предпочтительных воплощениях изобретения осуществляют путем химического осаждения из газовой фазы.
В некоторых воплощениях изобретения по завершении стадии (а) и/или (б) дополнительно осуществляют отжиг при 780-850°C.
Сущность изобретения состоит в следующем.
Высокотемпературные сверхпроводящие материалы представляют собой структуры, созданные на основе длинномерных металлических лент-подложек, на которые наносится слой (пленка) сверхпроводника. В качестве последнего в подавляющем большинстве случаев используются РЗЭ-бариевые купраты общей формулой REBa2Cu3O7, где RE - редкоземельный элемент (чаще всего Y, также используются Gd, Dy, Yb и другие РЗЭ). Эти вещества демонстрируют наиболее высокие значения плотности критического тока среди всех ВТСП, кроме того, критический ток в них наиболее устойчив к воздействию внешнего магнитного поля, что чрезвычайно важно для практически всех применений ВТСП. Однако ввиду структурных особенностей данного соединения для успешного его использования в качестве проводника тока необходимо применять его в виде пленок с биаксиальной (двухосной) текстурой, причем необходимо, чтобы ось с соединения была направлена перпендикулярно поверхности подложки. Такой тип текстуры не может быть создан непосредственно в пленке сверхпроводника, поэтому необходимо транслировать текстуру от нижележащих слоев.
Существует два различных подхода к созданию сверхпроводящих материалов. Один заключается в выборе изначально биаксиально текстурированной подложки, текстура которой передается последующим слоям. Такие подложки традиционно изготавливаются из сплавов на основе Ni с различными добавками - W (повышает механическую прочность лент), Cr (понижает температуру Кюри сплавов) и др. Второй подход заключается в выборе нетекстурированной подложки и создании необходимой текстуры уже в процессе осаждения на нее покрытий. В этом случае в качестве материала для изготовления лент-подложек используют т.н. сплав Hastelloy, в состав которого, помимо основного компонента - никеля, может входить большое количество легирующих добавок.
Известно, что при изготовлении высокотемпературных сверхпроводящих лент требуется нанесение между металлической подложкой и слоем сверхпроводника буферного слоя. Он выполняет целый ряд критически важных функций: предотвращает поверхность металлической ленты от окисления в условиях нанесения оксидного сверхпроводящего слоя, препятствует взаимодиффузии компонентов подложки и сверхпроводника, транслирует (в случае текстурированной подложки) или создает биаксиальную текстуру, необходимую для достижения высоких значений критических параметров сверхпроводника. При этом ограничиться нанесением одного индивидуального слоя не представляется возможным, поскольку не существует материала, могущего успешно выполнять все возлагаемые на буферный слой функции, поэтому буферная архитектура всегда является многослойной и содержит от 3 до 7 индивидуальных слоев. Известно, что оксиды магния и церия являются очень хорошими начальным и завершающим буферными слоями, соответственно. MgO может относительно легко быть выращен с совершенной биаксиальной текстурой на традиционных для данной технологии подложках (никелевые сплавы либо сплавы Hastelloy) и является прекрасным диффузионным барьером для кислорода (коэффициент диффузии кислорода в MgO составляет 8×10-22 см2/сек при 800°C). Биаксиально текстурированный CeO2, в свою очередь, является отличной основой для роста сверхпроводника с высокими критическими характеристиками. Таким образом, буферный слой, состоящий из MgO и CeO2, мог бы быть идеальным решением проблемы буферов, так как удовлетворял бы всем предъявляемым к этому слою требованиям и был бы предельно простым, состоящим всего из двух индивидуальных слоев. Однако прямая эпитаксия CeO2 на MgO в нужной ориентации крайне затруднена вследствие существенного различия параметров элементарных ячеек этих двух соединений.
Нами предложено ввести между слоями MgO и CeO2 прослойку в виде тонкого слоя SrF2. Фторид стронция эпитаксиально растет на оксиде магния, при этом рост осуществляется с разворотом элементарной ячейки фторида на 45° относительно слоя MgO. Такой разворот позволяет существенно уменьшить (до <2.5%) рассогласование параметров ячеек двух фаз и получить фторидные пленки с очень высоким качеством эпитаксии. Далее на полученный тонкий слой фторида осаждают слой CeO2, имеющего одинаковую со фторидом структуру типа флюорита и достаточно близкие значения параметров решетки, что обеспечивает его рост также в необходимой ориентации и с высоким качеством эпитаксии. Причем для достижения желаемого эффекта оказывается достаточно слоя фторида толщиной 5-10 нм. Более того, осаждение оксида церия на достаточно толстые слои фторида (>50 нм) представляется нецелесообразным, поскольку, во-первых, удлиняет и удорожает процесс, во-вторых, приводит к ухудшению качества текстуры CeO2.
Поскольку оптимальная толщина промежуточного фторидного слоя (5-10 нм) много меньше толщины слоя CeO2 (150-200 нм и более), при осаждении последнего и/или последующем осаждении на него сверхпроводящего слоя (при Т=800°C и выше) происходит растворение SrF2 в CeO2 с образованием оксифторидного твердого раствора состава SrxCe1-xF2xO2-2x. Таким образом, в конечной буферной архитектуре фторид стронция как индивидуальный слой отсутствует, а сама буферная архитектура оказывается фактически двухслойной, состоящей из эпитаксиально срощенных биаксиально текстурированных слоев оксида магния и церия. Таким образом, фторид стронция выполняет роль транслятора текстуры от одного слоя к другому, а затем исчезает, то есть фактически представляет собой т.н. жертвенный слой.
В случае, когда соотношение толщин оксида церия и фторида стронция не столь велико (например, когда CeO2 осаждают на SrF2 толщиной от 25 до 40 нм, последний слой может существовать в буферной структуре в виде индивидуального слоя (его наличие фиксируется, например, методом рентгеновской дифракции). В данном случае предпринимают отжиг всей буферной архитектуры с целью облегчить и ускорить процесс растворения фторидного подслоя в оксиде церия. Оптимальными температурами отжига являются 780-850°C, поскольку при более высоких температурах может происходить вторичная рекристаллизация материала пленки, приводящая к нарушению единого типа ее текстуры, а при меньших температурах слой не растворяется.
Аналогичные рассуждения справедливы для случаев, когда поверх фторида стронция наносят эпитаксиальный слой оксида иттрия. Он имеет структуру, производную от структуры флюорита, и параметр решетки, равный примерно 2 параметрам решетки оксида церия.
В качестве метода осаждения буферных и сверхпроводящего слоя одним из наиболее перспективных является метод химического осаждения из паровой фазы (MOCVD-Metal-Organic Chemical Vapor Deposition). Суть его заключается в том, что компоненты пленки транспортируются в виде летучих металлорганических комплексов к подложке, где смешиваются с реакционным газом и формируют на поверхности подложки пленку необходимого состава. К преимуществам метода относятся его относительная простота, высокая производительность, дешевизна оборудования и легкость изменения состава осаждаемых покрытий. В предлагаемом подходе осаждение всех слоев осуществляется методом MOCVD с использованием в качестве прекурсоров - источников ионов металлов - соответствующих дипивалоилметанатов (в чистом виде, либо в виде аддуктов с нейтральными лигандами для повышения их устойчивости при хранении). Так, осаждение MgO на поверхность металлических лент проводят при Т=600-700°C в кислороде, осаждение SrF2 - при Т=400°C в токе HF, служащего источником фтора, осаждение CeO2 - при Т=650-700°C в кислороде либо при 550°C в парах воды, осаждение слоя ВТСП - при Т=810-840°C в кислороде. Давление во всех случаях поддерживается на уровне 3-30 мбар, в качестве газа-носителя для паров прекурсоров выступает аргон. Однако предложенный подход к созданию сверхпроводящих материалов может быть успешно реализован и при использовании иных методов осаждения слоев, таких, как импульсное лазерное напыление, электронно-лучевое или термическое испарение, молекулярно-лучевая эпитаксия и др.
Примеры осуществления изобретения.
Пример 1. На биаксиально текстурированную (001)[001] подложку из сплава Ni-Cr-W осаждали методом химического осаждения из паровой фазы эпитаксиальный слой оксида магния (MgO) толщиной 100 нм. Осаждение проводили при Т=700°C и давлении 20 мбар в токе кислорода, в качестве источника магния использовали аддукт 2,2,6,6-тетраметил - 3,5-гептандионата магния с o-фенантролином состава Mg(tmhd)2·2Phen. Среднеквадратичная шероховатость поверхности слоя MgO составила, по данным атомно-силовой микроскопии, 10 нм.
На полученный подслой наносили тонкую пленку фторида стронция. Процесс проводили в реакторе химического осаждения из паровой фазы с противотоком реагентов, состоящей из двух раздельных испарителей и реактора. В качестве источника стронция использовали испаряемый при 240°C аддукт 2,2,6,6-тетраметил-3,5-гептандионата стронция с o-фенантролином, в качестве источника фтора - газообразный фтороводород, получаемый при термическом разложении при 60°C гидрофторида аммония. Пары обоих прекурсоров потоком инертного газа-носителя (аргона) доставлялись в зону осаждения, где находилась подложка. В этой зоне происходило смешение потоков прекурсоров и осаждение ориентированного фторидного покрытия. Температура в зоне осаждения составляла 400°C, общее давление в системе 15 мбар. Толщина пленки фторида стронция составляла 10 нм.
На эпитаксиальный слой фторида стронция осаждали пленку оксида церия, легированного лантаном (10% по молям) толщиной 200 нм. Осаждение проводили в установке химического осаждения из паровой фазы. В качестве источников редкоземельных металлов использовали испаряемые при 260°C 2,2,6,6-тетраметил-3,5-гептандионаты церия и лантана. Окислительным агентом выступала газообразная вода, подаваемая в систему с помощью инжектора. Пары прекурсоров смешивались и транспортировались в зону осаждения потоком газа-носителя (аргон+10% водорода) по коаксиальному вводу. Температура зоны осаждения составляла 550°C, общее давление в системе 15 мбар.
На полученную эпитаксиальную пленку оксида церия, легированного лантаном, осаждали методом химического осаждения из паровой фазы пленку высокотемпературного сверхпроводника состава YBa2Cu3O7. Осаждение проводили с использованием в качестве прекурсоров 2,2,6,6-тетраметил-3,5-гептандионатов меди, иттрия и бария. Смесь порошков прекурсоров подавалась в испаритель, разогретый до 300°C. Пар перкурсоров током смеси кислорода (газ-реагент) и аргона переносился в реактор, где происходило осаждение пленки. Температура осаждения составляла 820°C, общее давление в системе 20 мбар. Толщина наносимого покрытия составила 400 нм.
В результате приведенной последовательности действий на металлической подложке образовывалась пленочная гетероструктура. По результатам рентгенодифракционного анализа этой гетеростуктуры установлено, что она содержит индивидуальные слои оксидов магния, церия и иттрий-бариевого купрата в исключительной кристаллографической ориентации (001). Наличие в составе гетероструктуры индивидуального слоя фторида стронция не фиксировалось вследствие его растворения в вышележащем слое оксида церия при высоких температурах (благодаря малой толщине слоя фторида). По результатам измерения сопротивления в зависимости от температуры пленка иттрий-бариевого купрата демонстрирует переход в сверхпроводящее состояние при 82 K. Плотность критического тока при 77 К составила, по результатам индуктивных измерений, 0.4 МА/см2.
Пример 2.
Методом химического осаждения из газовой фазы получали тонкопленочную гетероструктуру, аналогичную описанной в Примере 1, но с осаждением поверх фторида стронция слоя оксида иттрия. При его осаждении в качестве прекурсора использовали 2,2,6,6-тетраметил-3,5-гептандионат иттрия, который испаряли при 250°C и в токе смеси аргона и кислорода подавали по коаксиальному вводу в реактор. Осаждение проводили при температуре 700°C и общем давлении в системе 10 мбар. Результаты исследований свойств сверхпроводящего слоя аналогичны полученным в Примере 1.
Пример 3.
На нетекстурированную металлическую ленту методом осаждения с дополнительным ориентирующим ионным пучком осаждали биаксиально текстурированный слой оксида магния.
На слой оксида магния осаждалась пленочная гетероструктура, состоящая из последовательности слоев фторида стронция (толщина 40 нм), оксида церия (толщина 200 нм) и иттрий-бариевого купрата YBa2Cu3O7 (толщина 400 нм). Методы осаждения слоев аналогичны описанным в Примере 1. Перед осаждением слоя сверхпроводника подложка с нанесенной на нее буферной гетероструктурой была отожжена в течение 5 минут при температуре 850°C в токе аргона. Изучение полученной пленочной гетероструктуры методом рентгеновской дифракции показало отсутствие в ней индивидуального слоя фторида стронция, т.е. в ходе высокотемпературного отжига произошло растворение фторидного слоя в вышележащем слое оксида церия. Результаты исследований свойств сверхпроводящего слоя аналогичны полученным в Примере 1.
Пример 4.
Методом химического осаждения из газовой фазы получали тонкопленочную гетероструктуру, аналогичную описанной в Примере 1, но с толщиной слоя фторида стронция 40 нм. Перед осаждением слоя сверхпроводника подложка с нанесенной на нее буферной гетероструктурой была отожжена в течение 5 минут при температуре 780°C в токе аргона. Изучение полученной пленочной гетероструктуры после отжига и после осаждения слоя ВТСП методом рентгеновской дифракции показало наличие в ней в обоих случаях индивидуального слоя фторида стронция, т.е. в данном случае соотношение толщин слоев фторида стронция и оксида церия превышало пороговое значение, при котором слой фторида может являться жертвенным. Несмотря на это, результаты исследований свойств сверхпроводящего слоя полностью аналогичны полученным в Примере 1.

Claims (6)

1. Способ изготовления тонкопленочного высокотемпературного сверхпроводящего материала, характеризующийся тем, что включает следующие стадии:
(а) нанесение на подложку буферного слоя, содержащего последовательно расположенные биаксиально текстурированные слои оксида магния, бифторида стронция с толщиной; непревышающей 40 нм и оксида церия или оксида иттрия;
(б) нанесение на буферный слой высокотемпературного сверхпроводящего слоя.
2. Способ по п.1, характеризующийся тем, что в качестве подложки на стадии (а) используют биаксиально текстурированную подложку, выполненную из металлического сплава.
3. Способ по п.1, характеризующийся тем, что в качестве подложки на стадии (а) используют нетекстурированную подложку, выполненную из металлического сплава.
4. Способ по п.1, характеризующийся тем, что в качестве высокотемпературного сверхпроводящего слоя на стадии (б) наносят слой YBa2Сu3О7.
5. Способ по п.1, характеризующийся тем, что нанесение слоев осуществляют путем химического осаждения из газовой фазы.
6. Способ по п.1, характеризующийся тем, что по завершении стадии (а) и/или (б) дополнительно осуществляют отжиг при 780-850°С.
RU2011143418/28A 2011-10-27 2011-10-27 Способ изготовления тонкопленочного высокотемпературного сверхпроводящего материала RU2481673C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011143418/28A RU2481673C1 (ru) 2011-10-27 2011-10-27 Способ изготовления тонкопленочного высокотемпературного сверхпроводящего материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011143418/28A RU2481673C1 (ru) 2011-10-27 2011-10-27 Способ изготовления тонкопленочного высокотемпературного сверхпроводящего материала

Publications (1)

Publication Number Publication Date
RU2481673C1 true RU2481673C1 (ru) 2013-05-10

Family

ID=48789620

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011143418/28A RU2481673C1 (ru) 2011-10-27 2011-10-27 Способ изготовления тонкопленочного высокотемпературного сверхпроводящего материала

Country Status (1)

Country Link
RU (1) RU2481673C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA031113B1 (ru) * 2015-11-25 2018-11-30 Общество С Ограниченной Ответственностью "С-Инновации" (Ооо "С-Инновации") Способ изготовления высокотемпературного сверхпроводящего проводника и проводник
RU2696182C1 (ru) * 2018-11-15 2019-07-31 Общество С Ограниченной Ответственностью "С-Инновации" (Ооо "С-Инновации") Способ изготовления высокотемпературной сверхпроводящей ленты и лента
RU2707399C1 (ru) * 2019-01-15 2019-11-26 Общество с ограниченной ответственностью "С-Инновации" Способ получения высокотемпературной сверхпроводящей ленты второго поколения, преимущественно для токоограничивающих устройств, и способ контроля качества такой ленты

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005726A2 (en) * 1999-07-16 2001-01-25 Sang Young Lee METHOD FOR IMPROVING THE SURFACE SMOOTHNESS, THE CRYSTAL STRUCTURE AND THE MICROWAVE SURFACE RESISTANCE OF YBa2Cu3O7-δ HIGH-TEMPERATURE SUPERCONDUCTOR FILMS GROWN ON CeO2-BUFFERED r-CUT SAPPHIRE SUBSTRATES
US6468591B1 (en) * 1998-06-12 2002-10-22 Ut-Battelle, Llc Method for making MgO buffer layers on rolled nickel or copper as superconductor substrates
WO2003071611A1 (en) * 2002-02-21 2003-08-28 Jochen Dieter Mannhart Improved superconductors and methods for making such superconductors
US6645313B2 (en) * 2002-02-22 2003-11-11 Ut-Battelle, Llc Powder-in-tube and thick-film methods of fabricating high temperature superconductors having enhanced biaxial texture
US20040142824A1 (en) * 2002-10-21 2004-07-22 Kai Numssen Method for the manufacture of a high temperature superconducting layer
US20070090342A1 (en) * 2004-02-17 2007-04-26 The University Of Chicago Method for fabrication of high temperature superconductors
RU2387050C1 (ru) * 2009-01-28 2010-04-20 Фатима Христофоровна Чибирова Способ получения многослойного высокотемпературного сверхпроводящего материала и многослойный высокотемпературный сверхпроводящий материал

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468591B1 (en) * 1998-06-12 2002-10-22 Ut-Battelle, Llc Method for making MgO buffer layers on rolled nickel or copper as superconductor substrates
WO2001005726A2 (en) * 1999-07-16 2001-01-25 Sang Young Lee METHOD FOR IMPROVING THE SURFACE SMOOTHNESS, THE CRYSTAL STRUCTURE AND THE MICROWAVE SURFACE RESISTANCE OF YBa2Cu3O7-δ HIGH-TEMPERATURE SUPERCONDUCTOR FILMS GROWN ON CeO2-BUFFERED r-CUT SAPPHIRE SUBSTRATES
WO2003071611A1 (en) * 2002-02-21 2003-08-28 Jochen Dieter Mannhart Improved superconductors and methods for making such superconductors
US6645313B2 (en) * 2002-02-22 2003-11-11 Ut-Battelle, Llc Powder-in-tube and thick-film methods of fabricating high temperature superconductors having enhanced biaxial texture
US20040142824A1 (en) * 2002-10-21 2004-07-22 Kai Numssen Method for the manufacture of a high temperature superconducting layer
US20070090342A1 (en) * 2004-02-17 2007-04-26 The University Of Chicago Method for fabrication of high temperature superconductors
RU2387050C1 (ru) * 2009-01-28 2010-04-20 Фатима Христофоровна Чибирова Способ получения многослойного высокотемпературного сверхпроводящего материала и многослойный высокотемпературный сверхпроводящий материал

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA031113B1 (ru) * 2015-11-25 2018-11-30 Общество С Ограниченной Ответственностью "С-Инновации" (Ооо "С-Инновации") Способ изготовления высокотемпературного сверхпроводящего проводника и проводник
RU2696182C1 (ru) * 2018-11-15 2019-07-31 Общество С Ограниченной Ответственностью "С-Инновации" (Ооо "С-Инновации") Способ изготовления высокотемпературной сверхпроводящей ленты и лента
RU2707399C1 (ru) * 2019-01-15 2019-11-26 Общество с ограниченной ответственностью "С-Инновации" Способ получения высокотемпературной сверхпроводящей ленты второго поколения, преимущественно для токоограничивающих устройств, и способ контроля качества такой ленты

Similar Documents

Publication Publication Date Title
JP4713012B2 (ja) テープ状酸化物超電導体
US6673387B1 (en) Control of oxide layer reaction rates
WO2001008170A2 (en) Enhanced purity oxide buffer layer formation
KR20020025957A (ko) 개선된 고온 피복 초전도체
US11488746B2 (en) Superconductor with improved flux pinning at low temperatures
US8431515B2 (en) Tape-shaped oxide superconductor
US20110034336A1 (en) CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)NbO6 IN REBCO FILMS
JP2007188756A (ja) 希土類系テープ状酸化物超電導体
US6649570B2 (en) Buffer layer structure based on doped ceria for providing optimized lattice match with a YBCO layer in a conductor
WO2007094146A1 (ja) 超電導薄膜材料の製造方法、超電導機器、および超電導薄膜材料
US20110034338A1 (en) CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)TaO6 IN REBCO FILMS
US20120035056A1 (en) Nb-DOPED PEROVSKITE FLUX PINNING OF REBCO BASED SUPERCONDUCTORS BY MOCVD
Chen et al. Composition effects on the critical current of MOCVD-processed Zr: GdYBCO coated conductors in an applied magnetic field
RU2481673C1 (ru) Способ изготовления тонкопленочного высокотемпературного сверхпроводящего материала
JP2003034527A (ja) 厚膜テープ状酸化物超電導体及びその製造方法
JP4579909B2 (ja) 希土類系酸化物超電導体及びその製造方法
US7371586B2 (en) Superconductor and process for producing the same
US7781377B2 (en) Anti-epitaxial film in a superconducting article and related articles, devices and systems
US7473670B2 (en) Process for producing rare earth oxide superconductor
JP5415824B2 (ja) 被覆された導体のための、形状を変化させた基板の製造方法及び上記基板を使用する被覆された導体
US9136046B2 (en) Superconducting wire rod and method for manufacturing superconducting wire rod
US9070495B2 (en) Superconducting wire material and method for manufacturing superconducting wire material
JP2005276465A (ja) 超電導線材
US20040142824A1 (en) Method for the manufacture of a high temperature superconducting layer
US20090036313A1 (en) Coated superconducting materials

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20131028

HE4A Change of address of a patent owner
NF4A Reinstatement of patent

Effective date: 20150227

HE4A Change of address of a patent owner

Effective date: 20211209