RU2468935C1 - Газотурбинная установка для локомотива - Google Patents

Газотурбинная установка для локомотива Download PDF

Info

Publication number
RU2468935C1
RU2468935C1 RU2011127665/11A RU2011127665A RU2468935C1 RU 2468935 C1 RU2468935 C1 RU 2468935C1 RU 2011127665/11 A RU2011127665/11 A RU 2011127665/11A RU 2011127665 A RU2011127665 A RU 2011127665A RU 2468935 C1 RU2468935 C1 RU 2468935C1
Authority
RU
Russia
Prior art keywords
pressure
shaft
low
turbine
pressure compressor
Prior art date
Application number
RU2011127665/11A
Other languages
English (en)
Inventor
Валерий Семёнович Коссов
Владимир Фёдорович Руденко
Эдуард Иванович Нестеров
Игорь Валентинович Сазонов
Original Assignee
Открытое Акционерное Общество "Российские Железные Дороги"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Российские Железные Дороги" filed Critical Открытое Акционерное Общество "Российские Железные Дороги"
Priority to RU2011127665/11A priority Critical patent/RU2468935C1/ru
Priority to PCT/RU2012/000050 priority patent/WO2013006083A1/ru
Priority to CN201280021943.1A priority patent/CN103608567B/zh
Priority to EP12807474.7A priority patent/EP2730768B1/en
Priority to CA2834057A priority patent/CA2834057C/en
Application granted granted Critical
Publication of RU2468935C1 publication Critical patent/RU2468935C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/20Adaptations of gas-turbine plants for driving vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/90Electric propulsion with power supplied within the vehicle using propulsion power supplied by specific means not covered by groups B60L50/10 - B60L50/50, e.g. by direct conversion of thermal nuclear energy into electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/02Adaptations for driving vehicles, e.g. locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/107Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with two or more rotors connected by power transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Eletrric Generators (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к области железнодорожного транспорта, в частности к газотурбинным двигателям локомотива. Изобретение касается передачи мощности между различными валами газотурбинной установки и между газотурбинной установкой и тяговыми двигателями локомотива. В газотурбинной установке для локомотива, содержащей три вала давления, из которых вал высокого давления расположен над двумя валами низкого и среднего давления, на валу низкого давления установлен компрессор низкого давления с входным патрубком, соединенный валом с турбиной низкого давления и газовой связью через канал с турбиной среднего давления. На валу среднего давления установлена турбина среднего давления, соединенная валом с первым синхронным тяговым генератором и каналом с промежуточной камерой сгорания. На валу высокого давления установлен компрессор высокого давления, соединенный валом с турбиной высокого давления и каналом с основной камерой сгорания. Между компрессором высокого давления и турбиной высокого давления расположен регенеративный теплообменник, на котором установлен выхлопной патрубок и который соединен каналами с турбиной низкого давления и компрессором высокого давления, и в котором установлен теплообменник нагрева топлива, компрессор низкого давления снабжен поворотным входным направляющим аппаратом, приводимым от блока, на промежуточном холодильнике газотурбинной установки на холостом ходу и малых нагрузках только от вала высокого давления. Техническим результатом является снижение расхода топлива на холостом ходу и на малых нагрузках газотурбинной установки. 1 з.п. ф-лы, 4 ил.

Description

Изобретение относится к двигателям железнодорожного транспорта, в частности к газотурбинным двигателям локомотивов, работающих на сжиженном природном газе, газотурбинном топливе и тяжелых сортах нефтяного топлива, и касается передачи мощности между различными валами газотурбинной установки и между газотурбинной установкой и асинхронными тяговыми двигателями локомотива.
Известен газотурбинный двигатель ГТ 3,5 газотурбовозов: грузового Г1 и пассажирских ГП1, состоящий из 12-ступенчатого осевого компрессора, 6-секционных камер сгорания, 4-ступенчатой осевой турбины, соединенный через редуктор с тремя тяговыми генераторами постоянного тока. Ввиду невысоких газодинамических параметров цикла кпд двигателя составляет 18,3% (Воронков Л.А., Зархе С.М. и др. «Отечественные газотурбовозы», изд. Машиностроение, Москва, 1971 г. С.45-52).
В связи с применением простой одновальной схемы, что является недостатком такого двигателя, расход топлива на холостом ходу составляет 0,35 от расхода топлива на полной мощности. Доля холостого хода составляет 0,45-0,52 времени работы двигателя при эксплуатации, что приводит к увеличению удельного расхода топлива на измеритель перевозочной работы в 2,5 раза по сравнению с тепловозами. Кроме того, на данном газотурбовозе был установлен вспомогательный дизель-генератор для запуска газотурбинного двигателя и проведения маневровой работы.
Известен газотурбинный двигатель НК-361 газотурбовоза ГТ-1, выполненный по двухвальной схеме со свободной силовой турбиной. Применение такой схемы позволило повысить газодинамические параметры цикла и получить кпд двигателя на уровне 25,3% (Статья «Первый в мире газотурбовоз, работающий на сжиженном природном газе» в журнале АвтоГазКомплекс №3 (45), 2009 г.).
Недостатком известного двигателя является то, что расход топлива на холостом ходу остался равным 0,268 от расхода топлива на полной мощности, при расходе топлива на современных тепловозах на холостом ходу, равном 0,015 от расхода топлива на полной мощности. Кроме того, на данном газотурбовозе был установлен вспомогательный дизель-генератор для запуска газотурбинного двигателя и проведения маневровой работы.
Известна силовая установка локомотива, где газотурбинный двигатель выполнен по двухвальной схеме со свободной силовой турбиной. Газотурбинный двигатель с компрессорами низкого и высокого давления, приводимый турбинами среднего и высокого давления, соединен газовым трактом со свободной силовой турбиной низкого давления. Суть изобретения состоит в улучшении запуска силовой установки и повышении ее экономичности (патент RU 2308383 C1, МПК B60K 5/00, 2007 г.).
Известная схема имеет тот же недостаток, что и предыдущие, повышенный расход топлива на холостом ходу и наличие на газотурбовозе вспомогательного дизель-генератора.
Известна газотурбинная силовая установка для локомотива, принятая за прототип, которая выполнена по схеме со свободной турбиной среднего давления. Для повышения кпд силовой установки в схеме предусмотрено охлаждение воздуха между компрессорами и подогрев сжатого воздуха перед камерой сгорания выхлопными газами из турбины низкого давления. Силовая установка выполнена в виде двух двигателей низкого и высокого давления и имеет промежуточное охлаждение и нагрев воздуха в регенераторе. Двигатель высокого давления расположен над двигателем низкого давления. Предусмотрена также вторая камера сгорания между турбиной высокого давления и турбиной среднего давления. Такая схема силовой установки позволяет получить кпд на уровне 42-45% (патент US 3457877 (A), МПК B61C 5/00, 1969 г.).
Недостатком известной газотурбинной установки является то, что расход топлива на холостом ходу остается все равно высоким, равным 0,15 от расхода топлива на полной мощности, что в 100 раз больше, чем у дизельного локомотива. Также высоким остается расход топлива на малых нагрузках, а для перемещения газотурбовоза без состава и питания электроэнергией вспомогательных потребителей предусмотрен вспомогательный дизель-генератор, что требует места для его установки, наличие второго вида топлива на газотурбовозе и дополнительных затрат на обслуживание.
Техническим результатом изобретения является значительное снижение расхода топлива на холостом ходу и на малых нагрузках газотурбинной установки, что значительно снижает удельный расход топлива на измеритель перевозочной работы и приближает его к тепловозным показателям, исключение на локомотиве вспомогательного дизель-генератора или аккумуляторной батареи большей емкости за счет использования предложенной газотурбинной установки, что позволит снизить размеры, массу локомотива, его нагрузку на ось и расходы на эксплуатацию локомотива.
Технический результат достигается тем, что в газотурбинной установке для локомотива, содержащей три вала давления, из которых вал высокого давления расположен над двумя валами низкого и среднего давления, при этом на валу низкого давления установлен компрессор низкого давления с входным патрубком, соединенный валом с турбиной низкого давления и газовой связью через канал с турбиной среднего давления, на валу среднего давления установлена турбина среднего давления, соединенная валом с первым синхронным тяговым генератором и каналом с промежуточной камерой сгорания, на валу высокого давления установлен компрессор высокого давления, соединенный валом с турбиной высокого давления и каналом с основной камерой сгорания, между компрессором низкого и высокого давления установлен промежуточный холодильник, связанный каналами с этими компрессорами, между компрессором высокого давления и турбиной высокого давления расположен регенеративный теплообменник, на котором установлен выхлопной патрубок и который соединен каналами с турбиной низкого давления и компрессором высокого давления, и в котором установлен теплообменник нагрева топлива, компрессор низкого давления снабжен поворотным входным направляющим аппаратом, приводимым от блока, на промежуточном холодильнике установлен перепускной клапан, в регенеративном теплообменнике размещены основные камеры сгорания, соединенные каналом с турбиной высокого давления, компрессор высокого давления соединен через вал и редуктор со стартером, и турбина высокого давления соединена валом со вторым синхронным тяговым генератором для возможности работы газотурбинной установки на холостом ходу и малых нагрузках только от вала высокого давления.
На фиг.1 представлена схема предлагаемой газотурбинной установки для локомотива, на фиг.2, 3 представлены отдельные схемы соединений синхронных тяговых генераторов с асинхронными тяговыми двигателями, установленными на тележках. На фиг.4 показано изменение кпд газотурбинной установки в зависимости от относительной снимаемой мощности.
Газотурбинная установка для локомотива (фиг.1) состоит из трех валов давления, один из которых расположен над двумя другими. Внизу располагается вал низкого давления 1 и соосно с ним вал среднего давления 2. Вал высокого давления 3 расположен над валами низкого 1 и среднего давления 2. Вал низкого давления 1 состоит из компрессора низкого давления 4 с входным патрубком 5 и с поворотным входным направляющим аппаратом 6, приводимым от блока 7. Компрессор низкого давления 4 соединен валом 8 с турбиной низкого давления 9 и газовой связью через канал 10 с турбиной среднего давления 11. Вал среднего давления 2 состоит из турбины среднего давления 11, соединенной валом 12 с первым синхронным тяговым генератором 13 и каналом 14 с промежуточной камерой сгорания 15. Вал высокого давления 3 состоит из компрессора высокого давления 16, соединенного валом 17 с турбиной высокого давления 18, валом 19 со вторым синхронным тяговым генератором 20, валом 21 и редуктором (на чертеже не показан) со стартером 22. Турбина высокого давления 18 каналом 23 соединена с промежуточной камерой сгорания 15, которая через канал 14 соединена с турбиной среднего давления 11. Между компрессором низкого давления 4 и компрессором высокого давления 16 находится промежуточный холодильник 24 с перепускным клапаном 25. Компрессор низкого давления 4 через канал 26 связан с промежуточным холодильником 24, который каналом 27 связан с компрессором высокого давления 16. Между компрессором высокого давления 16 и турбиной высокого давления 18 находится регенеративный теплообменник 28 с размещенными в нем камерами сгорания 29 и теплообменником нагрева топлива 30. Камера сгорания 29 соединена с турбиной высокого давления 18 каналом 31. Компрессор высокого давления 16 соединен с регенеративным теплообменником 28 каналом 32. В газотурбинной установке предусмотрен микропроцессорный блок (на чертеже не показан), который управляет запуском газотурбинной установки, нагружением синхронных тяговых генераторов 13 и 20, подачей топлива в камеры сгорания 15 и 29, воздействуя на дозаторы топлива 33 и 34, отключает при необходимости вал низкого давления 1, закрывая входной направляющий аппарат 6 через блок 7 и открывая всасывание воздуха в компрессор высокого давления 16 из общей заборной камеры воздуха (на чертеже не показана), открывая перепускной клапан 25 в промежуточный холодильник 24. Турбина низкого давления 9 через канал 35 соединена с регенеративным теплообменником 28, на который установлен выхлопной патрубок 36. Синхронные тяговые генераторы 13 и 20 могут различно подключаться к асинхронным тяговым двигателям локомотива.
Второй синхронный тяговый генератор 20 подключен к одной тележке 37 с группой асинхронных тяговых двигателей через управляемый выпрямитель 38, и первый синхронный тяговый генератор 13 подключен к тележкам 39, 40, 41 со второй группой асинхронных тяговых двигателей через управляемый выпрямитель 42 (фиг.2), либо синхронные тяговые генераторы 20 и 13 подключены к тележкам 37, 39, 40, 41 со всеми асинхронными тяговыми двигателями через общий управляемый выпрямитель 43 (фиг.3). В режиме, когда работает только вал высокого давления, второй синхронный тяговый генератор 20 через свой управляемый выпрямитель 38 подключен к одной тележке 37 с группой асинхронных тяговых двигателей, либо второй синхронный тяговый генератор 20 через общий управляемый выпрямитель 43 подключен к тележкам 37, 39, 40, 41 со всеми асинхронными тяговыми двигателями (на чертеже не показано).
Газотурбинная установка работает следующим образом.
Наружный воздух из камеры забора воздуха с пылевыми фильтрами через канал 5, пройдя входной поворотный направляющий аппарат 6, поступает в компрессор низкого давления 4, где сжимается и через канал 26 попадает в промежуточный холодильник 24, в котором он охлаждается наружным воздухом, поступающим от вентилятора (на чертеже не показан), приводимого от вала компрессора низкого давления 4. Сжатый и охлажденный воздух через канал 27 поступает в компрессор высокого давления 16, где дополнительно сжимается и по каналу 32 попадает в регенеративный теплообменник 28, где он нагревается теплом выхлопных газов турбины низкого давления 9, поступающих в регенеративный теплообменник 28 по каналу 35. Далее нагретый воздух поступает в камеры сгорания 29, куда подается топливо к форсункам через дозатор топлива 34 и, сгорая, образует газо-воздушную смесь с заданной температурой, которая через канал 31 поступает в турбину высокого давления 18. Полученная мощность турбины высокого давления используется на привод компрессора высокого давления 16 и на выработку энергии во втором синхронном тяговом генераторе 20. После турбины высокого давления 18 газо-воздушная смесь через канал 23 поступает в промежуточную камеру сгорания 15, куда подается топливо к форсункам через дозатор топлива 33 и, сгорая, образует газо-воздушную смесь с заданной температурой, которая через канал 14 поступает в турбину среднего давления (силовую турбину) 11, полученная мощность которой используется на привод первого синхронного тягового генератора 13. В зависимости от приложенной нагрузки первый 13 и второй 20 синхронные генераторы через управляемые выпрямители 42 либо 43 приводят в движение асинхронные тяговые двигатели тележек 37, 39, 40 и 41. Газовоздушная смесь, отработав в турбине среднего давления, через канал 10 поступает в турбину низкого давления 9, которая приводит компрессор низкого давления 4. Газовоздушная смесь, отработав в турбине низкого давления 9, через канал 35 поступает в регенеративный теплообменник 28, пройдя который, выбрасывается во внешнюю среду через выхлопной патрубок 36. Мощность, полученная от тяговых генераторов 13 и 20, через управляемые выпрямители поступает к асинхронным тяговым двигателям по одной из двух схем, изображенных на фиг.2 и 3.
Рассмотрим запуск предлагаемой газотурбинной установки и ее работу на холостом ходу и на малой нагрузке.
Перед запуском микропроцессорный блок управления газотурбинной установкой закрывает входной направляющий аппарат 6 блоком 7 и открывает перепускной клапан 25, соединяя канал 27 компрессора высокого давления 16 с заборной камерой воздуха из внешней среды. На стартер 22 подается сигнал «запуск», и он начинает раскручивать вал высокого давления 3 до оборотов подачи топлива в камеру сгорания 29. Дозатор топлива 34 подает топливо в камеру сгорания 29, и вал высокого давления 3 раскручивается до оборотов холостого хода. Газовоздушная смесь, отработав в турбине высокого давления 18, через канал 23 поступает в промежуточную камеру сгорания 15, в которую топливо не подается. Далее через канал 14 газовоздушная смесь поступает в турбину среднего давления 11, пройдя которую, через канал 10 поступает в турбину низкого давления 9 и далее через канал 35 в регенеративный теплообменник 28, пройдя который, через выхлопной патрубок 36 выбрасывается во внешнюю среду. Ввиду того, что входной направляющий аппарат 6 закрыт, а перепускной клапан 25 открыт, сжатие воздуха в компрессоре низкого давления 4 не происходит, а валы низкого и среднего давления 1 и 2 вращаются, не производя работы, но все время находятся в состоянии готовности принять нагрузку. При этом мощность с первого синхронного тягового генератора 13 не снимается. Когда при работе локомотива не требуется полная мощность - это режим холостого хода, трогание с места, маневровая работа, движение одиночного локомотива, движение на спусках и с составами малого веса, работает только вал высокого давления 3. При этом мощность, полученная от второго синхронного тягового генератора 20, через управляемый выпрямитель 38 поступает к одной тележке 37 с группой асинхронных тяговых двигателей, либо мощность, полученная от второго синхронного тягового генератора 20, через общий управляемый выпрямитель 43 поступает к тележкам 37, 39, 40, 41 с группой всех асинхронных тяговых двигателей.
Особенность работы предлагаемой газотурбинной установки отражена на фиг.4, где показано изменение кпд газотурбинной установки в зависимости от относительной снимаемой мощности. Когда работают все три вала давления 1, 2 и 3, то изменение кпд газотурбинной установки показано кривой 44, а при работе только вала высокого давления 3 изменение кпд газотурбинной установки показано кривой 45. Расход топлива на холостом ходу, когда работает только вал высокого давления 3, составляет 0,005-0,06 от расхода топлива на полной мощности всей силовой установки. Кпд двигателя при работе только вала высокого давления 3 на частичных нагрузках в 2-2,5 раза больше, чем при работе газотурбинной установки в целом, что существенно улучшает технико-экономические показатели локомотива.

Claims (2)

1. Газотурбинная установка для локомотива, содержащая три вала давления, из которых вал высокого давления расположен над двумя валами низкого и среднего давления, при этом на валу низкого давления установлен компрессор низкого давления с входным патрубком, соединенный валом с турбиной низкого давления и газовой связью через канал с турбиной среднего давления, на валу среднего давления установлена турбина среднего давления, соединенная валом с первым синхронным тяговым генератором и каналом с промежуточной камерой сгорания, на валу высокого давления установлен компрессор высокого давления, соединенный валом с турбиной высокого давления и каналом с основной камерой сгорания, между компрессором низкого и высокого давления установлен промежуточный холодильник, связанный каналами с этими компрессорами, между компрессором высокого давления и турбиной высокого давления расположен регенеративный теплообменник, на котором установлен выхлопной патрубок и который соединен каналами с турбиной низкого давления и компрессором высокого давления, и в котором установлен теплообменник нагрева топлива, отличающаяся тем, что компрессор низкого давления снабжен поворотным входным направляющим аппаратом, приводимым блоком, на промежуточном холодильнике установлен перепускной клапан, в регенеративном теплообменнике размещены основные камеры сгорания, соединенные каналом с турбиной высокого давления, компрессор высокого давления соединен через вал и редуктор со стартером, турбина высокого давления соединена валом со вторым синхронным генератором для возможности работы газотурбинной установки на холостом ходу и малых нагрузках только от вала высокого давления.
2. Газотурбинная установка по п.1, отличающаяся тем, что второй синхронный тяговый генератор подключен к одной тележке с группой асинхронных тяговых двигателей через управляемый выпрямитель, и первый синхронный тяговый генератор подключен к тележкам со второй группой асинхронных тяговых двигателей через управляемый выпрямитель, либо синхронные тяговые генераторы подключены к тележкам со всеми асинхронными тяговыми двигателями через общий управляемый выпрямитель, либо в режиме, когда работает только вал высокого давления, второй синхронный тяговый генератор через свой управляемый выпрямитель подключен к одной тележке с группой асинхронных тяговых двигателей, либо второй синхронный тяговый генератор через общий управляемый выпрямитель подключен к тележкам со всеми асинхронными тяговыми двигателями.
RU2011127665/11A 2011-07-07 2011-07-07 Газотурбинная установка для локомотива RU2468935C1 (ru)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2011127665/11A RU2468935C1 (ru) 2011-07-07 2011-07-07 Газотурбинная установка для локомотива
PCT/RU2012/000050 WO2013006083A1 (ru) 2011-07-07 2012-02-01 Газотурбинная установка для локомотива
CN201280021943.1A CN103608567B (zh) 2011-07-07 2012-02-01 用于机车的涡轮机装置
EP12807474.7A EP2730768B1 (en) 2011-07-07 2012-02-01 Gas turbine arrangement for a locomotive
CA2834057A CA2834057C (en) 2011-07-07 2012-02-01 Gas turbine arrangement for a locomotive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011127665/11A RU2468935C1 (ru) 2011-07-07 2011-07-07 Газотурбинная установка для локомотива

Publications (1)

Publication Number Publication Date
RU2468935C1 true RU2468935C1 (ru) 2012-12-10

Family

ID=47437268

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011127665/11A RU2468935C1 (ru) 2011-07-07 2011-07-07 Газотурбинная установка для локомотива

Country Status (5)

Country Link
EP (1) EP2730768B1 (ru)
CN (1) CN103608567B (ru)
CA (1) CA2834057C (ru)
RU (1) RU2468935C1 (ru)
WO (1) WO2013006083A1 (ru)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014130148A1 (en) * 2013-02-24 2014-08-28 Rolls-Royce Corporation Combined cycle power plant
FR3024755B1 (fr) * 2014-08-08 2019-06-21 Safran Aircraft Engines Hybridation des compresseurs d'un turboreacteur
US9505298B2 (en) * 2015-03-12 2016-11-29 Borgwarner Inc. High speed traction motor for a vehicle also having an auxiliary open Brayton cycle power assist and range extender
CN104786858B (zh) 2015-03-24 2017-03-29 至玥腾风科技投资集团有限公司 一种增程式电动汽车
GB2541436A (en) 2015-08-20 2017-02-22 Aurelia Turbines Oy System, method and computer program for operating a land- or marine-based multi-spool gas turbine
CN105240128A (zh) * 2015-09-18 2016-01-13 中国航空工业集团公司沈阳发动机设计研究所 一种间冷循环燃气轮机***
CN105221263A (zh) * 2015-09-18 2016-01-06 中国航空工业集团公司沈阳发动机设计研究所 一种间冷燃气轮机联合循环***
CN105298645A (zh) * 2015-09-18 2016-02-03 中国航空工业集团公司沈阳发动机设计研究所 一种外涵回热燃气轮机循环***
CN107288746A (zh) * 2016-03-30 2017-10-24 陈小辉 涡轮增压天然气发动机
CN105927370B (zh) * 2016-05-06 2018-12-18 吉林大学 电辅助涡轮增压***及其控制方法
FR3107558A1 (fr) * 2020-02-26 2021-08-27 Psa Automobiles Sa Systeme thermodynamique comportant deux turbomachines presentant chacune un arbre de transmission et une machine electrique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1237162B (de) * 1965-06-22 1967-03-23 Rheinstahl Henschel Ag Anordnung einer Maschinenanlage einer Gasturbinenlokomotive
RU2126906C1 (ru) * 1997-05-27 1999-02-27 Весенгириев Михаил Иванович Транспортные газотурбинные двухвальный и трехвальный двигатели (варианты)
RU2312239C1 (ru) * 2006-02-20 2007-12-10 Николай Борисович Болотин Силовая установка газотурбовоза
RU2007124852A (ru) * 2007-07-02 2009-01-10 Владимир Андреевич Куделькин (RU) Интеллектуальная интегрированная система безопасности энергетической газотурбинной силовой установки

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2683964A (en) * 1950-07-03 1954-07-20 Anxionnaz Gas turbine power plant of widely variable output
SU686918A1 (ru) * 1977-06-03 1979-09-25 Предприятие П/Я А-7376 Газотурбовоз с передачей переменнопеременного тока
SU1013315A1 (ru) * 1978-10-30 1983-04-23 Предприятие П/Я А-7376 Силова установка газотурбовоза
RU2053896C1 (ru) * 1990-04-20 1996-02-10 Суровин Александр Вячеславович Силовая установка газотурбовоза
SE525323C2 (sv) * 2003-06-05 2005-02-01 Volvo Aero Corp Gasturbin och förfarande för styrning av en gasturbin
RU2308383C1 (ru) 2006-02-13 2007-10-20 Николай Борисович Болотин Силовая установка локомотива на базе двухвального газотурбинного двигателя

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1237162B (de) * 1965-06-22 1967-03-23 Rheinstahl Henschel Ag Anordnung einer Maschinenanlage einer Gasturbinenlokomotive
RU2126906C1 (ru) * 1997-05-27 1999-02-27 Весенгириев Михаил Иванович Транспортные газотурбинные двухвальный и трехвальный двигатели (варианты)
RU2312239C1 (ru) * 2006-02-20 2007-12-10 Николай Борисович Болотин Силовая установка газотурбовоза
RU2007124852A (ru) * 2007-07-02 2009-01-10 Владимир Андреевич Куделькин (RU) Интеллектуальная интегрированная система безопасности энергетической газотурбинной силовой установки

Also Published As

Publication number Publication date
EP2730768A4 (en) 2015-03-11
WO2013006083A1 (ru) 2013-01-10
CA2834057C (en) 2015-11-03
CN103608567B (zh) 2015-10-07
EP2730768A1 (en) 2014-05-14
CA2834057A1 (en) 2013-01-10
CN103608567A (zh) 2014-02-26
EP2730768B1 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
RU2468935C1 (ru) Газотурбинная установка для локомотива
JP5841294B2 (ja) 内燃エンジンの廃熱を用いてco2捕捉システムのco2圧縮機を駆動する方法
US8141360B1 (en) Hybrid gas turbine and internal combustion engine
US8627662B2 (en) Exhaust gas recirculation heat recovery system and method
US20170122254A1 (en) An internal combustion engine heat energy recovery system
EP2379861B1 (en) Split cycle reciprocating piston engine
CA2742438C (en) Power plant with co2 capture and compression
CN103452671B (zh) 燃气涡轮压缩机入口加压和流控制***
US9890707B2 (en) Gas turbine efficiency and regulation speed improvements using supplementary air system continuous and storage systems and methods of using the same
EA015281B1 (ru) Газотурбинная установка
WO2008020550A1 (en) 6-cycle engine with regenerator
US20130174555A1 (en) Electric power station
US20120324884A1 (en) Drive with an internal combustion engine and an expansion machine with gas return
CN109154230A (zh) 增压***及内燃机
CN100498123C (zh) 内燃机废气能量与高速电机混合驱动的空气循环制冷***
CN104769250A (zh) 用于驱动传动轴的热力发动机
CN105065110A (zh) 一种有机朗肯循环和电力双驱动的内燃机增压***
JP2013234663A (ja) ディーゼルエンジン、およびそのディーゼルエンジンの出力向上方法
CN207420711U (zh) 非对称双流道涡轮增压发动机的能量回收***
US10830108B2 (en) Method and apparatus for utilizing the waste heat of combustion gases of an internal combustion engine
CN110701022B (zh) 一种高效利用低品位热能的压缩空气储能***及控制方法
KR20130106495A (ko) 개선된 구조의 터보 컴파운드 시스템
CN209308835U (zh) 一种冷热联供燃气轮机
CN202811077U (zh) 带入口冷却和间冷的燃气轮机***
RU2463462C1 (ru) Комбинированная газотурбодетандерная установка для работы на природном газе