RU2473968C2 - Видеокамера - Google Patents

Видеокамера Download PDF

Info

Publication number
RU2473968C2
RU2473968C2 RU2009136949/08A RU2009136949A RU2473968C2 RU 2473968 C2 RU2473968 C2 RU 2473968C2 RU 2009136949/08 A RU2009136949/08 A RU 2009136949/08A RU 2009136949 A RU2009136949 A RU 2009136949A RU 2473968 C2 RU2473968 C2 RU 2473968C2
Authority
RU
Russia
Prior art keywords
video data
color
video
image processing
data representing
Prior art date
Application number
RU2009136949/08A
Other languages
English (en)
Other versions
RU2009136949A (ru
Inventor
Джеймс ДЖЕННЭРД
Томас Грэм НАТТРЕС
Original Assignee
Рэд.Ком, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39864353&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2473968(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Рэд.Ком, Инк. filed Critical Рэд.Ком, Инк.
Publication of RU2009136949A publication Critical patent/RU2009136949A/ru
Application granted granted Critical
Publication of RU2473968C2 publication Critical patent/RU2473968C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/64Systems for the transmission or the storage of the colour picture signal; Details therefor, e.g. coding or decoding means therefor
    • H04N1/648Transmitting or storing the primary (additive or subtractive) colour signals; Compression thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/91Television signal processing therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4015Image demosaicing, e.g. colour filter arrays [CFA] or Bayer patterns
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/02Editing, e.g. varying the order of information signals recorded on, or reproduced from, record carriers
    • G11B27/031Electronic editing of digitised analogue information signals, e.g. audio or video signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/843Demosaicing, e.g. interpolating colour pixel values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • H04N5/77Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera
    • H04N5/772Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera the recording apparatus and the television camera being placed in the same enclosure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/32Indexing scheme for image data processing or generation, in general involving image mosaicing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/0008Connection or combination of a still picture apparatus with another apparatus
    • H04N2201/0063Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2209/00Details of colour television systems
    • H04N2209/04Picture signal generators
    • H04N2209/041Picture signal generators using solid-state devices
    • H04N2209/048Picture signal generators using solid-state devices having several pick-up sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Studio Devices (AREA)
  • Color Television Image Signal Generators (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Color Television Systems (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Image Processing (AREA)

Abstract

Изобретение относится к средствам записи и обработки видеоизображения. Техническим результатом является снижение потери качества подвергающегося сжатию изображения при распаковке и визуализации. Видеокамера содержит портативный корпус, установленный в нем фокусирующий свет объектив, светочувствительное устройство, преобразующее сфокусированный свет в исходные видеоданные, запоминающее устройство, установленное в корпусе, и систему обработки изображений с возможностью внесения предыскажений в исходные видеоданные и их сжатия, при этом сжатые исходные видеоданные остаются по существу визуально без потерь после распаковки, и с возможностью хранения сжатых исходных видеоданных в запоминающем устройстве. 3 н. и 19 з.п. ф-лы, 18 ил.

Description

УРОВЕНЬ ТЕХНИКИ
Область изобретения
[0001] Настоящее изобретение относится к цифровым камерам, например, предназначенным для съемки статических или динамических изображений, в частности к цифровым камерам, которые сжимают видеоданные.
Описание уровня техники
[0002] Несмотря на доступность цифровых видеокамер, производители полнометражных кинофильмов и некоторые телекомпании продолжают использовать пленочные камеры. Пленка, используемая для таких камер, позволяет получить изображения с очень высоким разрешением, которые при видеомонтаже можно редактировать традиционными способами. Однако в последнее время такую пленку часто сканируют, оцифровывают и редактируют в цифровом формате.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0003] Хотя некоторые имеющиеся сейчас на рынке цифровые видеокамеры содержат датчики изображения с высокой степенью разрешения и, таким образом, позволяют получать изображения с высоким разрешением, способы обработки и сжатия изображений, используемые в таких камерах, сопряжены со слишком большими потерями и, таким образом, удаляют слишком много исходных видеоданных, чтобы соответствовать требованиям указанных профессиональных секторов рынка. Один из аспектов по меньшей мере одного из вариантов реализации, описанных в настоящем изобретении, включает реализацию такого качества видеоизображения, которое является приемлемым для профессиональных секторов рынка, таких как производство полнометражных кинофильмов, и может быть достигнуто при использовании камер, способных фиксировать и хранить в исходном виде или в значительной степени в исходном виде видеоданные, имеющие разрешение по меньшей мере примерно 2000 пикселов по ширине и частоту кадров по меньшей мере 23 кадра в секунду.
[0004] Таким образом, в соответствии с одним из вариантов реализации видеокамера может включать портативный корпус и установленный в нем объектив, выполненный с возможностью фокусирования света. Светочувствительное устройство может быть выполнено с возможностью преобразования сфокусированного света в исходные видеоданные с разрешением по меньшей мере примерно 2000 пикселов по ширине при частоте кадров по меньшей мере примерно 23 кадра в секунду. Камера может также включать запоминающее устройство и систему обработки изображений, выполненную с возможностью сжатия и хранения в запоминающем устройстве исходных видеоданных с коэффициентом сжатия по меньшей мере шесть к одному, остающихся при этом по существу визуально без потерь, и с частотой кадров по меньшей мере 23 кадра в секунду.
[0005] В соответствии с другим вариантом реализации метод записи динамического видеоизображения при посредстве камеры может включать направление света на светочувствительное устройство. Метод может также включать преобразование света, принятого светочувствительным устройством, в исходные цифровые данные с частотой кадров по меньшей мере более 23 кадров в секунду, сжатие исходных цифровых видеоданных и запись исходных видеоданных с частотой кадров по меньшей мере примерно 23 кадра в секунду в запоминающее устройство.
[0006] В соответствии еще с одним вариантом реализации видеокамера может включать объектив, установленный в корпусе и выполненный с возможностью фокусирования света, и светочувствительное устройство, выполненное с возможностью преобразования сфокусированного света в сигнал исходных видеоданных, представляющий сфокусированный свет. Камера может также включать запоминающее устройство и средства сжатия и записи исходных видеоданных при частоте кадров по меньшей мере примерно 23 кадра в секунду.
[0007] В соответствии еще с одним вариантом реализации видеокамера может включать портативный корпус, имеющий по меньшей мере одну рукоятку, выполненную с возможностью управления пользователем ориентацией с учетом по меньшей мере одной степени подвижности корпуса во время операции видеозаписи камерой. Объектив может включать по меньшей мере одну линзу, установленную в корпусе и выполненную с возможностью фокусирования света на плоскости, расположенной внутри корпуса. Светочувствительное устройство может быть выполнено с возможностью преобразования сфокусированного света в исходные видеоданные с горизонтальным разрешением по меньшей мере примерно 2000 пикселов по ширине и с частотой кадров по меньшей мере примерно 23 кадра в секунду. Запоминающее устройство также может быть выполнено с возможностью хранения видеоданных. Система обработки изображений может быть выполнена с возможностью сжатия и хранения в запоминающем устройстве исходных видеоданных с коэффициентом сжатия по меньшей мере шесть к одному, остающихся при этом по существу визуально без потерь, и с частотой кадров по меньшей мере примерно 23 кадра в секунду.
[0008] Еще один аспект по меньшей мере одного из описываемых изобретений включает реализацию того, что вследствие большей чувствительности человеческого глаза к зеленой части спектра по сравнению с другими цветами модификация полученных от датчика изображения выходных видеоданных может быть использована для повышения сжимаемости данных, при этом обеспечивая видеоизображение более высокого качества. Один из таких способов может включать вычитание величины, характеризующей зеленый свет, определенной из величин, характеризующих красный и/или синий свет и определенных перед сжатием данных. При этом может быть осуществлено конвертирование видеоданных, представляющих красный и/или синий цвета, в более сжимаемую форму. Например, в известных процессах конвертирования RGB данных, подвергшихся гамма-коррекции, в Y′CbCr изображение подвергается "декорреляции", оставляя большую часть видеоданных в компоненте Y′ (также обозначаемом как "яркость"), и тогда остающиеся хроматические компоненты будут более сжимаемыми. Однако, известные приемы конвертирования в формат Y′CbCr не могут быть напрямую применены к данным, упорядоченным по шаблону Байера, так как данные, представляющие отдельный цвет, не являются пространственно скоррелированными, и данные, упорядоченные по шаблону Байера, включают в два раза больше данных, представляющих зеленый цвет, чем данных, представляющих зеленый и красный цвета. Процессы вычитания видеоданных, представляющих зеленый цвет, в соответствии с некоторыми описываемыми здесь вариантами реализации могут быть идентичны вышеуказанным процессам конвертирования в Y′CbCr в том, что большая часть видеоданных остается в области видеоданных, представляющих зеленый цвет, оставляя все остальные данные в более сжимаемом виде.
[0009] Помимо этого процесс вычитания видеоданных, представляющих зеленый цвет, может быть инвертирован, благодаря чему сохраняются все исходные видеоданные. Таким образом, получающаяся в результате система и способ, имеющий в основе такой прием, могут обеспечить степень сжимаемости указанных видеоданных, при которой вообще нет потерь видеоданных или визуально нет потерь, и улучшенную степень сжимаемости видеоданных.
[0010] Таким образом, в соответствии с данным вариантом реализации, видеокамера может включать объектив, установленный в корпусе и выполненный с возможностью фокусирования света, и светочувствительное устройство, выполненное с возможностью преобразования сфокусированного света в исходный сигнал видеоданных, представляющий по меньшей мере первый, второй и третий цвета сфокусированного света. Модуль преобразования изображений может быть выполнен с возможностью модифицирования видеоданных по меньшей мере или первого цвета или второго цвета на основе видеоданных третьего цвета. Помимо этого видеокамера может включать запоминающее устройство и устройство для сжатия данных, выполненное с возможностью сжатия видеоданных первого, второго и третьего цветов и хранения сжатых видеоданных в запоминающем устройстве.
[0011] В соответствии с другим вариантом реализации, может быть предложен способ обработки изображения. Этот способ может включать преобразование изображения в первые видеоданные, представляющие первый цвет, вторые видеоданные, представляющие второй цвет и третьи видеоданные, представляющие третий цвет, модифицирование по меньшей мере первых видеоданных и вторых видеоданных на основе третьих видеоданных, сжатие третьих видеоданных и модифицированных первых и вторых видеоданных и сохранение сжатых данных.
[0012] В соответствии с еще одним вариантом реализации видеокамера может содержать объектив, установленный в корпусе и выполненный с возможностью фокусирования света. Светочувствительное устройство может быть выполнено с возможностью преобразования сфокусированного света в исходный сигнал видеоданных, представляющий по меньшей мере первый, второй и третий цвета сфокусированного света. Камера может также содержать средства модифицирования видеоданных по меньшей мере первого и второго цветов на основе видеоданных третьего цвета, запоминающее устройство и устройство для сжатия, выполненное с возможностью сжатия видеоданных первого, второго и третьего цветов и хранения сжатых видеоданные в запоминающем устройстве.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0013] Фиг.1 представляет собой структурную схему, представляющую систему, которая может включать технические средства и/или быть выполненной с возможностью осуществления способов обработки видеоданных в соответствии с вариантом реализации.
[0014] Фиг.2 представляет собой вариант реализации корпуса камеры, показанной в схематическом виде на фиг.1.
[0015] Фиг.3 представляет собой схематическое изображение датчика изображения, имеющего фильтр на основе шаблона Байера, который может использоваться в сочетании с системой, показанной на фиг.1.
[0016] Фиг.4 представляет собой схематическую структурную схему модуля обработки изображений, который может использоваться в системе, показанной на фиг.1.
[0017] Фиг.5 представляет собой схематическую структуру видеоданных, представляющих зеленый цвет, полученных зелеными чувствительными элементами датчика изображения, показанного на фиг.3.
[0018] Фиг.6 представляет собой схематическую структуру остальных видеоданных, представляющих зеленый цвет и показанных на фиг.5, после дополнительного процесса удаления некоторой части исходных видеоданных, представляющих зеленый цвет.
[0019] Фиг.7 представляет собой схематическую структуру видеоданных, представляющих красный, синий и зеленый цвета, изображенных на фиг.5 и упорядоченных с целью обработки в модуле обработки изображений, изображенном на фиг.1.
[0020] Фиг.8 представляет собой блок-схему, иллюстрирующую способ преобразования видеоданных, который может быть использован в системе, показанной на фиг.1.
[0021] Фиг.8А представляет собой блок-схему, иллюстрирующую модификацию способа преобразования видеоданных, показанного на фиг.8, которая также может быть использована с системой, показанной на фиг.1.
[0022] Фиг.9 представляет собой схематическую структуру видеоданных, представляющих синий цвет и получаемых в результате процесса преобразования видеоданных, проиллюстрированного на фиг.8.
[0023] Фиг.10 представляет собой схематическую структуру видеоданных, представляющих красный цвет и получаемых в результате процесса преобразования видеоданных, проиллюстрированного на фиг.8.
[0024] Фиг.11 иллюстрирует пример дополнительного преобразования, которое может быть применено к видеоданным для гамма-коррекции.
[0025] Фиг.12 представляет собой блок-схему управляющей программы, которая может быть использована в сочетании с системой, показанной на фиг.1, с целью распаковать видеоданные и подвергнуть их демозаику.
[0026] фиг.12А представляет собой блок-схему, иллюстрирующую модификацию управляющей программы, представленной на фиг.12, которая также может быть использована в сочетании с системой, показанной на фиг.1.
[0027] Фиг.13 представляет собой схематическую структуру видеоданных, представляющих зеленый цвет, распакованных и прошедших демозаик в соответствии с блок-схемой, представленной на фиг.12.
[0028] Фиг.14 представляет собой схематическую структуру половины исходных видеоданных, представляющих зеленый цвет, представленных на фиг.13, распакованных и прошедших демозаик в соответствии с блок-схемой, представленной на фиг.12.
[0029] Фиг.15 представляет собой схематическую структуру показанных на фиг.13 видеоданных, представляющих синий цвет, распакованных в соответствии с блок-схемой, представленной на фиг.12.
[0030] Фиг.16 представляет собой схематическую структуру показанных на фиг.15 видеоданных, представляющих синий цвет, прошедших демозаик в соответствии с блок-схемой, представленной на фиг.12.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ РЕАЛИЗАЦИИ
[0031] Фиг.1 представляет собой принципиальную схему камеры, имеющей модули датчика изображения, обработки и сжатия данных, представленных при описании видеокамеры для съемки кинофильмов. Варианты реализации, раскрытые в настоящем описании, представлены при описании видеокамеры, имеющей один датчик изображения с фильтром на основе шаблона Байера, так как эти варианты реализации имеют особое практическое значение в данном контексте. Однако, варианты реализации и изобретения, являющиеся предметом настоящего описания, могут быть применимы также и к камерам, оснащенным другими типами датчиков изображения (например, CMY система байеровского типа, а также другими датчиками небайеровского типа), имеющими другое количество датчиков изображения, работающими с разными типами форматов изображения и выполненными для работы со статическими или динамическими изображениями. Таким образом, следует отметить, что варианты реализации, раскрытые в настоящем описании, являются неограничивающими, и поэтому раскрытые изобретения не ограничены указанными вариантами реализации.
[0032] Как показано на фиг.1, камера 10 может включать каркас или корпус 12, выполненный с возможностью быть оснащенным системой 14, выполненной с возможностью регистрации, обработки и дополнительно хранения и/или воспроизведения видеоданных. Например, система 14 может содержать компоненты 16 оптической системы, датчик 18 изображения, модуль 20 обработки изображений, модуль 22 сжатия и запоминающее устройство 24. Дополнительно, камера 10 может содержать также модуль 26 монитора, модуль 28 воспроизведения и дисплей 30.
[0033] На фиг.2 показан неограничивающий объем изобретения вариант реализации камеры 10. Как показано на фиг.2, корпус может быть оснащен компонентами 16 оптической системы таким образом, что какая-то их внешняя поверхность открыта для воздействия. В некоторых вариантах реализации система 14 содержится внутри корпуса 12. Например, датчик 18, модуль 20 и модуль 22 могут быть расположены внутри корпуса 12. Запоминающее устройство 24 может быть установлено в корпусе 12. Дополнительно, в некоторых вариантах реализации устройство 24 может быть установлено на внешней стороне корпуса 12 и соединено с остальными частями системы 14 через соединитель или кабель любого типа. Дополнительно, устройство 24 может быть соединено с корпусом 12 через гибкий кабель, таким образом создавая возможность относительного независимого от корпуса 12 перемещения устройства 24. Например, при таком гибком кабельном соединении пользователь может носить устройство 24 на поясе благодаря чему общий вес корпуса 12 уменьшается. Помимо этого, в некоторых вариантах реализации корпус может включать одно или несколько устройств 24 внутри, установленных на внешней части. Кроме этого, корпус 12 может также быть оснащенным модулем 26 и модулем 28. Дополнительно, в некоторых вариантах реализации дисплей 30 может быть выполнен с возможностью установки на внешней стороне корпуса 12.
[0034] Компоненты 16 оптической системы могут быть выполнены как система линз, из которых по меньшей мере одна линза выполнена с возможностью фокусирования входящего изображения на датчик 18 изображения. Компоненты 16, как один из вариантов, могут быть выполнены в виде многолинзовой оптической системы, обеспечивающей переменное увеличение, апертурную диафрагму и фокус. Помимо этого, компоненты 16 могут соответствовать форме гнезда для объектива, поддерживаемого корпусом 12 и выполненного с возможностью установки различных объективов. Например, но не в качестве ограничения, компоненты 16 содержат гнездо, выполненное с возможностью крепления объективов различных размеров, включая 50-100-миллиметровый объектив с переменным фокусным расстоянием (F2,8), 18-50-миллиметровый объектив с переменным фокусным расстоянием (F2,8), 300-миллиметровый объектив (F2,8), 15-миллиметровый объектив (F2,8), 25-миллиметровый объектив (F1,9), 35-миллиметровый объектив (F1,9), 50-миллиметровый объектив (F1,9), 85-миллиметровый объектив (F1,9) и/или любые другие объективы. Как было отмечено выше, компоненты 16 могут быть выполнены таким образом, что какую бы линзу они не содержали, изображение может быть сфокусировано на светочувствительной поверхности датчика 18 изображения.
[0035] Датчик 18 может принадлежать к любому типу датчиков видеоизображения, включая, например, но не в качестве ограничения, такие устройства как ПЗС, КМОП, вертикально компонуемые КМОП-устройства, такие как датчик Foveon®, или структура из нескольких датчиков, предусматривающая использование призмы для разделения света между датчиками. В некоторых вариантах реализации датчик 18 может включать КМОП-устройство, имеющее примерно 12 миллионов фотоэлементов. Однако, могут быть также использованы датчики других размеров. В некоторых конфигурациях камера 10 может быть выполнена с возможностью получения изображения с горизонтальным разрешением "2k" (например, 2048×1152 пикселя), "4k" (например, 4096×2540 пикселя), "4,5k" или с более высоким разрешением. В данном описании величина "х", будучи выраженной в формате xk (как, например, указанные выше 2k и 4k), относится к приблизительному горизонтальному разрешению. Разрешение "4k" соответствует примерно 4000 или большему числу горизонтальных пикселей, а разрешение "2k" соответствует примерно 2000 или большему числу пикселей. При использовании аппаратного обеспечения, которое в настоящее время имеется в продаже, датчик может иметь длину всего лишь 0,5 дюйма (8 мм), но он может достигать в длину примерно 1,0 дюйма или большей величины. Помимо этого, датчик 18 может быть выполнен с возможностью обеспечивать переменное разрешения путем избирательного вывода только заранее установленной части видеоданных, поступающих с датчика 18. Например, датчик 18 и/или модуль обработки изображений могут быть выполнены с возможностью установления пользователем разрешения выходных видеоданных.
[0036] Камера 10 может быть также выполнена с возможностью уменьшения разрешения и последующей обработки выходных данных с датчика 18 для получения выходных видеоданных с разрешением 2К, 1080р, 720р или с любым другим разрешением. Например, видеоданные с датчика 18 могут быть "обработаны методом окна", причем в этом случае сокращается размер выводимого изображения и могут быть достигнуты более высокие вывода данных. Однако могут быть использованы датчики других размеров. Помимо этого, камера 10 может быть выполнена с возможностью повышения разрешения выходного сигнала с датчика 18 с целью получения видеосигнала более высокого разрешения.
[0037] Как показано на фиг.1 и 3, в некоторых вариантах реализации датчик 18 может содержать фильтр на основе шаблона Байера. Датчик 18 посредством своего набора микросхем (не показаны) выводит данные, соответствующие величинам, характеризующим красный, зеленый или синий свет, обнаруженные отдельными фотоэлементами датчика 18. На фиг.3 схематично представлены выходные данные датчика 18 на основе шаблона Байера. В некоторых вариантах реализации, например, как представлено на фиг.3, фильтр на основе шаблона Байера имеет в два раза больше зеленых элементов, чем красных и синих. Набор микросхем датчика 18 может быть использован для считывания заряда на каждом элементе датчика изображения и, следовательно, для вывода потока величин в виде известного формата вывода RGB.
[0038] Как показано далее на фиг.4, модуль 20 обработки изображений может быть дополнительно выполнен с возможностью форматирования потока данных, идущих от датчика 18 изображения, любым известным способом. В некоторых вариантах реализации модуль 20 может быть выполнен с возможностью разделения видеоданных, представляющих зеленый, красный и синий цвета, на три или четыре, отдельных блока данных. Например, модуль 20 может быть выполнен с возможностью выделения данных, представляющих красный цвет, в один элемент данных, данных, представляющих синий цвет, в один синий элемент данных, а данных, представляющих зеленый цвет, в один зеленый элемент данных. Например, как показано на фиг.4, модуль 20 может включать модуль 32 обработки данных, представляющих красный цвет, модуль 34 обработки видеоданных, представляющих синий цвет, и первый модуль 36 обработки видеоданных, представляющих зеленый цвет.
[0039] Однако, как было отмечено выше, видеоданные на основе шаблона Байера, показанные на фиг.3, имеют в два раза больше зеленых пикселей, чем пикселей двух других цветов. На фиг.5 представлен компонент данных, из которого удалены данные, представляющие синий и красный цвета, с оставлением только исходных видеоданных, представляющих зеленый цвет.
[0040] В некоторых вариантах реализации камера 10 может быть выполнена с возможностью пропуска или удаления некоторой части видеоданных, представляющих зеленый цвет. Например, в некоторых вариантах реализации модуль 20 может быть выполнен с возможностью удаления 1/2 видеоданных, представляющих зеленый цвет, с тем чтобы общее количество видеоданных, представляющих зеленый цвет, было равно количеству видеоданных, представляющих синий и красный цвета. Например, на фиг.6 представлены данные, оставшиеся после того, как модуль 20 удаляет 1/2 видеоданных, представляющих зеленый цвет. В представленном на фиг.6 варианте реализации ряды n-3, n-1, n+1 и n+3 удалены. Это всего лишь один пример шаблона видеоданных, представляющих зеленый цвет, которые могут быть удалены. Другие шаблоны и другие количества видеоданных, представляющих зеленый цвет, также могут быть удалены.
[0041] В некоторых альтернативных вариантах камера 10 может быть выполнена с возможностью удаления 1/2 видеоданных, представляющих зеленый, после того видеоданные, представляющие красный и синий цвета, были преобразованы на основе видеоданных, представляющих зеленый цвет. Этот прием, использование которого не является обязательным, описан далее за описанием вычитания величин видеоданных, представляющих зеленый цвет, из прочих видеоданных, представляющих другой цвет.
[0042] Помимо этого модуль 20 обработки изображений может быть выполнен с возможностью избирательного удаления видеоданных, представляющих зеленый цвет. Например, модуль 20 может включать модуль анализа удалений (не показан), выполненный с возможностью выборочного определения какие именно видеоданные, представляющие зеленый цвет, следует удалить. Например, подобного рода модуль удаления может быть выполнен с возможностью определения, не приведет ли удаление определенной структуры рядов из области видеоданных, представляющих зеленый цвет, к появлению дефектов изображения, таких как, например, линии муара или другие различимые глазом искажения. Модуль удаления может дополнительно быть выполнен с возможностью выбора для удаления шаблона видеоданных, представляющих зеленый цвет, чтобы при этом свести до минимума риск создания таких искажений. Например, модуль удаления может быть выполнен с возможностью выбора для удаления шаблона видеоданных, представляющих зеленый цвет, который включал бы чередующиеся вертикальные столбцы, если он установит, что изображение, полученное датчиком 18 изображения, характеризуется множеством параллельных горизонтальных линий. Эта схема удаления может сокращать или удалять искажения, такие как линии муара, которые могли возникнуть в результате удаления шаблона данных, состоящих из переменных линий видеоданных, параллельных горизонтальным линиям, выявленным в изображении.
[0043] Однако, это лишь единичный неограничивающий пример типов характерных признаков изображения и схем удаления, которые могут использоваться модулем удаления. Этот модуль удаления может также быть выполненным с возможностью выявления других характерных признаков изображения и использования других схем удаления видеоданных, таких как, например, но не в качестве ограничения, удаление чередующихся рядов, чередующихся диагональных линий или другие схемы. Помимо этого, модуль удаления может быть выполнен с возможностью удаления частей других видеоданных, таких как видеоданные, представляющие красный и синий цвета, или другие видеоданные в зависимости от типа используемого датчика.
[0044] Помимо этого камера 10 может быть выполнена с возможностью вставки поля данных в видеоданные с целью указать какие именно видеоданные были удалены. Например, но не в качестве ограничения, камера 10 может быть выполнена с возможностью вставки поля данных в начало любого видеофрагмента, сохраняемого в запоминающем устройстве 24, который указывает какие именно видеоданные были удалены в каждом из "кадров" видеофрагмента. В некоторых вариантах реализации камера может быть выполнена с возможностью вставки в каждый кадр, уловленный датчиком 18, поля данных, указывающее какие именно видеоданные были удалены. Например, в некоторых вариантах реализации, в которых модуль 20 обработки изображений выполнен с возможностью удаления 1/2 видеоданных, представляющих зеленый цвет, по одной схеме удаления, размер этого поля данных может быть не больше одного бита, указывающем только удалены ли видеоданные или нет. Поскольку модуль 20 выполнен с возможностью удаления данных лишь по одной схеме, одного бита достаточно для указания какие данные удалены.
[0045] В некоторых вариантах реализации, как было отмечено выше, модуль 20 может быть выполнен с возможностью выборочного удаления видеоданных более чем по одной схеме. В этом случае поле удаления видеоданных может быть больше, включая достаточное число величин, указывающих какая именно из схем удаления видеоданных была использована. Это поле данных может быть использовано расположенными далее по ходу данных компонентами и/или процессами, позволяющими определить каким пространственным положениям соответствует остающиеся видеоданные.
[0046] В некоторых вариантах реализации модуль обработки изображений может быть выполнен с возможностью задержки всех видеоданных, представляющих зеленый цвет, например, данных, приведенных на фиг.5. В таких вариантах реализации модуль обработки изображений может включать один или несколько модулей обработки видеоданных, представляющих зеленый цвет.
[0047] Как было отмечено выше, в известных фильтрах на основе шаблона Байера, имеется в два раза больше зеленых элементов, чем красных и синих. Иными словами, красные элементы составляют 25% от всего массива шаблона Байера, синие элементы соответствуют 25% массива шаблона Байера, а зеленые элементы включают 50% элементов, входящих в массив шаблона Байера. Таким образом, в некоторых вариантах реализации, в которых сохраняются все видеоданные, представляющие зеленый цвет, модуль 20 обработки изображений может включать второй модуль 38 обработки видеоданных, представляющих зеленый цвет. Первый модуль 36 обработки видеоданных, представляющих зеленый цвет, может обработать половину зеленых элементов, а второй модуль 38 обработки видеоданных, представляющих зеленый цвет, может обработать оставшиеся зеленые элементы. Однако заявляемые изобретения могут быть использованы в сочетании с другими видами схем, такими как, например, но не в качестве ограничения, CMY и RGBW.
[0048] На фиг.7 схематически показаны красный, синий и двое зеленых компонентов данных, обработанных модулями 32, 34, 36 и 38 (фиг.4). Это может дать еще ряд преимуществ, так как размер и конфигурация каждого из этих модулей может быть примерно одна и та же, так как они обрабатывают примерно один и тот же объем данных. Кроме того, модуль 20 обработки изображений может быть выборочно переключен из одного режима на другой, при котором он обрабатывает все видеоданные, представляющие зеленый цвет (путем использования обоих модулей 36 и 38), или на такие режимы, в которых удаляется 1/2 видеоданных, представляющих зеленый цвет (и в которых используется только один из модулей 36 и 38). Однако могут использоваться и другие конфигурации.
[0049] Помимо этого, в некоторых вариантах реализации модуль 20 может включать другие модули и/или может быть выполнен с возможностью выполнения других действия, например, но не в качестве ограничения, процесса гамма-коррекции, процесса фильтрации шумов и т.д.
[0050] Помимо этого, в некоторых вариантах реализации модуль 20 может быть выполнен с возможностью вычитания величины, характеризующей зеленый элемент, из величины, характеризующей синий элемент и/или красный элемент. В некоторых вариантах реализации, когда определенные цвета определяются датчиком 18 изображения, соответствующий красный или синий элемент может быть уменьшен до нуля. Например, на многих фотографиях могут быть большие площади черного, белого или серого цвета, или же цвета, смещенного от серого к красному или синему цвету. Таким образом, если соответствующие пиксели датчика 18 различили область серого цвета, величина, характеризующая зеленый, красный и синий цвета, будет примерно одинаковой. Таким образом, если величина, характеризующая зеленый цвет, вычитается из величин, характеризующих красный и синий цвета, то последние упадут до нуля или будут приближаться к нулю. Таким образом, в ходе последующего процесса сжатия будет больше нолей, полученных в пикселях, которые чувствительны к черному, белому или серому участку, и таким образом, получаемые в результате данные будут легче поддаваться сжатию. Кроме того, вычитание зеленого из одного или обоих других цветов может сделать получаемые в результате видеоданные более сжимаемыми и по другим причинам.
[0051] Этот прием может помочь добиться более высокой степени сжатия, при этом данные остаются визуально без потерь благодаря тому, что этот прием имеет отношение к энтропии исходных видеоданных. Например, энтропия изображения имеет отношение к величине случайности в данном изображении. Вычитание видеоданных, представляющих один цвет, например, из видеоданных, представляющих другой цвет, может снизить степень случайности, и таким образом уменьшить энтропию видеоданных этих цветов, посредством чего создавая возможность сжимать данные с более высокими коэффициентами сжатия и с меньшими потерями. Как правило, изображение не является набором случайных величин, характеризующих цвет. Скорее, часто существует определенная степень соотношения между соседними элементами изображения. Таким образом, подобного рода прием вычитания может быть основан на использовании соотношения элементов изображения для достижения лучшей степени сжатия. Объем сжатия будет зависеть, по меньшей мере частично, от энтропии исходных данных в изображении.
[0052] В некоторых вариантах реализации значения, вычитаемые из красных или синих пикселей, могут быть значениями величин зеленых пикселей, которые расположены рядом с рассматриваемыми красным или синим пикселем. Кроме того, в некоторых вариантах реализации значения зеленого, вычитаемые из красных или синих элементов, могут быть получены из среднего значения окружающих зеленых элементов. Эти приемы подробно описаны далее, однако могут быть использованы и другие приемы.
[0053] В качестве одного из вариантов модуль 20 обработки изображений может также быть выполнен с возможностью избирательного вычитания видеоданных, представляющих зеленый цвет, из других цветов. Например, модуль 20 может быть выполнен с возможностью определения, приведет ли вычитание видеоданных, представляющих зеленый цвет, из фрагмента видеоданных, представляющих любой из других цветов, к большей степени сжатия или нет. В этом режиме модуль 20 может быть выполнен с возможностью вставки в видеоданные флагов, указывающих какие именно фрагменты видеоданных были модифицированы (например, путем вычитания видеоданных, представляющих зеленый цвет) и какие фрагменты не были модифицированы таким образом. При наличии таких флагов расположенный далее компонент демозаика/восстановления может выборочно добавлять величины, представляющие зеленое изображение, обратно в видеоданные, представляющие другие цвета, в зависимости от статуса этих флагов данных.
[0054] В качестве одного из вариантов модуль 20 может также содержать еще один модуль сжатия данных (не показан), выполненный с возможностью округлять величины данных, представляющих красный и синий цвета. Например, если после вычитания величин, характеризующих зеленый цвет, данные, представляющие красный и синий цвета, приближены к нулю (т.е., будут находиться в пределах одного или двух на 8-битовой шкале, находящейся в диапазоне от 0-255 или достигая более высоких величин в системе с более высоким разрешением). Например, датчик 18 может быть 12-битовым датчиком, выводящим данные, представляющие красный, синий и зеленый цвета, в диапазоне шкалы 0-4095. Любое округление или фильтрация видеоданных, осуществляемых модулем округления, может быть скорректировано для получения желаемого эффекта. Например, округление может быть произведено в меньшем объеме, если необходимо получить выходные данные без потерь или в большем объеме, если приемлемы некоторые потери или выходные данные с потерями. Может быть произведено некоторое округление, которое все же обеспечивает выходные данные визуально без потерь. Например, на 8-битовой шкале данные, представляющие красный или синий цвета, имеющие абсолютные значения до 2 или 3, могут быть округлены до 0 и по-прежнему обеспечивать выходные данные визуально без потерь. Кроме того, на 12-битовой шкале данные, представляющие красный или синий цвета, имеющие абсолютное значение до 10-20, могут быть округлены до 0 и по-прежнему обеспечивать выходные данные визуально без потерь.
[0055] Помимо этого значения величин, которые могут быть округлены до нуля или округлены до других величин и по-прежнему обеспечивать выходные данные визуально без потерь, зависят от конфигурации системы, включая компоненты 16 оптической системы, датчик 18 изображения, разрешение датчика изображения, цветовое разрешение (в битах) датчика 18, типы фильтрации, способы борьбы с искажением данных или другие способы, осуществляемые модулем 20 обработки изображений, способы сжатия, осуществляемые модулем 22 сжатия и/или другие параметры или характеристики камеры 10.
[0056] Как было отмечено выше, в некоторых вариантах реализации камера 10 может быть выполнена с возможностью удаления 1/2 видеоданных, представляющих зеленый цвет, после того как видеоданные, представляющие красный и синий цвета, будут преобразованы на основе видеоданных, представляющих зеленый цвет. Например, но не в качестве ограничения, обрабатывающий модуль 20 может быть выполнен с возможностью удаления 1/2 видеоданных, представляющих зеленый цвет, после того как средние величины, характеризующие окружающий зеленый цвет, вычтены из величин, характеризующих красный и синий цвета. Это сокращение в данных, представляющих зеленый цвет, может снизить требования к пропускной способности соответствующих технических средств. Кроме того, остающиеся видеоданные, представляющие зеленый цвет, могут быть использованы для восстановления видеоданных, представляющих красный и синий цвета, подробно описанных далее со ссылками на фиг.14 и 16.
[0057] Как было отмечено выше, камера 10 может также содержать модуль 22 сжатия. Модуль 22 может быть выполнен в виде отдельной микросхемы или же может быть реализован посредством программного обеспечения и еще одного процессора. Например, модуль 22 может быть выполнен в виде имеющегося в продаже чипа сжатия, который производит операцию сжатия в соответствии со стандартом JPEG 2000 или другие операции сжатия.
[0058] Модуль сжатия может быть выполнен с возможностью выполнять любые виды процедур сжатия над видеоданными, поступающими из модуля 20 обработки изображений. В некоторых вариантах реализации модуль 22 выполняет процедуру сжатия, которая использует действия, выполняемые модулем 20. Например, как было отмечено выше, модуль 20 может быть выполнен с возможностью сокращать значения величин видеоданных, представляющих красный и синий цвета, путем вычитания значений видеоданных, представляющих зеленый цвет, в результате чего появляется большее число нулевых величин, а также будут иметь место и другие эффекты. Помимо этого, модуль 20 может выполнить обработку исходных данных, основанную на энтропии видеоданных. Таким образом, методы сжатия, осуществляемые модулем 22 сжатия, могут относиться к такому типу, который выигрывает от присутствия больших цепочек нулей, так как при этом снижается размер выходных сжатых видеоданных.
[0059] Более того, модуль 22 сжатия может быть выполнен с возможностью сжатия видеоданных, поступающих из модуля 20 обработки изображений, с целью получения выходных данных визуально без потерь. Например, во-первых, модуль сжатия может быть выполнен с возможностью применять любой известный метод сжатия, как, например, но не в качестве ограничения, JPEG 2000, MotionJPEG, любой основанный на DCT кодек, любой кодек, выполненный с возможностью сжатия RGB видеоданных, Н.264, MPEG4, Huffman или другие способы.
[0060] В зависимости от типа используемого метода сжатия разные параметры метода сжатия могут быть установлены так, что будут достигнуты выходные данные визуально без потерь. Например, многие из указанных выше методов сжатия могут быть настроены на разные скорости сжатия, причем при распаковке получаемое в результате изображение будет лучшего качества при более низких скоростях сжатия и худшего качества при более высоких скоростях сжатия. Таким образом, модуль сжатия может быть выполнен с возможностью сжатия видеоданных таким образом, что при этом обеспечены выходные данные визуально без потерь или может быть выполнен с возможностью регулирования пользователем различных параметров для получения выходных данных визуально без потерь. Например, модуль 22 сжатия может быть выполнен с возможностью сжатия видеоданных с коэффициентом сжатия примерно 6:1, 7:1, 8:1 или с более высоким коэффициентом. В некоторых вариантах реализации модуль 22 может быть выполнен с возможностью сжатия видеоданных в соотношении 12:1 или в большем соотношении.
[0061] Помимо этого модуль 22 может быть выполнен с возможностью регулирования пользователем степени сжатия, достигаемой модулем 22. Например, камера 10 может содержать интерфейс пользователя, который позволяет пользователю вводить команды, в соответствии с которыми модуль 22 меняет коэффициент сжатия. Таким образом, в некоторых вариантах реализации камера 10 может обеспечить сжатие с переменной степенью.
[0062] Используемый здесь термин "визуально без потерь" относится к таким выходным данным, которые, будучи сопоставленными с исходными (не подвергавшимися сжатию) видеоданными на одном и том же дисплее, не позволят специалисту определить с высокой степенью точности, основываясь только на осмотре изображений, какое изображение является исходным.
[0063] Камера 10 также может включать запоминающее устройство 24 (фиг.1), которое может представлять собой любое цифровое запоминающее устройство, например, но не в качестве ограничения, жесткие диски, флэш-память или любой другой вид запоминающего устройства. В некоторых вариантах реализации емкость устройства 24 может быть достаточно большой, чтобы хранить видеоданные, поступающие с модуля 22 и соответствующие не менее чем 30 минутам видеозаписи с разрешением 12 мегапикселей, с цветовым разрешением 12 битов и частотой кадров 60 кадров в секунду. Однако устройство 24 может иметь любую емкость.
[0064] В некоторых вариантах реализации устройство 24 может быть установлено на внешней части корпуса 12. Более того, в некоторых вариантах реализации устройство 24 может быть соединено с другими компонентами системы 14 через стандартные коммуникационные порты, включая, например, но не в качестве ограничения, IEEE 1394, USB 2.0, IDE, SATA и т.д. Более того, в некоторых вариантах реализации устройство 24 может содержать несколько жестких дисков, функционирующих в соответствии с протоколом RAID. Однако может быть использован любой тип запоминающего устройства.
[0065] Как было отмечено выше, в некоторых вариантах реализации система может включать модуль 26 монитора и дисплей 30 (фиг.1), выполненные с возможностью отображения для пользователя видеоданных, зарегистрированных датчиком 18 изображения в ходе эксплуатации. В некоторых вариантах реализации модуль 20 обработки изображений может включать систему понижения разрешения, выполненную таким образом, чтобы выводить видеоданные с более низким разрешением на модуль 26. Например, такая система понижения разрешения может быть выполнена с возможностью выводить видеоданные, поддерживая разрешение 2К, 1080р, 720р или любое другое. В некоторых вариантах реализации фильтры, используемые для демозаика, могут быть настроены для проведения фильтрации в условиях пониженного разрешения, с тем чтобы понижение разрешения и фильтрация могли бы проводиться одновременно. Модуль 26 может быть выполнен с возможностью проведения любого вида демозаика по отношению к видеоданным, поступающим из модуля 20. После этого модуль 26 может выводить прошедшие демозаик видеоданные на дисплей 30.
[0066] Дисплей 30 может принадлежать к любому типу устройств отображения. Например, но не в качестве ограничения, дисплей 30 может представлять собой четырехдюймовую жидкокристаллическую панель, которой оснащен корпус 12. Например, в некоторых вариантах реализации дисплей 30 может быть соединен с опорой, положение которой можно неограниченно регулировать и которая выполнена с возможностью установления дисплея 30 в любое положение относительно корпуса 12, для того чтобы пользователь мог видеть дисплей 30 под любым углом по отношению к корпусу 12. В некоторых вариантах реализации дисплей 30 может быть соединен с модулем монитора посредством видеокабелей любого типа, таких как, например, видеокабель RGB- или YCC-сигнала.
[0067] Дополнительно модуль 28 воспроизведения может быть выполнен с возможностью получения данных из запоминающего устройства 24, распаковки видеоданных и проведения над ними демозаика, а затем их вывода на дисплей 30. В некоторых вариантах реализации модуль 26 и модуль 28 могут быть соединены с дисплеем через промежуточный контроллер дисплея (не показан). Дисплей 30 может быть соединен одиночным соединителем с контроллером дисплея. Контроллер дисплея может быть выполнен с возможностью передавать видеоданные с модуля 26 или с модуля 28 на дисплей 30.
[0068] На фиг.8 представлена функциональная схема 50, поясняющая обработку видеоданных камерой 10. Применительно к некоторым вариантам реализации функциональная схема 50 может представлять программу управления, хранящуюся в запоминающем устройстве, например в запоминающем устройстве 24, или другом запоминающем устройстве (не показано) в камере 10. Кроме того, центральный процессор (ЦП) (не показан) может быть выполнен с возможностью выполнять программу управления. Приведенное далее описание способов, соответствующих функциональной схеме 50 приведено в контексте обработки единичного кадра видеоданных. Таким образом, приемы могут быть применены к обработке единичного статического изображения. Эти процессы также могут быть применены к обработке длительного видеоизображения, например, с частотой кадров более 12 кадров, а также видеоизображений с частотой кадров 20; 23,976; 24; 30; 60 и 120; или же другими частотами кадров в приведенном диапазоне, или большими.
[0069] Также со ссылкой на фиг.8, необходимо отметить, что выполнение программы управления может начинаться с рабочего блока 52. В блоке 52 камера 10 может получать данные от датчиков. Например, как показано на фиг.1, датчик 18 изображения, который может содержать датчик на основе фильтра Байера и набор микросхем, может осуществлять вывод видеоданных.
[0070] Например, но не в качестве ограничения, как показано на фиг.3, датчик изображения может содержать КМОП-устройство, имеющее фильтр на основе шаблона Байера, со стороны поверхности, принимающей световой сигнал. Таким образом, сфокусированное изображение от компонентов 16 оптической системы фокусируется на фильтре на основе шаблона Байера, расположенном на КМОП-устройстве датчика 18 изображения. На фиг.3 приведен пример шаблона Байера, созданного путем размещения фильтра на основе шаблона Байера на КМОП-устройстве.
[0071] На фиг.3 столбец m является четвертым столбцом от левого края шаблона Байера, а ряд n является четвертым рядом, считая от верхнего края шаблона. Оставшиеся столбцы и ряды помечены по отношению к столбцу m и ряду n. Однако эта схема выбрана условно для иллюстративных целей и не ограничивает никакие из раскрываемых вариантов реализации или изобретений.
[0072] Как было отмечено выше, известные фильтры на основе шаблона Байера часто включают в два раза больше зеленых элементов, чем красных и синих. В шаблоне, представленном на фиг.5, синие элементы появляются только в рядах n-3, n-1, n+1 и n+3. Красные элементы появляются только в рядах n-2, n, n+2 и n+4. Однако зеленые элементы появляются во всех рядах и столбцах, перемежаясь с красными и синими элементами.
[0073] Таким образом, в рабочем блоке 52 полученные с датчика 18 изображения выходные видеоданные, представляющие красный, синий и зеленый цвета, могут быть получены с помощью модуля 20 обработки изображений и упорядочены в виде компонентов данных, каждый из которых соответствует одному из цветов, как, например, представлено на фиг.7. Как показано на фиг.7, и как описано выше в связи с фиг.4, модуль 20 может делить видеоданные, представляющие красный, синий и зеленый цвета, на четыре отдельных компонента. На фиг.7 представлены два зеленых компонента (Зеленый 1 и Зеленый 2), голубой компонент и красный компонент. Однако это всего лишь один из примеров того, как можно обрабатывать видеоданные, поступающие от датчика 18. К тому же, как было отмечено выше, модуль 20 в качестве одной из дополнительных функций может произвольно или выборочно удалить 1/2 видеоданных, представляющих зеленый цвет.
[0074] После рабочего блока 52 функциональная схема 50 может продолжиться рабочим блоком 54, в котором видеоданные могут быть дальше обработаны. Например, в качестве одного из вариантов, любой вид или все из результирующих данных (например, зеленый 1, зеленый 2, видеоданные, представляющие синий цвет, с фиг.9, и видеоданные, представляющие красный цвет, с фиг.10) могут и далее быть обработаны.
[0075] Например, в видеоданные могут быть внесены предыскажения или они могут быть обработаны другими способами. В некоторых вариантах реализации видеоданные могут быть обработаны, чтобы быть более нелинейными (в математическом смысле). Некоторые алгоритмы сжатия выигрывают от того, что производят подобную линеаризацию на элементах изображения перед сжатием. Однако могут быть использованы и другие приемы. Например, видеоданные могут быть обработаны при помощи линейной кривой, по существу не обеспечивающей предыскажений.
[0076] В некоторых вариантах реализации рабочий блок 54 может обрабатывать видеоданные, используя кривую, заданную функцией y=x^0,5. В некоторых вариантах реализации эта кривая может быть использована там, где находились видеоданные, например, но не в качестве ограничения, данные о плавающей точке в нормированном диапазоне 0-1. В других вариантах реализации, например, в тех, где видеоданные представлены 12-битовыми данными, изображение может быть обработано с помощью кривой y=(x/4095)0,5. Кроме того, видеоданные могут быть обработаны и другими кривыми, такими как y=(х+с)g, где 0,01<g<1 и с - это смещение, которое в некоторых вариантах реализации может быть равно 0. Кроме того, могут быть использованы и логарифмические кривые. Например, кривые в виде y=A*log(B*x+C), где А, В, и С являются постоянными величинами, выбранными для того, чтобы обеспечивать требуемые результаты. Кроме того, вышеуказанные кривые и процессы могут быть модифицированы с целью обеспечить более линейные области вблизи черного цвета подобно приемам, используемым в хорошо известной гамма-кривой Rec709. При применении этих процессов к видеоданным, одни и те же процессы могут быть применены ко всем видеоданным или же разные процессы могут быть применены к видеоданным, представляющим разные цвета. Однако, это всего лишь примеры кривых, которые могут быть использованы при обработке видеоданных, могут быть также использованы кривые или преобразования. К тому же, эти способы обработки могут быть применены с использованием математических функций, подобных тем, которые были отмечены выше, или таблиц преобразования. К тому же, разные способы, приемы и преобразования могут быть использованы применительно к разным типам видеоданных, разные настройки чувствительности могут быть использованы при записи видеоданных, температура (которая может влиять на уровень шумов) и т.д.
[0077] После рабочего блока 54 функциональная схема 50 может продолжиться рабочим блоком 56, в котором могут быть преобразованы красные и синие элементы изображения. Например, как было отмечено выше, видеоданные, представляющие зеленый цвет, могут быть вычтены из синего или зеленого компонента видеоданных. В некоторых вариантах реализации величина данных, представляющих синий или красный цвет, может быть преобразована путем вычитания величины видеоданных, представляющих зеленый цвет, по меньшей мере из одного зеленого элемента изображения, находящегося рядом с красным или синим элементом изображения. В некоторых вариантах реализации среднее значение величины данных, характеризующей расположенные рядом зеленые элементы изображения, может быть вычтена из величины, характеризующей красный или синий цвет. Например, но не в качестве ограничения, средние значения 2, 3, 4 или большего количества величин данных, представляющих зеленый цвет, могут быть рассчитаны и вычтены из красных или синих элементов изображения вблизи зеленых элементов изображения.
[0078] Например, но не в качестве ограничения, как показано на фиг.3, исходные выходные данные для красного элемента Rm-2,n-2 окружены четырьмя зелеными элементами Gm-2,n-3, Gm-1,n-2, Gm-2,n-2 и Gm-2,n-1 изображения. Таким образом, красный элемент Rm-2,n-2 может быть преобразован путем вычитания среднего значения величин окружающих зеленых элементов следующим образом:
Figure 00000001
[0079] Аналогично, синие элементы могут быть таким же образом преобразованы путем вычитания среднего значения величин окружающих зеленых элементов следующим образом:
Figure 00000002
[0080] На фиг.9 представлен образующийся в результате синий компонент данных, в котором преобразованы исходные данные Bm-1,n-1, представляющие синий цвет, причем новая величина обозначается как B′m-1,n-1 (заполняется только одна величина в компоненте, а для всех синих элементов могут быть использованы одни и те же способы). Таким же образом на фиг.10 представлен преобразованный красный компонент данных, причем преобразованный красный элемент Rm-2,n-2 обозначается как R′m-2,n-2. В этом состоянии видеоданные могут по-прежнему считаться "исходными". Например, математические действия, осуществляемые над видеоданными, полностью обратимы, так что изначальные величины могут быть получены путем реверсирования этих процессов.
[0081] Также со ссылкой на фиг.8 необходимо отметить, что после рабочего блока 56 функциональная схема 50 может продолжиться рабочим блоком 58, в котором получаемые данные, являющиеся исходными или которые в значительной степени могут быть исходными, могут и далее быть сжаты с применением любого известного алгоритма сжатия. Например, модуль сжатия 22 (фиг.1) может быть выполнен с возможностью выполнения такого алгоритма сжатия. После сжатия сжатые исходные видеоданные могут храниться в запоминающем устройстве 24 (фиг.1).
[0082] На фиг.8А представлена модификация функциональной схемы 50, обозначенная 50′. Некоторые этапы, описанные выше со ссылками на функциональную схему 50, могут быть похожими или совпадать с соответствующими этапами на функциональной схеме 50′ и, таким образом, обозначаются теми же позиционными обозначениями.
[0083] Как представлено на фиг.8А, в функциональной схеме 50' в некоторых вариантах реализации может отсутствовать рабочий блок 54. В некоторых вариантах реализации функциональная схема 50' может также включать рабочий блок 57, в котором к видеоданным может быть применена таблица преобразования. Например, дополнительная таблица преобразования, которой соответствует кривая на фиг.11, может быть использована для усиления последующего сжатия. В некоторых вариантах реализации таблица преобразования, которой соответствует кривая на фиг.11, используется только для зеленых элементов изображения. В других вариантах реализации таблица преобразования может быть использована также для красных и синих элементов изображения. Такая же таблица преобразования может быть использована для трех разных цветов, или же каждый цвет может иметь свою таблицу преобразования. Кроме того, могут быть применены иные способы обработки, отличающиеся от тех, которые представлены кривой на фиг.11.
[0084] При обработке видеоданных вышеописанным способом, как это представлено на фиг.8 и 8А, было обнаружено, что видеоданные от датчика 18 изображения могут быть сжаты с коэффициентом сжатия от 6 до 1 или с большим коэффициентом и остаться визуально без потерь. В дополнение к этому, хотя видеоданные были преобразованы, (например, путем вычитания видеоданных, представляющих зеленый цвет), все исходные видеоданные по-прежнему доступны конечному пользователю. Например, при реверсировании некоторых процессов все или в значительной мере все исходные необработанные данные могут быть извлечены и, таким образом, далее подвергнуты обработке, фильтрации и/или демозаику с использованием любого процесса по выбору пользователя.
[0085] Например, со ссылкой на фиг.12, данные, хранимые в устройстве 24, могут быть распакованы и подвергнуты демозаику. Кроме того, камера 10 может быть выполнена с возможностью осуществления способа, представленного функциональной схемой 60. Например, но не в качестве ограничения, модуль 28 воспроизведения может быть выполнен с возможностью осуществления способа, представленного функциональной схемой 60. Однако пользователь может также перенести видеоданные из устройства 24 на отдельную рабочую станцию и применять любые этапы и/или операции функциональной схемы 60.
[0086] Также со ссылкой на фиг.12 необходимо отметить, что функциональная схема 60 может начинаться с рабочего блока 62, в котором распаковываются данные из устройства 24. Например, распаковка данных в рабочем блоке 62 может быть обратной по отношению к алгоритму сжатия, осуществляемому в рабочем блоке 58 (фиг.8). После рабочего блока 62 функциональная схема 60 может продолжиться рабочим блоком 64.
[0087] В рабочем блоке 64 процесс, осуществляемый в рабочем блоке 56 (фиг.8), может быть реверсирован. Например, инверсия кривой, показанной на фиг.11, или инверсия любой из других функций, описанных выше со ссылкой на рабочий блок 56, представленный на фиг.8 и 8А, могут быть применены к видеоданным. После рабочего блока 64 функциональная схема 60 может продолжиться этапом 66.
[0088] В рабочем блоке 66 зеленые элементы изображения могут быть подвергнуты демозаику. Например, как было отмечено выше, все величины из компонентов данных Зеленый 1 и/или Зеленый 2 (фиг.7) могут быть сохранены в устройстве 24. Например, как представлено на фиг.5, видеоданные, представляющие зеленый цвет, из компонентов данных Зеленый 1 и Зеленый 2 могут быть размещены в соответствии с исходным шаблоном Байера, примененным к датчику 18 изображения. Данные, представляющие зеленый цвет, могут далее быть подвергнуты демозаику с применением любого известного способа, такого как, например, линейная интерполяция, билинейная интерполяция и т.д.
[0089] На фиг.13 представлен пример структуры видеоданных, представляющих зеленый цвет, полученных демозаиком из всех исходных видеоданных, представляющих зеленый цвет. Зеленые элементы изображения, обозначаемые буквой Gx, представляют исходные необработанные (распакованные) видеоданные, а элементы, обозначаемые "DGx", представляют элементы, полученные из исходных данных посредством процесса демозаика. Эти обозначения используются с учетом дальнейших описаний процесса демозаика применительно к другим цветам. На фиг.14 представлен пример структуры видеоданных, которые были получены демозаиком из 1/2 исходных видеоданных, представляющих зеленый цвет.
[0090] Также со ссылкой на фиг.12 необходимо отметить, что функциональная схема 60 после рабочего блока 66 может продолжиться рабочим блоком 68. В блоке 68 подвергнутые демозаику видеоданные, представляющие зеленый цвет, могут быть далее обработаны. Например, но не в качестве ограничения, к видеоданным, представляющим зеленый цвет, могут быть применены способы снижения уровня шумов. Однако любые другие способы обработки изображений, такие как способы подавления помех, также могут быть применены к видеоданным, представляющим зеленый цвет. После рабочего блока 68 функциональная схема 60 может продолжиться рабочим блоком 70.
[0091] В блоке 70 видеоданные, представляющие красный и синий цвета, может быть подвергнуты демозаику. Например, во-первых, видеоданные, представляющие синий цвет, представленные на фиг.9, могут быть перегруппированы в соответствии с исходным шаблоном Байера (фиг.15). Окружающие элементы, как представлено на фиг.16, могут быть получены демозаиком из имеющихся видеоданных, представляющих синий цвет, путем использования любого известного способа демозаика, включая линейную интерполяцию, билинейную интерполяцию и т.д. В результате этапа демозаика для каждого пиксела будут иметься видеоданные, представляющие синий цвет, как представлено на фиг.16. Однако эти видеоданные, представляющие синий цвет, были получены демозаиком на основе модифицированных видеоданных, представляющих синий цвет, представленных на фиг.9, т.е. на основе величин видеоданных, представляющих синий цвет, из которых были вычтены величины видеоданных, представляющих зеленый цвет.
[0092] Рабочий блок 70 может также включать процесс демозаика видеоданных, представляющих красный цвет. Например, видеоданные, представляющие красный цвет, представленные на фиг.10, могут быть перегруппированы в соответствии с оригинальным шаблоном Байера и далее подвергнуты демозаику посредством любого известного способа демозаика, включая линейную интерполяцию, билинейную интерполяцию и т.д.
[0093] После рабочего блока 70 функциональная схема может продолжиться рабочим блоком 72, в котором прошедшие демозаик видеоданные, представляющие красный и синий цвета, могут быть восстановлены из прошедших демозаик видеоданных, представляющих зеленый цвет.
[0094] В некоторых вариантах реализации каждый красный и синий элемент видеоданных может быть восстановлен путем включения величины, характеризующей зеленый цвет, из расположенного рядом зеленого элемента изображения (зеленый элемент изображения, расположенный в том же столбце "m" и в ряду "n"). Например, после демозаика видеоданные, представляющие синий цвет, включают величину DBm-2,n-2 синего элемента. Поскольку оригинальный шаблон Байера, изображенный на фиг.3, не включал синий элемент в этом месте, данная величина DBm-2,n-2, характеризующая синий цвет, была выведена через вышеуказанный процесс демозаика, на основе, например, величин, характеризующих синий цвет, из одного из элементов Bm-3,n-3, Bm-1,n-3, Bm-3,n-1, и Bm-1,n-1 или применяя любой другой способ или пользуясь другими синими элементами изображения. Как было отмечено выше, эти величины были модифицированы в рабочем блоке 54 (фиг.8) и, таким образом, они не соответствуют исходным видеоданным, представляющим синий цвет и распознанными датчиком 18 изображения. Наоборот, средняя величина, характеризующая зеленый цвет, была вычтена из каждой из этих величин. Таким образом, результирующие данные DBm-2,n-2, представляющие синий цвет, также представляют собой данные, представляющие синий цвет, из которых были удалены данные, представляющие зеленый цвет. Таким образом, в одном варианте реализации прошедшие демозаик видеоданные, представляющие зеленый цвет, для элемента DGm-2,n-2 могут быть прибавлены к величине DBm-2,n-2, характеризующей синий цвет, в результате чего будет получена восстановленная величина видеоданных, представляющих синий цвет.
[0095] Некоторые варианты реализации позволяют дополнительно восстановить видеоданные, представляющие синий и/или красный цвет, перед демозаиком. Например, преобразованные видеоданные B′m-1,n-1, представляющие синий цвет, могут сначала быть восстановлены путем добавления средней величины окружающих зеленых элементов. В результате этого будет получены или пересчитаны исходные видеоданные Bm-1,n-1, представляющие синий цвет. Этот процесс может быть осуществлен надо всеми видеоданными, представляющими синий цвет. Потом видеоданные, представляющие синий цвет, могут быть дополнительно подвергнуты демозаику с помощью любого известного способа демозаика. Видеоданные, представляющие красный цвет, могут также быть обработаны с помощью таких же или других аналогичных способов.
[0096] На фиг.12А представлена модификация функциональной схемы 60, обозначенная 60′. Некоторые из вышеописанных этапов из функциональной схемы 60 могут быть схожими или совпадать с некоторыми соответствующими этапами функциональной схемы 60' и, таким образом, обозначены так же.
[0097] Как показано на фиг.12А, функциональная схема 60′ может включать рабочий блок 68′, следующий за рабочим блоком 62. В рабочем блоке 68′ над видеоданными может быть проделана операция по снижению уровня шума. Например, но не в качестве ограничения, операции по снижению уровня шума могут быть проделаны над видеоданными, представляющими зеленый цвет. Однако, любые другие способы обработки изображений, например, способы подавления помех, могут также быть применены к видеоданным, представляющим зеленый цвет. После рабочего блока 68′ функциональная схема может продолжиться рабочим блоком 70′.
[0098] В блоке 70′ видеоданные могут быть подвергнуты демозаику. В приведенном выше описании, в том месте, где говорится о рабочих блоках 66 и 70, видеоданные, представляющие зеленый, красный и синий цвета, могут быть подвергнуты демозаику в два этапа. Однако в настоящей функциональной схеме 60′ демозаик видеоданных, представляющих все три цвета, представлен в виде одного этапа, хотя одни и те же способы демозаика, описанные выше, могут быть использованы для этого процесса демозаика. После рабочего блока 70′ функциональная схема может продолжиться рабочим блоком 72, в котором может быть восстановлены видеоданные, представляющие красный и синий цвета, и рабочим блоком 64, в котором может быть применена таблица обратных преобразований.
[0099] После того как видеоданные были распакованы и обработаны в соответствии или с функциональной схемой 70 или 70′, или с другим подходящим процессом, видеоданные могут далее быть обработаны в качестве прошедших демозаик видеоданных.
[0100] Некоторые другие преимущества могут быть достигнуты путем демозаика видеоданных, представляющих зеленый цвет, перед восстановлением видеоданных, представляющих красный и синий цвета. Например, как было отмечено выше, человеческий глаз более чувствителен к зеленому свету. Демозаик и обработка видеоданных, представляющих зеленый цвет, оптимизируют величины, характеризующие зеленое изображение, по отношению к которым человеческий глаз является более чувствительным. Таким образом, на последующее восстановление видеоданных, представляющих красный и синий цвета, повлияет обработка видеоданных, представляющих зеленый цвет.
[0101] Кроме того, шаблоны Байера имеют в два раза больше зеленых элементов, чем красных и синих. Таким образом, в тех вариантах реализации, где сохраняются все зеленые элементы, имеется в два раза больше видеоданных для зеленых элементов по сравнению или с красными или синими элементами данных. Таким образом, способы демозаика, фильтры и другие способы обработки изображений позволяют получить в результате изображение с лучшим демозаиком, большей резкостью или другими улучшенными характеристиками в результате любой другой обработки. Использование этих прошедших демозаик величин для восстановления и демозаика видеоданных, представляющих красный и синий цвета, позволяет использовать преимущества, связанные с более высоким разрешением исходных видеоданных, представляющих зеленый цвет, в обработке, восстановлении и демозаике красных и синих элементов. Соответственно, результирующее изображение дополнительно улучшено.

Claims (22)

1. Видеокамера, содержащая портативный корпус, установленный в нем объектив, выполненный с возможностью фокусирования света, светочувствительное устройство, выполненное с возможностью преобразования сфокусированного света в исходные видеоданные с разрешением по меньшей мере примерно 2000 пикселов по ширине и с частотой кадров по меньшей мере примерно 23 кадра в секунду, запоминающее устройство, установленное в корпусе, и систему обработки изображений, выполненную с возможностью внесения предыскажений в исходные видеоданные и их сжатия, так что подвергнутые внесению предыскажений сжатые исходные видеоданные остаются, по существу, визуально без потерь после распаковки, и с возможностью хранения подвергнутых внесению предыскажений, сжатых исходных видеоданных в запоминающем устройстве с частотой кадров по меньшей мере примерно 23 кадра в секунду.
2. Видеокамера по п.1, отличающаяся тем, что видеоданные представляют первые, вторые и третьи цвета, а система обработки изображений дополнительно содержит модуль обработки изображений, выполненный с возможностью модифицирования видеоданных, представляющих по меньшей мере один цвет: первый цвет или второй цвет, причем первый и второй цвета основаны на среднем значении величин выбранных видеоданных третьего цвета.
3. Видеокамера по п.2, в которой модуль обработки изображений выполнен с возможностью расчета среднего значения величин видеоданных третьего цвета, полученных по меньшей мере от двух чувствительных элементов, расположенных рядом с чувствительным элементом первого цвета, и вычитания указанного среднего значения из величины видеоданных, полученной от чувствительного элемента первого цвета.
4. Видеокамера по п.3, отличающаяся тем, что среднее значение величин включает среднее значение величин видеоданных третьего цвета, полученных по меньшей мере от четырех чувствительных элементов, расположенных рядом с чувствительным элементом первого цвета.
5. Видеокамера, содержащая объектив, установленный в корпусе и выполненный с возможностью фокусирования света; светочувствительное устройство, выполненное с возможностью преобразования фокусированного света в сигнал исходных видеоданных, представляющий сфокусированный свет; запоминающее устройство, установленное в корпусе, средства внесения предыскажений в исходные видеоданные и средства сжатия и записи подвергнутых внесению предыскажений исходных видеоданных с частотой кадров по меньшей мере примерно 23 кадра в секунду, так что подвергнутые внесению предыскажений сжатые исходные видеоданные остаются, по существу, визуально без потерь после распаковки.
6. Видеокамера по любому из пп.1-4, в которой система обработки изображений вносит предыскажения в видеоданные согласно функции, содержащей кривую, заданную функцией y=(x+c)g, где 0,01<g<1 и с - это смещение.
7. Видеокамера по п.6, в которой система обработки изображений вносит предыскажения в видеоданные согласно функции, содержащей кривую, заданную функцией y=(х)0,5.
8. Видеокамера по п.6, в которой видеоданные представляют собой 12-битовые данные, а система обработки изображений вносит предыскажения в видеоданные согласно функции, содержащей кривую, заданную функцией y=(х/4095)0,5.
9. Видеокамера по любому из пп.1-4, в которой логарифмическая кривая представлена в форме y=A·log(B·x+C), где А, В и С являются постоянными величинами.
10. Видеокамера по любому из пп.1-4, в которой система обработки изображений вносит предыскажения в видеоданные согласно гамма-кривой.
11. Видеокамера по любому из пп.1-4, в которой внесение предыскажений в видеоданные обеспечивает увеличенные линейные области вблизи черного цвета.
12. Видеокамера по любому из пп.1-4, 10 и 11, в которой система обработки изображений вносит предыскажения в видеоданные согласно гамма - кривой Rec709.
13. Видеокамера по любому из пп.1-4, 6-12, в которой система обработки изображений вносит предыскажения в видеоданные, используя таблицу преобразования.
14. Видеокамера по любому из пп.1-4, 6-13, в которой видеоданные содержат видеоданные, представляющие первый цвет, которые соответствуют первому положению видеоданных, представляющих первый цвет, на светочувствительном устройстве, первую величину видеоданных, представляющих второй цвет, которая соответствует первому положению видеоданных, представляющих второй цвет, на светочувствительном устройстве, и вторую величину видеоданных, представляющих второй цвет, которая соответствует второму положению видеоданных, представляющих второй цвет, на светочувствительном устройстве, причем система обработки изображений дополнительно содержит модуль обработки изображений, выполненный с возможностью выполнения до сжатия модифицирования видеоданных, представляющих первый цвет, на основе вычисленной величины, характеризующей изображение, полученной из первой и второй величин видеоданных, представляющих второй цвет, и из первого и второго положений видеоданных, представляющих второй цвет, так что вычисленная величина, характеризующая изображение, является пространственно скоррелированной по отношению к первому положению видеоданных, представляющих первый цвет.
15. Видеокамера по п.14, в которой первое и второе положения видеоданных, представляющих второй цвет, расположены, по существу, на противоположных сторонах первого положения видеоданных, представляющих первый цвет, на светочувствительном устройстве.
16. Видеокамера по п.14 или 15, в которой модуль обработки изображений дополнительно выполнен с возможностью вычисления среднего значения первой и второй величин видеоданных, представляющих второй цвет, и вычитания вычисленного среднего значения от величины видеоданных, представляющих первый цвет, соответствующей первому положению видеоданных, представляющих первый цвет, на светочувствительном устройстве.
17. Видеокамера по любому из пп.2-4, 6-16, в которой система обработки изображений выполнена с возможностью внесения предыскажений в видеоданные перед модифицированием видеоданных.
18. Видеокамера по любому из пп.2-4, 6-16, в которой система обработки изображений выполнена с возможностью внесения предыскажений в видеоданные после модифицирования видеоданных.
19. Видеокамера по любому из пп.1-4, 6-18, в которой коэффициент сжатия выбран по меньшей мере 6:1.
20. Видеокамера по любому из пп.1-4, 6-19, в которой светочувствительное устройство содержит микросхему датчика изображения, причем система обработки изображений содержит модуль обработки изображений и чип сжатия, выполненный с возможностью выполнения сжатия видеоданных в видеокамере, при этом чип сжатия выполнен отдельно от микросхемы датчика изображения.
21. Видеокамера по любому из пп.1-4, 6-20, в которой система обработки изображений выполнена с возможностью применять метод сжатия согласно стандарту JPEG 2000.
22. Способ использования видеокамеры по любому из пп.1-4, 6-21, содержащий приведение в действие системы обработки изображений для выполнения внесения предыскажений, сжатия и сохранения видеоданных.
RU2009136949/08A 2007-04-11 2008-04-11 Видеокамера RU2473968C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US91119607P 2007-04-11 2007-04-11
US60/911,196 2007-04-11
US1740607P 2007-12-28 2007-12-28
US61/017,406 2007-12-28
PCT/US2008/060126 WO2008128112A1 (en) 2007-04-11 2008-04-11 Video camera

Publications (2)

Publication Number Publication Date
RU2009136949A RU2009136949A (ru) 2011-05-20
RU2473968C2 true RU2473968C2 (ru) 2013-01-27

Family

ID=39864353

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009136949/08A RU2473968C2 (ru) 2007-04-11 2008-04-11 Видеокамера

Country Status (15)

Country Link
US (8) US8174560B2 (ru)
EP (2) EP2145330B1 (ru)
JP (1) JP5231529B2 (ru)
KR (2) KR101478380B1 (ru)
CN (2) CN104702926B (ru)
AU (1) AU2008240144A1 (ru)
BR (1) BRPI0809662A2 (ru)
CA (2) CA2831698C (ru)
ES (1) ES2486295T3 (ru)
HK (1) HK1141893A1 (ru)
MX (1) MX2009010926A (ru)
RU (1) RU2473968C2 (ru)
SG (1) SG178805A1 (ru)
TW (1) TWI451755B (ru)
WO (1) WO2008128112A1 (ru)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2831698C (en) 2007-04-11 2015-11-03 Red.Com, Inc. Video camera
US8237830B2 (en) * 2007-04-11 2012-08-07 Red.Com, Inc. Video camera
US8525924B2 (en) * 2008-12-29 2013-09-03 Red.Com, Inc. Modular motion camera
US8525925B2 (en) 2008-12-29 2013-09-03 Red.Com, Inc. Modular digital camera
EP2513861B1 (en) 2009-12-16 2017-05-10 Red.Com, Inc. Resolution based formatting of compressed image data
TWI392345B (zh) * 2009-12-31 2013-04-01 Chicony Electronics Co Ltd 可攜式Wi-Fi數位攝影機以及具可攜式Wi-Fi數位攝影機之系統
DE102010010736A1 (de) 2010-03-09 2011-09-15 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Verfahren zur Kompression von Bilddaten
US20110221901A1 (en) * 2010-03-11 2011-09-15 Gm Global Technology Operations, Inc. Adaptive Scene Rendering and V2X Video/Image Sharing
US8644163B2 (en) 2010-03-25 2014-02-04 Chicony Electronics Co., Ltd. System with wireless network device and method for processing wireless network profile
US8595756B2 (en) 2011-07-15 2013-11-26 Voxlibertum S.A. System and method for selling or licensing image files
CN104365090A (zh) 2012-06-13 2015-02-18 富士胶片株式会社 图像处理***、发送侧装置及接收侧装置
JP2016508700A (ja) 2013-02-14 2016-03-22 レッド.コム,インコーポレイテッド ビデオカメラ
US9681028B2 (en) 2013-03-15 2017-06-13 Red.Com, Inc. Digital camera with wireless connectivity
CN104717474B (zh) * 2013-12-16 2017-07-25 瑞昱半导体股份有限公司 图像处理方法、模块及包含其的电子设备
ES2748454T3 (es) 2014-04-04 2020-03-16 Red Com Llc Módulo de difusión para cámara digital
JP6258842B2 (ja) * 2014-12-10 2018-01-10 株式会社Soken 画像処理装置、及び車線境界線認識システム
EP3259848A4 (en) 2015-04-10 2018-10-24 Red.Com, Llc Video camera with rate control video compression
US10122928B2 (en) 2015-09-09 2018-11-06 Red.Com, Llc Motion video output for multiple displays
JP2017099616A (ja) * 2015-12-01 2017-06-08 ソニー株式会社 手術用制御装置、手術用制御方法、およびプログラム、並びに手術システム
US10116776B2 (en) 2015-12-14 2018-10-30 Red.Com, Llc Modular digital camera and cellular phone
US10223911B2 (en) 2016-10-31 2019-03-05 Echelon Corporation Video data and GIS mapping for traffic monitoring, event detection and change prediction
US10438071B2 (en) 2017-01-25 2019-10-08 Echelon Corporation Distributed system for mining, correlating, and analyzing locally obtained traffic data including video
WO2019010233A1 (en) 2017-07-05 2019-01-10 Red. Com, Llc PROCESSING VIDEO IMAGE DATA IN ELECTRONIC DEVICES
KR102370881B1 (ko) * 2017-07-21 2022-03-07 삼성전자주식회사 이미지 데이터의 속성에 기반하여 이미지를 압축할 수 있는 전자 장치 및 방법
US10375303B1 (en) 2017-07-24 2019-08-06 Samuel Raymond Kinney Ultra-high resolution cinema camera system
EP3442235B1 (en) * 2017-08-10 2022-03-16 Continental Automotive GmbH Device and method for raw image data compression
US11813655B2 (en) 2021-05-20 2023-11-14 Kuka Systems North America Llc Apparatus and methods for forming attachment pads

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030011747A1 (en) * 2000-07-12 2003-01-16 Reimar Lenz Digital, high-resolution motion-picture camera
US20030156188A1 (en) * 2002-01-28 2003-08-21 Abrams Thomas Algie Stereoscopic video
RU2248307C1 (ru) * 2004-05-17 2005-03-20 Общество с ограниченной ответственностью "Альтоника" Система наблюдения за наземной обстановкой
RU2005129603A (ru) * 2005-03-10 2007-04-10 Минору ИНАБА (JP) Цифровая стерео фотокамера/цифровая стерео видеокамера, трехмерный дисплей, трехмерный проектор, и принтер, и стерео визуализатор

Family Cites Families (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972010A (en) 1968-01-10 1976-07-27 Ray Milton Dolby Compressors, expanders and noise reduction systems
US4200889A (en) 1976-12-27 1980-04-29 Basf Aktiengesellschaft Complementary pre-emphasis and de-emphasis circuits for a video signal transfer channel
US4316213A (en) 1980-09-23 1982-02-16 Rca Corporation Video processor employing variable amplitude compression of the chrominance component
GB2087194B (en) 1980-11-07 1985-09-11 Victor Company Of Japan Video signal recording/reproducing apparatus controllable via camera
US4561012A (en) 1983-12-27 1985-12-24 Rca Corporation Pre-emphasis and de-emphasis filters for a composite NTSC format video signal
JPH0654239B2 (ja) 1986-02-20 1994-07-20 日野自動車工業株式会社 車両の横方向の運動量検出装置
US5040063A (en) 1988-04-04 1991-08-13 Zenith Electronics Corporation TV signal transmission systems and methods
US5043821A (en) 1988-08-31 1991-08-27 Canon Kabushiki Kaisha Image pickup device having a frame-size memory
EP0390421B1 (en) 1989-03-30 1994-07-06 Canon Kabushiki Kaisha Still video camera
US5016107A (en) 1989-05-09 1991-05-14 Eastman Kodak Company Electronic still camera utilizing image compression and digital storage
US5053861A (en) * 1989-07-24 1991-10-01 Eastman Kodak Company Compression method and apparatus for single-sensor color imaging systems
JP3035930B2 (ja) 1989-10-19 2000-04-24 ソニー株式会社 カラー固体撮像装置
JPH03273769A (ja) 1990-01-16 1991-12-04 Hitachi Ltd Vtr一体形カメラ
US5172227A (en) 1990-12-10 1992-12-15 Eastman Kodak Company Image compression with color interpolation for a single sensor image system
US5249053A (en) 1991-02-05 1993-09-28 Dycam Inc. Filmless digital camera with selective image compression
GB9111926D0 (en) 1991-06-04 1991-07-24 Nat Transcommunications Ltd An improved method of video noise reduction using non-linear pre/de-emphasis
US5255083A (en) 1991-06-05 1993-10-19 Sony Corporation Of America Digital color correction system and method
US5343243A (en) 1992-01-07 1994-08-30 Ricoh Company, Ltd. Digital video camera
JPH0654239A (ja) 1992-07-29 1994-02-25 Canon Inc 電子カメラ
US5442718A (en) 1992-09-07 1995-08-15 Sony Corporation Apparatus and method for storing and reproducing digital image data yielding high resolution and high quality video image data
JPH06121275A (ja) 1992-10-06 1994-04-28 Nikon Corp スチルカメラ
US5991515A (en) 1992-11-10 1999-11-23 Adobe Systems Incorporated Method and apparatus for compressing and decompressing data prior to display
JPH0754929Y2 (ja) 1992-12-28 1995-12-18 第一電装部品株式会社 接続具の取付構成体
US5563661A (en) 1993-04-05 1996-10-08 Canon Kabushiki Kaisha Image processing apparatus
US5450140A (en) 1993-04-21 1995-09-12 Washino; Kinya Personal-computer-based video production system
EP0997039A4 (en) 1993-04-21 2000-05-03 Kinya Washino MULTIFORMAT AUDIO VIDEO PRODUCTION SYSTEM WITH IMAGE FREQUENCY CONVERSION
US5488433A (en) 1993-04-21 1996-01-30 Kinya Washino Dual compression format digital video production system
JP3320859B2 (ja) 1993-09-24 2002-09-03 旭光学工業株式会社 Ccdディジタルカメラ
US5412427A (en) 1993-10-29 1995-05-02 Eastman Kodak Company Electronic camera utilizing image compression feedback for improved color processing
US5563655A (en) 1994-02-28 1996-10-08 Eastman Kodak Company Intelligent digital image storage for an electronic camera
KR950030599A (ko) 1994-04-14 1995-11-24 이헌조 캠코더의 액정 뷰파인더 장치
US6757438B2 (en) 2000-02-28 2004-06-29 Next Software, Inc. Method and apparatus for video compression using microwavelets
US6549666B1 (en) 1994-09-21 2003-04-15 Ricoh Company, Ltd Reversible embedded wavelet system implementation
US5592237A (en) 1994-11-04 1997-01-07 Infimed, Inc. High resolution image processor with multiple bus architecture
JP3591922B2 (ja) 1995-07-17 2004-11-24 キヤノン株式会社 光量測定装置
AU6899896A (en) 1995-08-21 1997-03-27 Starcam Systems, Inc. High-speed high-resolution multi-frame real-time digital camera
WO1998010590A1 (fr) 1996-09-02 1998-03-12 Sony Corporation Dispositif et procede de transmission d'un signal video
US5875122A (en) 1996-12-17 1999-02-23 Intel Corporation Integrated systolic architecture for decomposition and reconstruction of signals using wavelet transforms
US5999220A (en) 1997-04-07 1999-12-07 Washino; Kinya Multi-format audio/video production system with frame-rate conversion
US6314206B1 (en) 1997-04-07 2001-11-06 Asahi Kogaku Kogyo Kabushiki Kaisha Compression ratio setting device
US6058215A (en) 1997-04-30 2000-05-02 Ricoh Company, Ltd. Reversible DCT for lossless-lossy compression
JPH10336647A (ja) 1997-06-04 1998-12-18 Nikon Corp 画像圧縮装置および画像圧縮処理プログラムを記録したコンピュータ読み取り可能な記録媒体
US6009201A (en) 1997-06-30 1999-12-28 Intel Corporation Efficient table-lookup based visually-lossless image compression scheme
AR016812A1 (es) 1997-08-14 2001-08-01 Samsung Electronics Co Ltd Metodo para transmitir informacion de video comprimida, disposiciones de compresion y de grabacion de video y aparato de reproduccion de video
US6351282B1 (en) * 1997-09-02 2002-02-26 Intel Corporation Method and apparatus for taking digital pictures with an industry standard film camera
WO1999013429A1 (en) 1997-09-11 1999-03-18 Intel Corporation A method for directly compressing a color image and tailoring the compression based on the color filter array, optics, and sensor characteristics
US6295379B1 (en) 1997-09-29 2001-09-25 Intel Corporation DPCM image compression with plural quantization table levels
US6184936B1 (en) 1997-10-06 2001-02-06 Sigma Designs, Inc. Multi-function USB capture chip using bufferless data compression
US6130960A (en) 1997-11-03 2000-10-10 Intel Corporation Block-matching algorithm for color interpolation
US6091851A (en) 1997-11-03 2000-07-18 Intel Corporation Efficient algorithm for color recovery from 8-bit to 24-bit color pixels
US6169317B1 (en) 1998-02-13 2001-01-02 Canon Kabushiki Kaisha Photoelectric conversion device and image sensor
US6285794B1 (en) 1998-04-17 2001-09-04 Adobe Systems Incorporated Compression and editing of movies by multi-image morphing
US6154493A (en) 1998-05-21 2000-11-28 Intel Corporation Compression of color images based on a 2-dimensional discrete wavelet transform yielding a perceptually lossless image
US6269217B1 (en) 1998-05-21 2001-07-31 Eastman Kodak Company Multi-stage electronic motion image capture and processing system
US20030038885A1 (en) 1998-05-21 2003-02-27 Nestor M. Rodriguez Wide gamut motion image capture process for post production applications
JP4182566B2 (ja) * 1998-08-24 2008-11-19 株式会社ニコン デジタルカメラおよびコンピュータ読み取り可能な記録媒体
US7253836B1 (en) 1998-06-30 2007-08-07 Nikon Corporation Digital camera, storage medium for image signal processing, carrier wave and electronic camera
US6124811A (en) 1998-07-02 2000-09-26 Intel Corporation Real time algorithms and architectures for coding images compressed by DWT-based techniques
US8290034B2 (en) 1998-12-21 2012-10-16 Zin Stai Pte. In, Llc Video transmission and display including bit-wise sub-sampling video compression
US6192086B1 (en) 1999-01-14 2001-02-20 Antec Corporation Digital sub-systems and building blocks for a mostly digital low-cost BTSC compatible encoder
JP2000244936A (ja) * 1999-02-10 2000-09-08 Texas Instr Inc <Ti> ディジタルスチルカメラの動作方法
US6878977B1 (en) 1999-02-25 2005-04-12 Canon Kabushiki Kaisha Photoelectric conversion device, and image sensor and image input system making use of the same
US6778709B1 (en) 1999-03-12 2004-08-17 Hewlett-Packard Development Company, L.P. Embedded block coding with optimized truncation
JP2000285229A (ja) 1999-03-15 2000-10-13 Texas Instr Inc <Ti> ディジタルイメージャのための不良画素フィルタリング
JP3822380B2 (ja) 1999-03-26 2006-09-20 富士写真フイルム株式会社 画像信号処理装置
FR2792432B1 (fr) 1999-04-15 2001-07-13 Canon Kk Dispositif et procede de transformation de signal numerique
US6741368B1 (en) 1999-05-25 2004-05-25 Adobe Systems, Incorporated Method and apparatus for reducing storage requirements for display data
JP3976945B2 (ja) 1999-06-04 2007-09-19 キヤノン株式会社 ホワイトバランス装置及びホワイトバランスの補正方法及び記憶媒体
US7369161B2 (en) 1999-06-08 2008-05-06 Lightsurf Technologies, Inc. Digital camera device providing improved methodology for rapidly taking successive pictures
US8212893B2 (en) 1999-06-08 2012-07-03 Verisign, Inc. Digital camera device and methodology for distributed processing and wireless transmission of digital images
US7372485B1 (en) 1999-06-08 2008-05-13 Lightsurf Technologies, Inc. Digital camera device and methodology for distributed processing and wireless transmission of digital images
US6995794B2 (en) 1999-06-30 2006-02-07 Logitech Europe S.A. Video camera with major functions implemented in host software
US6262763B1 (en) 1999-07-01 2001-07-17 Sony Corporation Actual size image display
US6198505B1 (en) 1999-07-19 2001-03-06 Lockheed Martin Corp. High resolution, high speed digital camera
KR100652100B1 (ko) 1999-08-05 2006-12-01 산요덴키가부시키가이샤 화상 보간 방법
JP4304795B2 (ja) 1999-09-28 2009-07-29 株式会社ニコン 電子カメラ
US6798901B1 (en) 1999-10-01 2004-09-28 Intel Corporation Method of compressing a color image
US6933970B2 (en) 1999-12-20 2005-08-23 Texas Instruments Incorporated Digital still camera system and method
US20020041707A1 (en) 2000-04-07 2002-04-11 Newman David A. Real-time color correction of digitally recorded video
US7218348B2 (en) 2000-06-02 2007-05-15 Fujifilm Corporation Solid-state electronic imaging device and method of controlling opertion thereof
US6983074B1 (en) 2000-06-14 2006-01-03 Adobe Systems Incorporated Data compression system and technique
JP4560180B2 (ja) 2000-06-28 2010-10-13 キヤノン株式会社 撮像装置
JP2002051266A (ja) 2000-08-02 2002-02-15 Sony Corp 撮像素子の画素欠陥自動検出補正装置及びこれを用いた撮像装置
JP4055927B2 (ja) 2000-08-25 2008-03-05 シャープ株式会社 画像処理装置およびデジタルカメラ
US6995793B1 (en) 2000-11-14 2006-02-07 Eastman Kodak Company Video tap for a digital motion camera that simulates the look of post processing
JP3727012B2 (ja) * 2000-11-28 2005-12-14 シャープ株式会社 カラー固体撮像装置
JP4407055B2 (ja) 2001-01-19 2010-02-03 株式会社ニコン 電子カメラ
US7092016B2 (en) 2001-02-09 2006-08-15 Eastman Kodak Company Method and system for motion image digital processing
US20020167602A1 (en) 2001-03-20 2002-11-14 Truong-Thao Nguyen System and method for asymmetrically demosaicing raw data images using color discontinuity equalization
US7039643B2 (en) 2001-04-10 2006-05-02 Adobe Systems Incorporated System, method and apparatus for converting and integrating media files
US7155066B2 (en) 2001-05-31 2006-12-26 Agilent Technologies, Inc. System and method for demosaicing raw data images with compression considerations
US6985180B2 (en) 2001-06-19 2006-01-10 Ess Technology, Inc. Intelligent blemish control algorithm and apparatus
US20030007567A1 (en) 2001-06-26 2003-01-09 Newman David A. Method and apparatus for real-time editing of plural content streams
FR2826823B1 (fr) 2001-06-27 2003-10-10 Canon Kk Procede et dispositif de traitement d'un signal numerique code
US20030112863A1 (en) 2001-07-12 2003-06-19 Demos Gary A. Method and system for improving compressed image chroma information
JP2003037847A (ja) 2001-07-26 2003-02-07 Matsushita Electric Ind Co Ltd 画像処理システム及び撮像装置並びに画像処理装置
US6937276B2 (en) 2001-08-22 2005-08-30 Benq Corporation Digital camera with low memory usage
US20040201701A1 (en) 2001-09-06 2004-10-14 Shuichi Takagi Camera with wireless virtual storage
JP4636755B2 (ja) 2001-09-21 2011-02-23 キヤノン株式会社 撮像装置、画像処理方法、記録媒体およびプログラム
JP4267848B2 (ja) 2001-09-25 2009-05-27 株式会社リコー 画像符号化装置、画像復号装置、画像符号化方法、及び、画像復号方法
EP1308888A1 (en) 2001-11-06 2003-05-07 STMicroelectronics S.r.l. A method of processing digital images
US20030122037A1 (en) 2001-12-06 2003-07-03 Hyde Robert William Aircraft deicing system
JP3922919B2 (ja) 2001-12-11 2007-05-30 株式会社リコー 静止画像伸長装置及び静止画像伸長方法
US6956976B2 (en) 2002-01-04 2005-10-18 Warner Bros. Enterianment Inc. Reduction of differential resolution of separations
US7006699B2 (en) 2002-03-27 2006-02-28 Microsoft Corporation System and method for progressively transforming and coding digital data
US20030185302A1 (en) * 2002-04-02 2003-10-02 Abrams Thomas Algie Camera and/or camera converter
US6867717B1 (en) 2002-04-04 2005-03-15 Dalsa, Inc. Digital encoder and method of encoding high dynamic range video images
DE10218313B4 (de) * 2002-04-24 2018-02-15 Arnold & Richter Cine Technik Gmbh & Co. Betriebs Kg Digitale Laufbildkamera
JP3788393B2 (ja) * 2002-06-10 2006-06-21 ソニー株式会社 デジタルスチルカメラ装置、ビデオカメラ装置及び情報端末装置
JP2004038693A (ja) * 2002-07-04 2004-02-05 Canon Inc データ変換方法および画像処理装置
US7330596B2 (en) 2002-07-17 2008-02-12 Ricoh Company, Ltd. Image decoding technique for suppressing tile boundary distortion
JP3966461B2 (ja) 2002-08-09 2007-08-29 株式会社リコー 電子カメラ装置
US7015961B2 (en) 2002-08-16 2006-03-21 Ramakrishna Kakarala Digital image system and method for combining demosaicing and bad pixel correction
US7376183B2 (en) 2002-09-09 2008-05-20 Warner Bros. Entertainment, Inc. Post-production processing
CN1231045C (zh) 2002-09-11 2005-12-07 佳能株式会社 摄影装置和摄影装置中的数据处理方法
US20040051793A1 (en) 2002-09-18 2004-03-18 Tecu Kirk S. Imaging device
US7477781B1 (en) 2002-10-10 2009-01-13 Dalsa Corporation Method and apparatus for adaptive pixel correction of multi-color matrix
US7116716B2 (en) 2002-11-01 2006-10-03 Microsoft Corporation Systems and methods for generating a motion attention model
US7116833B2 (en) 2002-12-23 2006-10-03 Eastman Kodak Company Method of transmitting selected regions of interest of digital video data at selected resolutions
JP3747909B2 (ja) 2002-12-24 2006-02-22 ソニー株式会社 画素欠陥検出補正装置及び画素欠陥検出補正方法
JP2004221836A (ja) 2003-01-14 2004-08-05 Ricoh Co Ltd 画像処理装置、プログラム、記憶媒体及び符号伸長方法
JP3970185B2 (ja) 2003-01-14 2007-09-05 富士フイルム株式会社 固体撮像素子及びデジタルカメラ
US20040196389A1 (en) 2003-02-04 2004-10-07 Yoshiaki Honda Image pickup apparatus and method thereof
JP2004248061A (ja) 2003-02-14 2004-09-02 Fuji Photo Film Co Ltd 画像処理装置、方法及びプログラム
JP2004248152A (ja) 2003-02-17 2004-09-02 Ricoh Co Ltd 画像圧縮装置、画像伸張装置、画像圧縮方法、画像伸張方法、プログラム、及び記録媒体
US7257278B2 (en) * 2003-02-26 2007-08-14 Hewlett-Packard Development Company, L.P. Image sensor for capturing and filtering image data
JP2006514501A (ja) 2003-04-17 2006-04-27 ノキア コーポレイション 改善されたカメラ付き移動電話機
US6944333B2 (en) * 2003-04-30 2005-09-13 Ventana Medical Systems, Inc. Color image compression via spectral decorrelation and elimination of spatial redundancy
KR20040099874A (ko) 2003-05-20 2004-12-02 삼성전자주식회사 복합촬영장치 및 방법
JP2004349842A (ja) * 2003-05-20 2004-12-09 Fuji Photo Film Co Ltd 合成画像の補正方法及びプログラム
KR20040104237A (ko) 2003-06-03 2004-12-10 삼성전자주식회사 압축방식을 자동으로 설정하는 촬영장치 및 방법
US7312821B2 (en) 2003-06-03 2007-12-25 Hewlett-Packard Development Company, L.P. Time-sliced still image generation
JP4610930B2 (ja) 2003-06-05 2011-01-12 オリンパス株式会社 画像処理装置、画像処理プログラム
JPWO2005002206A1 (ja) 2003-06-25 2006-08-10 ノキア コーポレイション 画像データの圧縮パラメータの値を制御するデジタル撮影装置、及び画像データの圧縮パラメータ値決定方法
JP2005210216A (ja) * 2004-01-20 2005-08-04 Konica Minolta Photo Imaging Inc 撮像装置および動画のノイズ処理方法
US7504968B2 (en) 2004-02-13 2009-03-17 Hewlett-Packard Development Company, L.P. Media data decoding device
US6989773B2 (en) 2004-02-13 2006-01-24 Hewlett-Packard Development Company, L.P. Media data encoding device
US8832434B2 (en) 2004-02-13 2014-09-09 Hewlett-Packard Development Company, L.P. Methods for generating data for describing scalable media
EP1729523B1 (en) 2004-02-19 2014-04-09 Mitsubishi Denki Kabushiki Kaisha Image processing method
KR20050090821A (ko) 2004-03-10 2005-09-14 삼성전자주식회사 영상촬영장치의 하우징 커버
JP4451181B2 (ja) 2004-03-26 2010-04-14 オリンパス株式会社 画像圧縮方法及び画像圧縮装置
JP2004282780A (ja) * 2004-05-10 2004-10-07 Canon Inc 撮像装置
US7656561B2 (en) 2004-05-31 2010-02-02 Phase One A/S Image compression for rapid high-quality imaging
EP1605403A1 (en) 2004-06-08 2005-12-14 STMicroelectronics S.r.l. Filtering of noisy images
JP2005354278A (ja) 2004-06-09 2005-12-22 Seiko Epson Corp 撮像手段の撮像した画像の画像データを処理する画像データ処理
US7546665B2 (en) * 2004-07-30 2009-06-16 Doyle's Deer Gear Cinch for tether
JP4850400B2 (ja) 2004-09-17 2012-01-11 キヤノン株式会社 撮像装置
US20060061822A1 (en) * 2004-09-22 2006-03-23 Sung Chih-Ta S Method and device for temporarily storing image data
JP4407454B2 (ja) 2004-09-30 2010-02-03 セイコーエプソン株式会社 ディジタルカメラ及び画像処理方法
US8477173B2 (en) 2004-10-15 2013-07-02 Lifesize Communications, Inc. High definition videoconferencing system
US7480417B2 (en) 2004-10-19 2009-01-20 Microsoft Corp. System and method for encoding mosaiced image data employing a reversible color transform
JP4118272B2 (ja) * 2004-12-17 2008-07-16 三洋電機株式会社 画像処理装置
US8072643B2 (en) 2004-12-17 2011-12-06 Sanyo Electric Co., Ltd. Image processing apparatus
US7936919B2 (en) 2005-01-18 2011-05-03 Fujifilm Corporation Correction of color balance of face images depending upon whether image is color or monochrome
US7777790B2 (en) 2005-01-27 2010-08-17 Technion Research & Development Foundation Ltd. Acquisition of image sequences with enhanced resolution
US20060170786A1 (en) 2005-01-31 2006-08-03 Nara Won Digital camera and method
US7110605B2 (en) * 2005-02-04 2006-09-19 Dts Az Research, Llc Digital intermediate (DI) processing and distribution with scalable compression in the post-production of motion pictures
JP4805596B2 (ja) 2005-03-31 2011-11-02 株式会社東芝 カメラ装置
US7956871B2 (en) 2005-04-28 2011-06-07 Samsung Electronics Co., Ltd. Color disparity correction in image sensors methods and circuits
JP2006311314A (ja) 2005-04-28 2006-11-09 Matsushita Electric Ind Co Ltd 色分離処理方法および色分離処理回路
US7577689B1 (en) 2005-06-15 2009-08-18 Adobe Systems Incorporated Method and system to archive data
TWI283833B (en) 2005-07-07 2007-07-11 Sunplus Technology Co Ltd Color image dead pixel calibration method and its system
JP4769039B2 (ja) 2005-07-26 2011-09-07 パナソニック株式会社 デジタル信号符号化および復号化装置ならびにその方法
TWI272016B (en) 2005-08-09 2007-01-21 Sunplus Technology Co Ltd Method and system for eliminating color noises generated from interpolation
US7511323B2 (en) 2005-08-11 2009-03-31 Aptina Imaging Corporation Pixel cells in a honeycomb arrangement
JP4721415B2 (ja) 2005-08-17 2011-07-13 キヤノン株式会社 撮像装置、情報処理装置、情報処理システム及び画像処理方法並びに制御プログラム及びコンピュータ読み取り可能な記憶媒体
GB2429593A (en) 2005-08-26 2007-02-28 Electrosonic Ltd Data compressing using a wavelet compression scheme
JP4682102B2 (ja) 2005-09-02 2011-05-11 キヤノン株式会社 画像符号化装置及び画像符号化方法
JP4716949B2 (ja) 2005-09-02 2011-07-06 株式会社リコー 画像処理装置および画像処理方法
JP4616135B2 (ja) 2005-09-21 2011-01-19 オリンパス株式会社 撮像装置および画像記録装置
JP4688165B2 (ja) 2005-09-30 2011-05-25 株式会社リコー 画像処理装置及び画像処理方法
JP4940639B2 (ja) 2005-09-30 2012-05-30 セイコーエプソン株式会社 画像処理装置、画像処理方法及び画像処理プログラム
US20070092149A1 (en) 2005-10-24 2007-04-26 Sung Chih-Ta S Method and apparatus of high quality video compression
US8571346B2 (en) 2005-10-26 2013-10-29 Nvidia Corporation Methods and devices for defective pixel detection
JP4840967B2 (ja) 2005-12-01 2011-12-21 キヤノン株式会社 撮像装置及び画像処理方法及びプログラム及び記憶媒体
US20070133902A1 (en) 2005-12-13 2007-06-14 Portalplayer, Inc. Method and circuit for integrated de-mosaicing and downscaling preferably with edge adaptive interpolation and color correlation to reduce aliasing artifacts
US20070153093A1 (en) 2005-12-30 2007-07-05 Mediatek Incorporation Apparatus and method for image capturing with an image scaling unit to scale a portion of an image
US8005297B2 (en) 2006-01-18 2011-08-23 Qualcomm Incorporated Method and apparatus for adaptive and self-calibrated sensor green channel gain balancing
US7365658B2 (en) 2006-02-28 2008-04-29 The Board Of Trustees Of The University Of Arkansas Method and apparatus for lossless run-length data encoding
US7796836B2 (en) 2006-03-03 2010-09-14 General Atomics Color condensation for image transformation and/or compression
US20070216782A1 (en) 2006-03-20 2007-09-20 Donald Lee Chernoff Method of processing and storing files in a digital camera
US8014597B1 (en) 2006-03-22 2011-09-06 Woodman Labs Method for efficient compression and decoding of single sensor color image data
JP2007267072A (ja) 2006-03-29 2007-10-11 Sanyo Electric Co Ltd 電子カメラ
US7868879B2 (en) * 2006-05-12 2011-01-11 Doremi Labs, Inc. Method and apparatus for serving audiovisual content
US7937919B2 (en) 2006-06-09 2011-05-10 Deere & Company Flexible cutting platform with passive float arm stop in an agricultural harvesting machine
JP4089737B2 (ja) 2006-06-13 2008-05-28 株式会社日立製作所 ビデオカメラ
US7893966B2 (en) 2006-06-30 2011-02-22 Canon Kabushiki Kaisha Apparatus and method for controlling editing and use of image processing parameters in image processing
JP4264839B2 (ja) * 2006-07-12 2009-05-20 ソニー株式会社 撮像装置
US20080012953A1 (en) * 2006-07-13 2008-01-17 Vimicro Corporation Image Sensors
JP2008028534A (ja) 2006-07-19 2008-02-07 Pentax Corp デジタルカメラ
US8687087B2 (en) 2006-08-29 2014-04-01 Csr Technology Inc. Digital camera with selectively increased dynamic range by control of parameters during image acquisition
TWI324011B (en) 2006-09-12 2010-04-21 Nuvoton Technology Corp Method for compensating pixel of image
ATE495580T1 (de) * 2006-09-28 2011-01-15 Abb Technology Ag Verfahren zum bestimmen einer einschaltschwelle und elektronische schaltungsanordnung zur durchführung des verfahrens
JP4265642B2 (ja) 2006-10-16 2009-05-20 ソニー株式会社 情報処理装置および方法、記録媒体、並びにプログラム
JP4680166B2 (ja) 2006-10-30 2011-05-11 ソニー株式会社 撮像装置および撮像方法
JP4859632B2 (ja) 2006-11-15 2012-01-25 富士通セミコンダクター株式会社 画像処理装置及び画像処理方法
US7907791B2 (en) 2006-11-27 2011-03-15 Tessera International, Inc. Processing of mosaic images
JP4284628B2 (ja) 2006-12-15 2009-06-24 ソニー株式会社 撮像装置、画像処理装置、画像処理方法、画像処理方法のプログラム及び画像処理方法のプログラムを記録した記録媒体
US8237830B2 (en) 2007-04-11 2012-08-07 Red.Com, Inc. Video camera
CA2831698C (en) 2007-04-11 2015-11-03 Red.Com, Inc. Video camera
EP2153641B2 (en) 2007-04-13 2021-10-27 Ari M. Presler Digital cinema camera system for recording, editing and visualizing images
US7876363B2 (en) 2007-04-19 2011-01-25 Aptina Imaging Corporation Methods, systems and apparatuses for high-quality green imbalance compensation in images
JP4869149B2 (ja) 2007-05-16 2012-02-08 オリンパスイメージング株式会社 画像データ圧縮装置、画像データ圧縮方法およびプログラム
US9979931B2 (en) 2007-05-30 2018-05-22 Adobe Systems Incorporated Transmitting a digital media stream that is already being transmitted to a first device to a second device and inhibiting presenting transmission of frames included within a sequence of frames until after an initial frame and frames between the initial frame and a requested subsequent frame have been received by the second device
KR100835894B1 (ko) 2007-06-18 2008-06-09 (주)실리콘화일 다이내믹 레인지가 넓고, 색재현성과 해상능력이 우수한픽셀어레이 및 이미지센서
US8588583B2 (en) 2007-08-22 2013-11-19 Adobe Systems Incorporated Systems and methods for interactive video frame selection
JP2009065478A (ja) 2007-09-06 2009-03-26 Fujifilm Corp 固体撮像素子の駆動方法及び撮像装置
US8126280B2 (en) 2007-09-21 2012-02-28 Adobe Systems Incorporated Enhanced decompression of compressed data
KR101324198B1 (ko) 2007-10-05 2013-11-06 삼성전자주식회사 고체 촬상 장치, 고체 촬상 장치의 픽셀 배열 방법 및 고체촬상 장치의 신호 처리 방법
JP4747154B2 (ja) 2007-11-22 2011-08-17 富士フイルム株式会社 固体撮像素子の駆動方法、固体撮像素子、及び撮像装置
JP5149283B2 (ja) 2007-11-27 2013-02-20 パナソニック株式会社 動画像再生装置、デジタルカメラ、半導体集積回路および動画像再生方法
US8149319B2 (en) 2007-12-03 2012-04-03 Ricoh Co., Ltd. End-to-end design of electro-optic imaging systems for color-correlated objects
JP5208218B2 (ja) 2008-09-25 2013-06-12 パナソニック株式会社 画像符号化装置、デジタルスチルカメラ、デジタルビデオカメラ、撮像素子、および画像符号化方法
JP5029624B2 (ja) 2009-01-15 2012-09-19 ソニー株式会社 固体撮像装置及び電子機器
JP5267867B2 (ja) 2009-03-06 2013-08-21 ルネサスエレクトロニクス株式会社 撮像装置
US7902512B1 (en) 2009-12-04 2011-03-08 Carestream Health, Inc. Coplanar high fill factor pixel architecture
JP5640371B2 (ja) 2009-12-18 2014-12-17 ソニー株式会社 カメラシステム及び画像処理方法
KR101641543B1 (ko) 2010-02-05 2016-07-21 삼성전자주식회사 영상잡음 제거장치 및 그 방법
JP5740465B2 (ja) 2011-02-28 2015-06-24 富士フイルム株式会社 撮像装置及び欠陥画素補正方法
JP2012249134A (ja) 2011-05-30 2012-12-13 Sony Corp 固体撮像素子およびその駆動方法、カメラシステム
FR2979485B1 (fr) 2011-08-26 2016-09-09 E2V Semiconductors Capteur d'image a regroupement de pixels
BR112014004533A2 (pt) 2011-09-29 2017-03-28 Fujifilm Corp dispositivo de processamento de imagem e método, e dispositivo de imagem
US9386318B2 (en) 2012-12-12 2016-07-05 Apple Inc. Lossless image compression using differential transfer
JP2016508700A (ja) 2013-02-14 2016-03-22 レッド.コム,インコーポレイテッド ビデオカメラ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030011747A1 (en) * 2000-07-12 2003-01-16 Reimar Lenz Digital, high-resolution motion-picture camera
US20030156188A1 (en) * 2002-01-28 2003-08-21 Abrams Thomas Algie Stereoscopic video
RU2248307C1 (ru) * 2004-05-17 2005-03-20 Общество с ограниченной ответственностью "Альтоника" Система наблюдения за наземной обстановкой
RU2005129603A (ru) * 2005-03-10 2007-04-10 Минору ИНАБА (JP) Цифровая стерео фотокамера/цифровая стерео видеокамера, трехмерный дисплей, трехмерный проектор, и принтер, и стерео визуализатор

Also Published As

Publication number Publication date
CA2683636A1 (en) 2008-10-23
EP2793219A1 (en) 2014-10-22
CN104702926B (zh) 2017-05-17
US8174560B2 (en) 2012-05-08
TWI451755B (zh) 2014-09-01
US20170034400A1 (en) 2017-02-02
ES2486295T3 (es) 2014-08-18
RU2009136949A (ru) 2011-05-20
US20180124290A1 (en) 2018-05-03
EP2145330A1 (en) 2010-01-20
CA2683636C (en) 2014-01-28
CN101689357A (zh) 2010-03-31
US8358357B2 (en) 2013-01-22
US20120294582A1 (en) 2012-11-22
US8872933B2 (en) 2014-10-28
CA2831698C (en) 2015-11-03
EP2145330A4 (en) 2011-09-07
US9230299B2 (en) 2016-01-05
TW200913674A (en) 2009-03-16
KR101478380B1 (ko) 2015-01-06
KR20140109479A (ko) 2014-09-15
US9596385B2 (en) 2017-03-14
US20150002695A1 (en) 2015-01-01
US9245314B2 (en) 2016-01-26
MX2009010926A (es) 2009-12-01
CN101689357B (zh) 2015-03-04
US20150003801A1 (en) 2015-01-01
BRPI0809662A2 (pt) 2014-10-14
US20160316106A1 (en) 2016-10-27
SG178805A1 (en) 2012-03-29
CA2831698A1 (en) 2008-10-23
WO2008128112A1 (en) 2008-10-23
AU2008240144A1 (en) 2008-10-23
CN104702926A (zh) 2015-06-10
US20120301102A1 (en) 2012-11-29
KR20100016214A (ko) 2010-02-12
EP2145330B1 (en) 2014-07-16
US20080291319A1 (en) 2008-11-27
JP2010524408A (ja) 2010-07-15
HK1141893A1 (en) 2010-11-19
US9787878B2 (en) 2017-10-10
KR101503227B1 (ko) 2015-03-16
JP5231529B2 (ja) 2013-07-10

Similar Documents

Publication Publication Date Title
RU2473968C2 (ru) Видеокамера
US9436976B2 (en) Video camera
US10582168B2 (en) Green image data processing
AU2016213747B2 (en) Video camera
US20200005434A1 (en) Video capture devices and methods
AU2012216606B2 (en) Video camera

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20171214