RU2466201C2 - Титаналюминидные сплавы - Google Patents

Титаналюминидные сплавы Download PDF

Info

Publication number
RU2466201C2
RU2466201C2 RU2008149177/02A RU2008149177A RU2466201C2 RU 2466201 C2 RU2466201 C2 RU 2466201C2 RU 2008149177/02 A RU2008149177/02 A RU 2008149177/02A RU 2008149177 A RU2008149177 A RU 2008149177A RU 2466201 C2 RU2466201 C2 RU 2466201C2
Authority
RU
Russia
Prior art keywords
alloy
phase
aluminum
intermediate product
alloy according
Prior art date
Application number
RU2008149177/02A
Other languages
English (en)
Other versions
RU2008149177A (ru
Inventor
Фритц АППЕЛЬ (DE)
Фритц АППЕЛЬ
Джонатан ПОЛ (DE)
Джонатан ПОЛ
Михель ОЕРИНГ (DE)
Михель ОЕРИНГ
Original Assignee
Гксс-Форшунгсцентрум Геестхахт Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Гксс-Форшунгсцентрум Геестхахт Гмбх filed Critical Гксс-Форшунгсцентрум Геестхахт Гмбх
Publication of RU2008149177A publication Critical patent/RU2008149177A/ru
Application granted granted Critical
Publication of RU2466201C2 publication Critical patent/RU2466201C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Laminated Bodies (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Изобретение относится к области металлургии, в частности, сплавам на основе титаналюминидов, предпочтительно на основе γ(TiAl), полученных порошковой или пирометаллургией. Сплав, содержащий титан, от 38 до 46 ат.% алюминия и от 5 до 10 ат.% ниобия и имеющий структуру, включающую композитные пластинки, содержащие поочередно сформированные В19-фазу и β-фазу при их объемном соотношении от 0,05:1 до 20:1, окруженные пластинчатыми структурами типа γ-TiAl в количестве более 10 объемных процентов от объема всего сплава, причем пластинчатые структуры типа γ-TiAl содержат фазу α2-Ti3Аl, количество которой составляет вплоть до 20 объемных процентов от объема всего сплава. Способ получения сплава, содержащего титан, включает обеспечение промежуточного продукта с составом сплава, содержащим титан, от 38 до 46 ат.% алюминия и от 5 до 10 ат.% ниобия, и термообработку промежуточного продукта путем нагрева при температуре свыше 900°С в течение более чем шестидесяти минут и последующего охлаждения со скоростью более 0,5°С в минуту. Сплавы характеризуются высокими прочностью и сопротивлением ползучести при одновременно высоких пластичности и вязкости разрушения. 2 н. и 18 з.п. ф-лы, 4 ил., 1 пр.

Description

Изобретение относится к сплавам на основе титаналюминидов, в частности, полученных при применении методов порошковой или пирометаллургии, предпочтительно на основе γ(TiAl).
Титаналюминидные сплавы отличаются низкой плотностью, высокой прочностью и хорошей коррозионной стойкостью. В твердом состоянии они имеют домены с гексагональной (α), двухфазной структурой (α+β), а также кубической объемноцентрированной β-фазой и/или γ-фазой.
Для промышленной практики интересны, в частности, сплавы, которые основаны на интерметаллической фазе γ(TiAl) с тетрагональной структурой и которые помимо основной фазы γ(TiAl) содержат также меньшие количества интерметаллической фазы α2(Ti3Al) с гексагональной структурой. Эти γ-титаналюминидные сплавы отличаются такими свойствами, как низкая плотность (3,85-4,2 г/см3), высокие модули упругости, высокие прочность и сопротивление ползучести вплоть до 700°C, что делает их привлекательными в качестве легких конструкционных материалов для высокотемпературных применений. Примерами таких применений являются лопатки турбин в двигательных установках летательных аппаратов (самолетов) и в стационарных газовых турбинах, клапаны двигателей, а также вентиляторов горячих газов.
В технически важной области сплавов с содержанием алюминия между 45 ат.% и 49 ат.% при кристаллизации из расплава и при последующем остывании происходит ряд фазовых превращений. Кристаллизация может проходить либо полностью через образование смешанного β-кристалла с кубической объемноцентрированной структурой (высокотемпературная фаза), либо через две перитектические реакции, в которых участвуют смешанный α-кристалл с гексагональной структурой и γ-фаза.
Кроме того, известно, что алюминий в γ-титаналюминидных сплавах приводит к повышению пластичности и стойкости к окислению. Кроме того, элемент ниобий (Nb) приводит к повышению прочности, сопротивления ползучести, стойкости к окислению, а также пластичности. С практически не растворимым в γ-фазе элементом бором можно достичь измельчения зерна как в литом состоянии, так и после пластического деформирования с последующей термической обработкой в α-области. Повышенная доля β-фазы в структуре из-за низкого содержания алюминия и высоких концентраций β-стабилизирующих элементов может привести к более грубой дисперсии этой фазы и вызывает ухудшение механических свойств.
Механические свойства γ-титаналюминидных сплавов из-за их поведения при деформации и разрушении, а также из-за структурной анизотропии предпочтительно получаемых пластинчатых структур или дуплексных структур являются сильно анизотропными. Для целенаправленной регулировки структуры и текстуры при изготовлении деталей из титаналюминидов применяются способы литья, различные способы порошковой металлургии и способы пластического деформирования, а также комбинации этих способов изготовления.
Помимо этого, из документа EP 1015650 B1 известен титаналюминидный сплав, который имеет структурно и химически однородное строение. При этом главные фазы γ(TiAl) и α2(Ti3Al) являются тонкодисперсно распределенными. Описанный там титаналюминидный сплав с содержанием алюминия 45 ат.% отличается необыкновенно хорошими механическими свойствами и высокотемпературными свойствами.
Титаналюминиды на основе γ(TiAl) характеризуются обычно относительно высокой прочностью, высокими модулями упругости, хорошими стойкостью к окислению и сопротивлением ползучести при одновременно более низкой плотности. Благодаря этим свойствам TiAl-ные сплавы должны применяться как высокотемпературные материалы. Такому применению сильно мешают очень низкая пластическая деформируемость и низкая вязкость разрушения. При этом прочность и деформируемость, как и у многих других материалов, ведут себя противоположно друг другу. Из-за этого даже технически интересные высокопрочные сплавы часто являются особо хрупкими. Для устранения этих очень отрицательных свойств были проведены обширные исследования для оптимизации структуры.
Разработанные до настоящего времени структурные типы можно грубо разделить на a) равноосную гамма-структуру, b) дуплексную структуру и c) пластинчатую структуру. Современный уровень разработок обстоятельно представлен, например, в работах:
- Y.-W. Kim, D.M. Dimiduk, в Structural Intermetallics 1997, Eds. M.V. Nathal, R. Darolia, CT. Liu, P.L Martin, D.B. Miracle, R. Wagner, M. Yamaguchi, TMS, Warrendale PA, 1996, S. 531.
- M. Yamaguchi, H. Inui, K. Ito, Acta mater. 48 (2000), S. 307.
До сих пор структуру титаналюминидов измельчали прежде всего добавками бора, которые ведут к образованию боридов титана (ср. T.T. Cheng, в: Gamma Titanium Aluminides 1999, Eds. Y.-W. Kim, D.M. Dimiduk, M.H. Loretto, TMS, Warrendale PA, 1999, S. 389, а также Y.-W. Kim, D.M. Dimiduk, в: Structural Intermetallics 2001, Eds. K.J. Hemker, D.M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J.M. Larsen, V.K. Sikka, M. Thomas, J.D. Whittenberger, TMS, Warrendale PA, 2001, S. 625).
Для дальнейшего измельчения и упрочнения структуры эти сплавы чаще всего подвергают нескольким высокотемпературным деформирующим обработкам путем экструдирования или ковки. Здесь следует дополнительно сослаться на следующие публикации:
Figure 00000002
Исходя из этого уровня техники, в основе настоящего изобретения стоит задача разработать титаналюминидный сплав с тонкой морфологией структуры, в частности, в нанометровом диапазоне. Кроме того, задача состоит в том, чтобы предоставить деталь с однородным сплавом.
Эта задача решается интерметаллическим соединением или сплавом на основе титаналюминидов, в частности, полученных при применении методов порошковой или пирометаллургии, предпочтительно на основе γ(TiAl), следующего состава:
Ti-(от 38 до 42 ат.%) Al-(от 5 до 10 ат.%) Nb,
причем этот состав имеет композитную пластинчатую структуру с B19-фазой и β-фазой в каждой пластинке, при этом отношение, в частности объемное отношение, B19-фазы и β-фазы в каждой пластинке составляет между 0,05 и 20, в частности между 0,1 и 10.
Было показано, что композитные пластинчатые структуры у такого интерметаллического соединения получены или присутствуют с масштабом структур в нанометровом диапазоне, причем пластинчатоподобные образования или модулированные пластинки сформированы из кристаллографически различающихся, поочередно образованных B19-фазы и β-фазы. При этом полученные композитные пластинчатые структуры по большей части окружены γ-TiAl.
Подобные композитные пластинчатые структуры могут быть получены в сплавах посредством известных технологий изготовления, т.е. литья, пластического деформирования и порошковых технологий. Эти сплавы отличаются крайне высокими прочностью и сопротивлением ползучести при одновременно высоких пластичности и вязкости разрушения.
В качестве дополнительных (независимых), а также самостоятельных решений задачи предлагаются сплавы на основе титаналюминидов, в частности, полученных при применении методов порошковой или пирометаллургии, предпочтительно на основе γ(TiAl), причем отдельный сплав имеет следующий состав:
Figure 00000003
Каждый из указанных титаналюминидных сплавов может необязательно содержать добавки бора и/или углерода, причем в одном варианте реализации состав указанных сплавов или интерметаллических соединений по выбору содержит соответственно (от 0,1 до 1 ат.%) B (бора) и/или (от 0,1 до 1 ат.%) C (углерода). За счет этого и так уже тонкая структура сплава становится еще более тонкой (т.е. измельчается).
В рамках изобретения в указанных составах сплавов остальное составляют титан и неизбежные примеси.
Таким образом, согласно изобретению предоставляются сплавы, которые подходят в качестве легких конструкционных материалов для высокотемпературных применений, таких как, например, лопатки турбин или конструктивные элементы двигателей и турбин.
Сплавы по изобретению получают при применении металлургических методов или технологий литья, пирометаллургических методов, методов порошковой металлургии или при применении этих методов в комбинации с технологиями обработки давлением.
Сплавы по изобретению отличаются тем, что они имеют очень тонкую микроструктуру и высокие прочность и сопротивление ползучести при одновременно хороших пластичности и вязкости разрушения, в частности, по сравнению со сплавами без композитных пластинчатых структур по изобретению.
Известно, что титаналюминидные сплавы с содержанием алюминия в 38-45 ат.% и дополнительными добавками, например, тугоплавких элементов содержат относительно большую объемную долю β-фазы, которая может находиться также в упорядоченной форме как B2-фаза. Кристаллографические решетки обеих этих фаз являются механически неустойчивыми по отношению к процессам однородного сдвига, что может привести к трансформациям решетки. Это свойство объясняется главным образом анизотропным соотношением связей и симметрией кубической объемноцентрированной решетки. Тем самым сильно выражена склонность β- или B2-фазы к трансформации решетки. В результате сдвиговых превращений кубической объемноцентрированной решетки β- или B2-фазы могут образовываться различные орторомбические фазы, к которым относятся, в частности, фазы B19 и B33.
Изобретение основано на идее использовать эти трансформации решетки из-за сдвиговых превращений для дополнительного измельчения микроструктуры титаналюминидных сплавов по изобретению. Такой способ для титаналюминидных сплавов в научной литературе до настоящего времени был неизвестен. Кроме того, у вышеописанных сплавов по изобретению благодаря сдвиговым превращениям предотвращается появление хрупких фаз, таких как ω, ω' и ω", которые очень вредны для механических свойств материала.
Существенное преимущество сплавов по изобретению состоит в том, что измельчение структуры сплавов достигается без добавления измельчающих зерно или измельчающих структуру элементов или добавок, таких, например, как бор (B), и, следовательно, эти сплавы не содержат никаких боридов. Так как встречающиеся в TiAl-ных сплавах бориды являются хрупкими, они, начиная с определенного содержания, ведут к охрупчиванию TiAl-ых сплавов и обычно являются в борсодержащих сплавах потенциальными зародышами трещин.
Далее, эти сплавы отличаются тем, что соответствующий состав содержит композитные пластинчатые структуры с B19-фазой и β-фазой в каждой пластинке, причем пластинки окружены TiAl-γ-фазой.
В частности, отношение, в частности, объемное отношение, B19-фазы и β-фазы в каждой пластинке составляет между 0,05 и 20, в частности, между 0,1 и 10. Кроме того, отношение, в частности объемное отношение, B19-фазы и β-фазы в каждой пластинке составляет между 0,2 и 5, в частности между 0,25 и 4. Предпочтительно отношение, в частности объемное отношение, B19-фазы и β-фазы в каждой пластинке составляет между (1/3) и 3, в частности между 0,5 и 2. Кроме того, особенно тонкая структура в составе сплава отличается тем, что отношение, в частности объемное отношение, B19-фазы и β-фазы в каждой пластинке составляет между 0,75 и 1,25, в частности, между 0,8 и 1,2, предпочтительно между 0,9 и 1,1.
Кроме того, в одном усовершенствованном варианте сплава по изобретению возможно, чтобы пластинки композитной пластинчатой структуры были окружены пластинками γ(TiAl)-типа, предпочтительно с обеих сторон пластинки.
Далее, эти сплавы отличаются тем, что пластинки композитной пластинчатой структуры имеют объемную долю более 10%, предпочтительно более 20%, от всего сплава.
Кроме того, эта тонкая пластинчатоподобная структура в композитных структурах остается неизменной, когда пластинки композитной пластинчатой структуры TiAl содержат фазу α2-Ti3Al с долей вплоть до 20%, причем, в частности, (объемное) отношение B19-фазы и β-фазы в пластинках остается неизменным и постоянным.
Сплавы по изобретению подходят в качестве высокотемпературных легких конструкционных материалов для деталей, которые подвергаются воздействию температур вплоть до 800°C.
Кроме того, задача решается способом получения вышеописанного сплава при применении технологий порошковой или пирометаллургии, причем после получения сплава в виде промежуточного продукта проводят дополнительную термообработку этого промежуточного продукта при температурах выше 900°C, предпочтительно выше 1000°C, в частности при температурах между 1000°C и 1200°C, в течение заданного периода времени более 60 минут, предпочтительно более 90 минут, а затем термообработанный сплав охлаждают с заданной скоростью охлаждения более 0,5°C в минуту.
В частности, термообработанный сплав охлаждают с заданной скоростью охлаждения от 1°C в минуту до 20°C в минуту, предпочтительно до 10°C в минуту.
Далее, задача изобретения решается деталью, которая изготовлена из сплава по изобретению, причем, в частности, сплав получен методами или технологиями порошковой или пирометаллургии. С помощью сплавов на основе интерметаллического соединения типа γ-TiAl получают легкие (высокотемпературные) материалы или детали для использования или для применения в тепловых силовых машинах, таких как двигатели внутреннего сгорания, газовые турбины, авиационные двигатели.
Кроме того, еще одно решение задачи состоит в применении описанного выше сплава по изобретению для изготовления детали. Во избежание повторений настоятельно отсылаем к вышеприведенным вариантам осуществления.
Сплавы по изобретению с вышеописанными составами предпочтительно получают путем применения обычных металлургических методов литья или с помощью известных самих по себе технологий порошковой металлургии и могут обрабатываться, например, горячей ковкой, горячим прессованием или горячим выдавливанием и горячей прокаткой.
Далее на примере сплава по изобретению с составом Ti-42 ат.% Al-8,5 ат.% Nb показаны композитные пластинчатые структуры.
Фиг. 1a показывает полученный с помощью просвечивающего электронного микроскопа снимок структуры сплава. Обзорный снимок на фиг. 1 показывает, что композитные пластинчатые структуры, обозначенные на фиг. 1 буквой T, имеют полосчатый контраст относительно структур, окружающих структуру γ-фазы.
Фиг. 1b показывает снимок структуры сплава с большим увеличением, на котором видно, что модулированные композитные пластинчатые структуры (позиции T) окружены γ-фазой или встроены в γ-фазу.
Показанные на фиг. 1a и 1b структуры получены или отрегулированы экструдированием.
На фиг. 1c показана литая структура такого же сплава (Ti-42 ат.% Al-8,5 ат.% Nb), в котором также образована композитная пластинчатая структура (позиции T), которая окружена γ-фазой.
Фиг. 2a показывает изображение с высоким разрешением атомарного строения композитных пластинчатых структур над γ-фазой. Композитные пластинчатые структуры состоят из упорядоченной B19-фазы и неупорядоченной β-фазы, которая граничит с γ-фазой (в нижней области). Из снимка на фиг. 2a видно, что композитные пластинчатые структуры содержат обе кристаллографически различающиеся фазы B19 и β/B2, которые расположены на расстояниях нескольких нанометров. Композитные пластинчатые структуры содержат фазы B19 и β, которые обе считаются пластичными. Объемное отношение B19-фазы и β-фазы в одной композитной пластинчатой структуре составляет от 0,8 до 1,2. Благодаря пластичным фазам B19 и β структура состоит по существу из хорошо деформирующихся пластинок, которые встроены в хрупкую относительно них γ-фазу.
На фиг. 2b показана иллюстрация структуры B19 с увеличенным разрешением. Соответствующая дифрактограмма, которая была рассчитана из показанного на фиг. 2b участка и которая характерна для структуры B19, представлена на фиг. 2c.
На фиг. 3 показан электронно-микроскопический снимок трещины C в вышеуказанном сплаве. При этом из этого снимка следует, что трещина C отклоняется от модулированной композитной пластинчатой структуры (T) и что композитные пластинчатые структуры образуют связки, которые могут перемыкать края трещины. Такое поведение заметно отличается от развития трещин в известных до сих пор Ti-Al-ных сплавах, у которых в рассматриваемом здесь микроскопическом масштабе происходит хрупкое разрушение. У сплава по изобретению благодаря образовавшимся композитным пластинчатым структурам развитие трещины предотвращается.
Важную для технических применений вязкость разрушения структур определяли с помощью образцов с шевронным надрезом в испытании на изгиб при различных температурах. Записанная самописцем кривая такого испытания представлена на фиг. 4. На этой кривой явно видны отмеченные стрелками зубцы, которые указывают на то, что в ходе нагружения образца время от времени происходит развитие трещин, которое, однако, вновь и вновь останавливается. Такое поведение типично для сплавов, которые состоят из хрупкой фазы (γ-фазы), в которую встроены относительно пластичные фазы B19 и β.
Сплавы по изобретению могут быть получены по известным для TiAl-ных сплавов технологиям, т.е. посредством пирометаллургии, технологий обработки давлением и порошковой металлургии. Например, сплавы плавят в электродуговой печи и несколько раз переплавляют, а затем подвергают термообработке. Кроме того, для их получения можно также применять технологические приемы, известные для получения черновых слитков из TiAl-ных сплавов: вакуумно-дуговую плавку, индукционную плавку или плазменную плавку. При необходимости после кристаллизации чернового отлитого материала могут быть применены горячее изостатическое прессование в качестве способа уплотнения при температурах от 900°C до 1300°C, или термическая обработка в диапазоне температур от 700°C до 1400°C, или комбинация этих обработок, чтобы закрыть поры и отрегулировать микроструктуру в материале.

Claims (20)

1. Сплав, содержащий титан, от 38 до 46 ат.% алюминия и от 5 до 10 ат.% ниобия и имеющий структуру, включающую композитные пластинки, содержащие поочередно сформированные В19-фазу и β-фазу при их объемном соотношении от 0,05:1 до 20:1, окруженные пластинчатыми структурами типа γ-TiAl в количестве более 10 об.% от объема всего сплава, причем пластинчатые структуры типа γ-TiAl содержат фазу α2-Ti3Al, количество которой составляет вплоть до 20 об.% от объема всего сплава.
2. Сплав по п.1, содержащий от 38 до 42 ат.% алюминия.
3. Сплав по п.1, содержащий от 38,5 до 42,5 ат.% алюминия и от 0,5 до 5 ат.% хрома.
4. Сплав по п.1, содержащий от 39 до 43 ат.% алюминия и от 0,5 до 5 ат.% циркония.
5. Сплав по п.1, содержащий от 40 до 45 ат.% алюминия и от 0,5 до 5 ат.% тантала.
6. Сплав по п.1, содержащий от 41 до 45 ат.% алюминия и от 0,1 до 1 ат.% лантана, скандия или иттрия.
7. Сплав по п.1, содержащий от 41 до 45 ат.% алюминия и от 0,5 до 5 ат.% ванадия.
8. Сплав по п.1, содержащий от 41 до 44,5 ат.% алюминия и от 0,5 до 5 ат.% железа или молибдена.
9. Сплав по п.1, содержащий от 41 до 46 ат.% алюминия и от 0,5 до 5 ат.% вольфрама.
10. Сплав по п.1, содержащий от 42 до 46 ат.% алюминия и от 0,5 до 5 ат.% марганца.
11. Сплав по любому из пп.1-10, содержащий от 0,1 до 1 ат.% бора или от 0,1 до 1 ат.% углерода, или же и от 0,1 до 1 ат.% бора, и от 0,1 до 1 ат.% углерода.
12. Сплав по любому из пп.1-10, причем этот сплав содержит композитные пластинки, содержащие В19-фазу и β-фазу в объемном отношении между 0,2:1 и 5:1.
13. Сплав по любому из пп.1-10, причем этот сплав содержит композитные пластинки, содержащие В19-фазу и β-фазу в объемном отношении между 1:3 и 3:1.
14. Сплав по любому из пп.1-10, причем этот сплав содержит композитные пластинки, содержащие В19-фазу и β-фазу в объемном отношении между 0,75:1 и 1,25:1.
15. Способ получения сплава, содержащего титан, от 38 до 46 ат.% алюминия и от 5 до 10 ат.% ниобия, включающий обеспечение промежуточного продукта с указанным составом сплава, и термообработку промежуточного продукта путем нагрева при температуре свыше 900°С в течение более чем 60 мин и последующего охлаждения со скоростью более 0,5°С в мин с получением структуры сплава, включающей композитные пластинки, содержащие поочередно сформированные В19-фазу и β-фазу при их объемном соотношении от 0,05:1 до 20:1, окруженные пластинчатыми структурами типа γ-TiAl в количестве более 10 об.% от объема всего сплава, причем пластинчатые структуры типа γ-TiAl содержат фазу α2-Ti3Al, количество которой составляет вплоть до 20 об.% от объема всего сплава.
16. Способ по п.15, в котором термообработка включает нагрев промежуточного продукта при температуре свыше 1000°С.
17. Способ по п.15, в котором термообработка включает нагрев промежуточного продукта при температуре между 1000°С и 1200°С.
18. Способ по п.15, в котором термообработка включает нагрев промежуточного продукта при упомянутой температуре свыше 900°С в течение более чем 90 мин.
19. Способ по любому из пп.15-18, включающий в себя охлаждение промежуточного продукта со скоростью от 1°С в мин до 20°С в мин.
20. Способ по любому из пп.15-18, включающий в себя охлаждение промежуточного продукта со скоростью от 1°С в мин до 10°С в мин.
RU2008149177/02A 2007-12-13 2008-12-12 Титаналюминидные сплавы RU2466201C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007060587A DE102007060587B4 (de) 2007-12-13 2007-12-13 Titanaluminidlegierungen
DE102007060587.2 2007-12-13

Publications (2)

Publication Number Publication Date
RU2008149177A RU2008149177A (ru) 2010-06-20
RU2466201C2 true RU2466201C2 (ru) 2012-11-10

Family

ID=40527708

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008149177/02A RU2466201C2 (ru) 2007-12-13 2008-12-12 Титаналюминидные сплавы

Country Status (10)

Country Link
US (3) US20090151822A1 (ru)
EP (3) EP2423341B1 (ru)
JP (1) JP5512964B2 (ru)
KR (1) KR20090063173A (ru)
CN (1) CN101457314B (ru)
BR (1) BRPI0806979A2 (ru)
CA (1) CA2645843A1 (ru)
DE (1) DE102007060587B4 (ru)
IL (1) IL195756A0 (ru)
RU (1) RU2466201C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2502824C1 (ru) * 2012-11-13 2013-12-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ термообработки отливок из сплавов на основе гамма алюминида титана
RU2633135C1 (ru) * 2016-11-11 2017-10-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Интерметаллический сплав на основе TiAl

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215631A (ja) * 2008-03-12 2009-09-24 Mitsubishi Heavy Ind Ltd TiAl基合金及びその製造方法並びにそれを用いた動翼
DE102009050603B3 (de) * 2009-10-24 2011-04-14 Gfe Metalle Und Materialien Gmbh Verfahren zur Herstellung einer β-γ-TiAl-Basislegierung
WO2012041276A2 (de) 2010-09-22 2012-04-05 Mtu Aero Engines Gmbh Warmfeste tial-legierung
DE102011110740B4 (de) * 2011-08-11 2017-01-19 MTU Aero Engines AG Verfahren zur Herstellung geschmiedeter TiAl-Bauteile
EP2620517A1 (de) 2012-01-25 2013-07-31 MTU Aero Engines GmbH Warmfeste TiAl-Legierung
US20130248061A1 (en) * 2012-03-23 2013-09-26 General Electric Company Methods for processing titanium aluminide intermetallic compositions
CN103320648B (zh) * 2012-03-24 2017-09-12 通用电气公司 铝化钛金属间组合物
US10597756B2 (en) 2012-03-24 2020-03-24 General Electric Company Titanium aluminide intermetallic compositions
KR101261885B1 (ko) * 2012-07-25 2013-05-06 한국기계연구원 베타-감마상을 포함하는 층상 구조의 타이타늄-알루미늄계 합금
DE102012222745A1 (de) 2012-12-11 2014-06-12 MTU Aero Engines AG Einkristalline Turbinenschaufel aus Titanaluminid
WO2014115921A1 (ko) * 2013-01-23 2014-07-31 한국기계연구원 고온강도 및 내산화성이 향상된 타이타늄-알루미늄계 합금
US10179377B2 (en) 2013-03-15 2019-01-15 United Technologies Corporation Process for manufacturing a gamma titanium aluminide turbine component
CN103484701B (zh) * 2013-09-10 2015-06-24 西北工业大学 一种铸造钛合金晶粒细化的方法
CN103773981B (zh) * 2013-12-25 2016-06-29 西安西工大超晶科技发展有限责任公司 一种高Nb-TiAl基合金的熔炼方法
CN103820697B (zh) * 2014-03-10 2016-08-17 北京工业大学 一种多元合金化β相凝固高Nb-TiAl合金及其制备方法
CN103820672B (zh) * 2014-03-12 2017-05-03 北京工业大学 一种Cr、Mn合金化β相凝固高Nb‑TiAl合金及其制备方法
CN103820674B (zh) * 2014-03-12 2016-05-25 北京工业大学 一种W、Mn合金化β相凝固高Nb-TiAl合金及其制备方法
CN103820677B (zh) * 2014-03-12 2016-03-02 北京工业大学 一种含Mn高Nb新型β-γTiAl金属间化合物材料及其制备方法
CN103820675A (zh) * 2014-03-12 2014-05-28 北京工业大学 一种含V高Nb新型β-γTiAl金属间化合物材料及其制备方法
CN103834844B (zh) * 2014-03-12 2016-08-24 北京工业大学 一种V、Mn合金化β相凝固高Nb-TiAl合金及其制备方法
JP6439287B2 (ja) * 2014-06-18 2018-12-19 株式会社デンソー 運転支援装置、運転支援方法、画像補正装置、画像補正方法
RU2592657C2 (ru) * 2014-12-29 2016-07-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный сплав на основе титана и изделие, выполненное из него
RU2621500C1 (ru) * 2015-12-21 2017-06-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Интерметаллический сплав на основе TiAl
CN105441715A (zh) * 2015-12-29 2016-03-30 青岛博泰美联化工技术有限公司 一种汽车增压涡轮
CN105624465A (zh) * 2015-12-29 2016-06-01 青岛博泰美联化工技术有限公司 一种汽车发动机叶片
EP3249064A1 (de) 2016-05-23 2017-11-29 MTU Aero Engines GmbH Additive fertigung von hochtemperaturbauteilen aus tial
CN105970026A (zh) * 2016-05-31 2016-09-28 黄河科技学院 一种轻质合金材料及其制备方法
CN106148739B (zh) * 2016-06-29 2018-02-06 西安西工大超晶科技发展有限责任公司 一种含铌Ti3Al合金铸锭的制备方法
CN109312427B (zh) 2016-09-02 2020-12-15 株式会社Ihi TiAl合金及其制造方法
CN106367633A (zh) * 2016-09-12 2017-02-01 江苏大学 高抗酸蚀La2O3微合金化的TiAl基合金
CN106367624B (zh) * 2016-09-12 2017-10-13 江苏大学 高抗酸蚀Y微合金化TiAl基合金
KR101888049B1 (ko) 2016-12-14 2018-08-13 안동대학교 산학협력단 파괴 인성 및 크리프 저항성이 향상된 Ti-Al-Nb-Fe계 합금의 제조방법
KR101890642B1 (ko) 2016-12-14 2018-08-22 안동대학교 산학협력단 파괴 인성 및 크리프 저항성이 향상된 Ti-Al-Nb-V계 합금의 제조방법
US20180230822A1 (en) * 2017-02-14 2018-08-16 General Electric Company Titanium aluminide alloys and turbine components
CN107034384A (zh) * 2017-04-26 2017-08-11 东北大学 一种热变形加工能力优异的低成本钛铝基合金
CN107475595A (zh) * 2017-07-10 2017-12-15 江苏鑫龙化纤机械有限公司 一种聚乙烯纤维干热牵伸箱电加热管用合金材料
CN107699738A (zh) * 2017-09-29 2018-02-16 成都露思特新材料科技有限公司 一种细晶TiAl合金及其制备方法、航空发动机、汽车
JP7197597B2 (ja) * 2017-11-24 2022-12-27 コリア インスティテュート オブ マテリアルズ サイエンス 高温特性に優れた3dプリンティング用チタン-アルミニウム系合金及びその製造方法
KR102095463B1 (ko) * 2018-05-24 2020-03-31 안동대학교 산학협력단 우수한 고온 성형성을 가지는 TiAl계 합금 및 이를 이용한 TiAl계 합금 부재의 제조방법
JP7233659B2 (ja) 2019-03-18 2023-03-07 株式会社Ihi 熱間鍛造用のチタンアルミナイド合金材及びチタンアルミナイド合金材の鍛造方法並びに鍛造体
EP3974551B1 (en) * 2019-05-23 2023-12-13 IHI Corporation Tial alloy and method of manufacturing the same
CN110438369A (zh) * 2019-09-18 2019-11-12 大连大学 一种高硬度、高氧化性Ti-Al-Nb-Re合金的制备方法
EP4299776A1 (en) 2021-04-16 2024-01-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Tial alloy for forging, tial alloy material, and method for producing tial alloy material
WO2022260026A1 (ja) * 2021-06-09 2022-12-15 株式会社Ihi TiAl合金、TiAl合金粉末、TiAl合金部品及びその製造方法
CN115261657B (zh) * 2022-08-03 2023-02-28 南京铖联激光科技有限公司 高温合金的制备方法及其制备装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734794B2 (ja) * 1991-03-15 1998-04-02 住友金属工業株式会社 Ti−Al系金属間化合物基合金の製造方法
JP3310680B2 (ja) * 1991-09-25 2002-08-05 三菱重工業株式会社 金属間化合物基耐熱合金
CN1023133C (zh) * 1991-12-31 1993-12-15 北京科技大学 铌钛铝系金属间化合物耐热高温材料
JPH05320791A (ja) * 1992-05-15 1993-12-03 Mitsubishi Heavy Ind Ltd Ti−Al系金属間化合物合金
DE4224867A1 (de) * 1992-07-28 1994-02-03 Abb Patent Gmbh Hochwarmfester Werkstoff
JPH06116692A (ja) * 1992-10-05 1994-04-26 Honda Motor Co Ltd 高温強度の優れたTiAl系金属間化合物およびその製造方法
JPH06116691A (ja) * 1992-10-05 1994-04-26 Mitsubishi Materials Corp TiAl金属間化合物系Ti合金の熱処理法
US5296056A (en) * 1992-10-26 1994-03-22 General Motors Corporation Titanium aluminide alloys
JPH06346173A (ja) * 1993-06-11 1994-12-20 Mitsubishi Heavy Ind Ltd Ti−Al系金属間化合物基合金
JPH07197154A (ja) * 1994-01-10 1995-08-01 Mitsubishi Heavy Ind Ltd TiAl系合金及びその製法
JP3332615B2 (ja) * 1994-10-25 2002-10-07 三菱重工業株式会社 TiAl系金属間化合物基合金及びその製造方法
JPH08199264A (ja) * 1995-01-19 1996-08-06 Mitsubishi Heavy Ind Ltd TiAl系金属間化合物基合金
JP3374553B2 (ja) * 1994-11-22 2003-02-04 住友金属工業株式会社 Ti−Al系金属間化合物基合金の製造方法
DE4443147A1 (de) * 1994-12-05 1996-06-27 Dechema Korrosionsbeständiger Werkstoff für Hochtemperaturanwendungen in sulfidierenden Prozeßgasen
US5558729A (en) * 1995-01-27 1996-09-24 The United States Of America As Represented By The Secretary Of The Air Force Method to produce gamma titanium aluminide articles having improved properties
JPH1161298A (ja) * 1997-08-18 1999-03-05 Natl Res Inst For Metals TiAl金属間化合物基合金とその製造方法
DE19735841A1 (de) * 1997-08-19 1999-02-25 Geesthacht Gkss Forschung Legierung auf der Basis von Titanaluminiden
US6174387B1 (en) * 1998-09-14 2001-01-16 Alliedsignal, Inc. Creep resistant gamma titanium aluminide alloy
JP2000199025A (ja) * 1999-01-05 2000-07-18 Mitsubishi Heavy Ind Ltd TiAl系金属間化合物基合金およびその製造方法、タ―ビン部材およびその製造方法
DE10351946A1 (de) * 2003-03-21 2004-10-07 Dechema Gesellschaft Für Chemische Technik Und Biotechnologie E.V. Verfahren zur Behandlung der Oberfläche eines aus einer AL-Legierung, insbesondere TiAL-Legierung bestehenden Bauteiles sowie die Verwendung organischer Halogenkohlenstoffverbindungen oder in einer organischen Matrik eingebundener Halogenide
DE102004056582B4 (de) * 2004-11-23 2008-06-26 Gkss-Forschungszentrum Geesthacht Gmbh Legierung auf der Basis von Titanaluminiden
GB0616566D0 (en) * 2006-08-19 2006-09-27 Rolls Royce Plc An alloy and method of treating titanium aluminide
CN101011705A (zh) * 2007-01-31 2007-08-08 哈尔滨工业大学 含元素钇的TiAl金属间化合物板材的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPEL F. at al. Nano-Scale Design of TiAl Alloys Based on β-Phase Decomposition, Advanced Engineering Materials, 2006, 8, №5, p.371-375. APPEL F. at al. Atomistic Processes of Phase Transformation and Dynamic Recrystallization during Hot-Working of Intermetallic Titanium Aluminides, Materials Science Forum Vols. 558-559, май 2007, *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2502824C1 (ru) * 2012-11-13 2013-12-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ термообработки отливок из сплавов на основе гамма алюминида титана
RU2633135C1 (ru) * 2016-11-11 2017-10-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Интерметаллический сплав на основе TiAl

Also Published As

Publication number Publication date
US20090151822A1 (en) 2009-06-18
RU2008149177A (ru) 2010-06-20
EP2075349B1 (de) 2016-03-09
BRPI0806979A2 (pt) 2010-04-20
CA2645843A1 (en) 2009-06-13
DE102007060587B4 (de) 2013-01-31
DE102007060587A1 (de) 2009-06-18
US20100000635A1 (en) 2010-01-07
EP2423341A1 (de) 2012-02-29
JP5512964B2 (ja) 2014-06-04
EP2075349A3 (de) 2009-09-09
KR20090063173A (ko) 2009-06-17
EP2145967A3 (de) 2010-04-21
EP2075349A2 (de) 2009-07-01
EP2423341B1 (de) 2013-07-10
IL195756A0 (en) 2009-11-18
JP2009144247A (ja) 2009-07-02
CN101457314B (zh) 2013-07-24
CN101457314A (zh) 2009-06-17
US20140010701A1 (en) 2014-01-09
EP2145967A2 (de) 2010-01-20
EP2145967B1 (de) 2013-07-24

Similar Documents

Publication Publication Date Title
RU2466201C2 (ru) Титаналюминидные сплавы
CN101056998B (zh) 钛铝基合金
Lin et al. Effects of solution treatment on microstructures and micro-hardness of a Sr-modified Al-Si-Mg alloy
KR101928329B1 (ko) 나노 결정립 고 엔트로피 합금의 제조방법 및 이로부터 제조된 고 엔트로피 합금
Hakeem et al. Comparative evaluation of thermal and mechanical properties of nickel alloy 718 prepared using selective laser melting, spark plasma sintering, and casting methods
EP2924137A1 (en) Aluminium die casting alloys
TW201819647A (zh) 高強度鋁合金底板及製造方法
WO2013115490A1 (ko) 고연성 및 고인성의 마그네슘 합금 및 이의 제조방법
CN112391562B (zh) 一种铝合金及其制备方法
JP2008013792A (ja) 耐リラクセーション特性に優れた鋳造アルミニウム合金とその熱処理方法
Yang et al. Effects of heat treatment on microstructure and mechanical properties of Mg-3Sn-1Mn magnesium alloy
Liu et al. Effect of Pr inoculation and crystal size on the Hall-Petch relationship for Al-30 wt% Mg2Si composites
WO2020189215A1 (ja) 熱間鍛造用のチタンアルミナイド合金材及びチタンアルミナイド合金材の鍛造方法並びに鍛造体
Li et al. Fabrication of particle-reinforced aluminum alloy composite: role of casting and rolling
WO2017123186A1 (en) Tial-based alloys having improved creep strength by strengthening of gamma phase
WO2015182454A1 (ja) TiAl基鋳造合金及びその製造方法
TW201816140A (zh) 鋁合金塑性加工材及其製造方法
Trinath et al. Study of microstructure and mechanical behaviour of Ti2AlC reinforced hypereutectic Al-16Si matrix composites fabricated by induction melting
WO2020189214A1 (ja) 熱間鍛造用のチタンアルミナイド合金材及びチタンアルミナイド合金材の鍛造方法
JP3425621B2 (ja) O相基Ti−22Al−27Nb合金とその製造方法
Kummari et al. Grain refinement of Al-3.5 FeNb-1.5 C master alloy on pure Al and Al-9.8 Si-3.4 Cu alloy
Jiao et al. Synergistic effects of a novel Cu51Hf14 inoculant and Zr element on the microstructure and properties of Cu-Al-Mn shape memory alloy
Ma High Strength Aluminum Matrix Composites Reinforced with AL3TI and TIB2in-situ Particulates
Frommeyer et al. High Temperature Resistant Intermetallic Nial-Based Alloys with Refractory Metals Cr, Mo, Re-Structures-Properties-Applications
RAUL et al. a review on fabrication and characterization of aluminium metal matrix composite (AMMC)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181213