RU2463460C1 - Конденсационная паротурбинная электростанция - Google Patents

Конденсационная паротурбинная электростанция Download PDF

Info

Publication number
RU2463460C1
RU2463460C1 RU2011106833/06A RU2011106833A RU2463460C1 RU 2463460 C1 RU2463460 C1 RU 2463460C1 RU 2011106833/06 A RU2011106833/06 A RU 2011106833/06A RU 2011106833 A RU2011106833 A RU 2011106833A RU 2463460 C1 RU2463460 C1 RU 2463460C1
Authority
RU
Russia
Prior art keywords
water
boiler
steam
supplied
turbine
Prior art date
Application number
RU2011106833/06A
Other languages
English (en)
Other versions
RU2011106833A (ru
Inventor
Олег Савельевич Кочетов (RU)
Олег Савельевич Кочетов
Мария Олеговна Стареева (RU)
Мария Олеговна Стареева
Original Assignee
Олег Савельевич Кочетов
Мария Олеговна Стареева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов, Мария Олеговна Стареева filed Critical Олег Савельевич Кочетов
Priority to RU2011106833/06A priority Critical patent/RU2463460C1/ru
Publication of RU2011106833A publication Critical patent/RU2011106833A/ru
Application granted granted Critical
Publication of RU2463460C1 publication Critical patent/RU2463460C1/ru

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к теплоэнергетике. В конденсационной паротурбинной электростанции с паротурбинной установкой система оборотного водоснабжения имеет раздельные гидравлические контуры приготовления и потребления воды для градирни и содержит два бака для сбора воды с системой подпитки воды, затрачиваемой на испарение, причем баки соединены между собой компенсационной трубой, обеспечивающей гидравлическую независимость контуров приготовления рабочей воды и ее потребления. Изобретение позволяет повысить эффективность работы электростанции и рационально использовать вторичные энергоресурсы. 1 ил.

Description

Изобретение относится к теплоэнергетике, в частности к тепловым электростанциям промышленных предприятий, где применяются башенные или вентиляторные градирни.
Наиболее близкой по технической сущности и достигаемому результату к заявляемому объекту является тепловая электростанция, содержащая:
- энергетический котел, в который подводится питательная вода под большим давлением, топливо и атмосферный воздух для горения. В топке котла идет процесс горения - химическая энергия топлива превращается в тепловую и лучистую энергию. Питательная вода протекает по трубной системе, расположенной внутри котла. Сгорающее топливо является мощным источником теплоты, которая передается питательной воде. Последняя нагревается до температуры кипения и испаряется. Получаемый пар в этом же котле перегревается сверх температуры кипения. Этот пар с температурой 540°С и давлением 13÷24 МПа по одному или нескольким трубопроводам подается в паровую турбину;
- турбоагрегат, состоящий из паровой турбины, электрогенератора и возбудителя. Паровая турбина, в которой пар расширяется до очень низкого давления (примерно в 20 раз меньше атмосферного), преобразует потенциальную энергию сжатого и нагретого до высокой температуры пара в кинетическую энергию вращения ротора турбины. Турбина приводит электрогенератор, преобразующий кинетическую энергию вращения ротора генератора в электрический ток. Электрогенератор состоит из статора, в электрических обмотках которого генерируется ток, и ротора, представляющего собой вращающийся электромагнит, питание которого осуществляется от возбудителя;
- конденсатор служит для конденсации пара, поступающего из турбины, и создания глубокого разрежения. Это позволяет очень существенно сократить затрату энергии на последующее сжатие образовавшейся воды и одновременно увеличить работоспособность пара, т.е. получить большую мощность от пара, выработанного котлом;
- питательный насос для подачи питательной воды в котел и создания высокого давления перед турбиной (патент РФ N 2306513, МПК F28C 1/00, прототип).
Недостатком известного устройства является сравнительно невысокая эффективность и недостаточно рациональное использование вторичных энергоресурсов, например в градирне, где охлаждение воды происходит с поверхности мелкофракционного капельного потока, и имеет место сравнительно малый диапазон гидравлических и тепловых нагрузок, при которых градирня может эффективно охлаждать циркуляционную воду.
Технически достижимый результат - повышение эффективности работы электростанции и рациональное использование вторичных энергоресурсов.
Это достигается тем, что в конденсационной паротурбинной электростанции, содержащей котельную установку, производящую пар высоких параметров, паротурбинную установку, преобразующую теплоту пара в механическую энергию, и электрические устройства, обеспечивающие выработку электроэнергии потребителю, основным элементом котельной установки является газовый котел, газ для работы которого подается от газораспределительной станции к горелкам, расположенным в поде котла, а котел представляет собой П-образную конструкцию с газоходами прямоугольного сечения, причем левая часть является топкой, внутренняя часть которой свободна и в которой происходит горение топлива, при этом к горелкам специальным дутьевым вентилятором непрерывно подается горячий воздух, нагреваемый в воздухоподогревателе, при этом часть дымовых газов, уходящих из котла, специальным вентилятором рециркуляции подается к основному воздуху и смешивается с ним, причем стены топки облицованы экранами, представляющими собой трубы, к которым подается питательная вода из экономайзера, а пространство за топкой котла заполнено трубами, внутри которых движется пар или вода, причем снаружи эти трубы омываются горячими дымовыми газами, постепенно остывающими при движении к дымовой трубе, при этом основной пароперегреватель состоит из потолочного 20, ширмового 21 и конвективного 22 элементов, а паровая турбина турбоагрегата состоит из нескольких отдельных турбин-цилиндров: цилиндра высокого давления, цилиндра среднего давления и одного или нескольких одинаковых цилиндров низкого давления, из которых пар поступает в конденсатор, представляющий собой теплообменник, по трубкам которого непрерывно протекает охлаждающая вода, подаваемая циркуляционным насосом из аванкамеры градирни, выполненной с системой оборотного водоснабжения, которая имеет раздельные гидравлические контуры приготовления и потребления воды для градирни и содержит два бака для сбора воды с системой подпитки воды, затрачиваемой на испарение, причем баки соединены между собой компенсационной трубой, обеспечивающей гидравлическую независимость контуров приготовления рабочей воды и ее потребления, при этом образующийся в конденсаторе конденсат конденсатным насосом подается через фильтр, гидроаккумулятор и группу регенеративных подогревателей низкого давления в деаэратор, из которого питательная вода питательным насосом, приводимым в действие электродвигателем или специальной паровой турбиной, подается в группу подогревателей высокого давления, а газообразные продукты сгорания топлива, отдав свою основную теплоту питательной воде, поступают на трубы экономайзера и в воздухоподогреватель, в которых они охлаждаются до температуры 140-160°С и направляются с помощью дымососа к дымовой трубе.
На чертеже представлена схема конденсационной паротурбинной электростанции (ТЭС), работающей на газе.
Основными узлами конденсационной паротурбинной электростанции являются: котельная установка, производящая пар высоких параметров; турбинная или паротурбинная установка, преобразующая теплоту пара в механическую энергию вращения ротора турбоагрегата, и электрические устройства (электрогенератор, трансформатор и т.д.), обеспечивающие выработку электроэнергии потребителю, подаваемую посредством линий электропередач (ЛЭП).
Основным элементом котельной установки является газовый котел, газ для работы которого подается от газораспределительной станции 1, подключенной к магистральному газопроводу (не показан). Давление газа в газораспределительной станции 1 снижается до нескольких атмосфер и газ подается к горелкам 2, расположенным в поде котла (в случае применения горелок подовых). Котел представляет собой, например (как вариант), П-образную конструкцию с газоходами прямоугольного сечения, причем левая часть является топкой. Внутренняя часть топки свободна, и в ней происходит горение топлива, в рассматриваемом случае - газа. К горелкам 2 специальным дутьевым вентилятором 28 непрерывно подается горячий воздух, нагреваемый в воздухоподогревателе 25, например вращающемся воздухоподогревателе, теплоаккумулирующая набивка которого на первой половине оборота обогревается уходящими дымовыми газами, а на второй половине оборота нагревает поступающий из атмосферы воздух. Для повышения температуры воздуха используется рециркуляция: часть дымовых газов, уходящих из котла, специальным вентилятором рециркуляции 29 подается к основному воздуху и смешивается с ним. Горячий воздух смешивается с газом и через горелки 2 котла подается в его топку-камеру, в которой происходит горение топлива. При горении образуется факел, представляющий собой мощный источник лучистой энергии. Таким образом, при горении топлива его химическая энергия превращается в тепловую и лучистую энергию факела.
Стены топки облицованы экранами 19, представляющими собой трубы, к которым подается питательная вода из экономайзера 24, при этом в экранах прямоточного котла питательная вода, проходя трубную систему котла, только один раз, нагревается и испаряется, превращаясь в сухой насыщенный пар. В рассматриваемой схеме могут быть использованы также барабанные котлы, в экранах которых осуществляется многократная циркуляция питательной воды, а отделение пара от котловой воды происходит в барабане.
Пространство за топкой котла достаточно густо заполнено трубами, внутри которых движется пар или вода. Снаружи эти трубы омываются горячими дымовыми газами, постепенно остывающими при движении к дымовой трубе 26.
Сухой насыщенный пар поступает в основной пароперегреватель, состоящий из потолочного 20, ширмового 21 и конвективного 22 элементов. В основном пароперегревателе повышается его температура и, следовательно, потенциальная энергия. Полученный на выходе из конвективного пароперегревателя пар высоких параметров покидает котел и поступает по паропроводу к паровому турбоагрегату.
Мощная паровая турбина турбоагрегата состоит из нескольких отдельных турбин-цилиндров. К первому цилиндру - цилиндру высокого давления (ЦВД) 17 - пар подводится прямо из котла, и поэтому он имеет высокие параметры (для турбин СКД - 23,5 МПа, 540°С, т.е. 240 ат/540°С). На выходе из ЦВД давление пара составляет 3÷3,5 МПа (30-35 ат), а температура - 300÷340°С. Если бы пар продолжал расширяться в турбине дальше от этих параметров до давления в конденсаторе, то он стал бы настолько влажным, что длительная работа турбины была бы невозможной из-за эрозионного износа его деталей в последнем цилиндре. Поэтому из ЦВД относительно холодный пар возвращается обратно в котел в промежуточный пароперегреватель 23. В нем пар попадает снова под воздействие горячих газов котла, его температура повышается до исходной (540°С). Полученный пар направляется в цилиндр среднего давления (ЦСД) 16. После расширения в ЦСД до давления 0,2÷0,3 МПа (2÷3 ат) пар поступает в один или несколько одинаковых цилиндров низкого давления (ЦНД) 15.
Таким образом, расширяясь в турбине, пар вращает ее ротор, соединенный с ротором электрического генератора 14, в статорных обмотках 13 которого образуется электрический ток. Трансформатор повышает его напряжение для уменьшения потерь в линиях электропередачи, передает часть выработанной энергии на питание собственных нужд ТЭС, а остальную электроэнергию отпускает в энергосистему по ЛЭП.
И котел, и турбина могут работать только при очень высоком качестве питательной воды и пара, допускающем лишь ничтожные примеси других веществ. Кроме того, расходы пара огромны (например, в энергоблоке 1200 МВт за одну секунду испаряется, проходит через турбину и конденсируется более 1 т воды). Поэтому нормальная работа энергоблока возможна только при создании замкнутого цикла циркуляции рабочего тела высокой чистоты.
Пар, покидающий ЦНД турбины, поступает в конденсатор 12, представляющий собой теплообменник, по трубкам которого непрерывно протекает охлаждающая вода, подаваемая циркуляционным насосом 9 из аванкамеры 10 градирни 11 (а также возможна схема подачи из водохранилища или реки). Градирня 11 выполнена в виде железобетонной пустотелой вытяжной башни высотой до 150 м и выходным диаметром 40÷70 м, которая создает самотягу для воздуха, поступающего снизу через воздухонаправляющие щиты (не показано). Внутри градирни 11 на высоте 10÷20 м устанавливают оросительное и разбрызгивающее устройства, при этом воздух, движущийся вверх, заставляет часть капель (примерно 1,5÷2%) испаряться, за счет чего охлаждается вода, поступающая из конденсатора 12 и нагретая в нем. Охлажденная вода собирается внизу в бассейне и перетекает в аванкамеру 10, откуда циркуляционным насосом 9 она подается снова в конденсатор 12.
В рассматриваемой схеме применена система оборотного водоснабжения, которая имеет раздельные гидравлические контуры приготовления и потребления воды для градирни (возможен вариант с несколькими параллельно соединенными градирнями - не показано). Система содержит два бака для сбора воды: бак 30 и бак 31 с системой подпитки 32 воды, затрачиваемой на испарение. Баки 30 и 31 (емкости) соединены между собой компенсационной трубой, обеспечивающей гидравлическую независимость контуров приготовления рабочей воды и ее потребления.
Бак 30 соединен с насосом 38, который подает горячую воду потребителю 35, который отбирает тепло этой воды либо посредством тепломассообменных аппаратов (не показано), либо посредством аппаратов конвективного теплообмена, например в системах отопления жилых массивов. На участке между насосом 38 и потребителем 35 установлена система контроля гидравлического сопротивления системы, состоящая из манометра 36 и вентиля 37. После охлаждения воды в потребителе 35 она снова поступает через вентиль 34 по трубопроводу 33 во второй бак 31, из которого охлажденная вода насосом 39 через фильтр 40 и вентиль 41 подается по трубопроводу в водораспределительную и оросительного системы градирни 11. На участке между фильтром 40 и вентилем 41 установлена система контроля гидравлического сопротивления фильтра 40, состоящая из манометра 42 и вентиля 43. Наряду с оборотной, используют прямоточное водоснабжение, при котором охлаждающая вода поступает в конденсатор 12 прямо из реки и сбрасывается в нее ниже по течению (не показано).
Пар, поступающий из турбины в межтрубное пространство конденсатора 12, конденсируется и стекает вниз; образующийся конденсат конденсатным насосом 6 подается через фильтр 5, гидроаккумулятор 4 и группу регенеративных подогревателей низкого давления (ПНД) 3 - в деаэратор 8. В ПНД температура конденсата повышается за счет теплоты конденсации пара, отбираемого из турбины. Это позволяет уменьшить расход топлива в котле и повысить экономичность электростанции. В деаэраторе 8 происходит деаэрация - удаление из конденсата растворенных в нем газов, нарушающих работу котла. Одновременно бак деаэратора представляет собой емкость для питательной воды котла.
Из деаэратора питательная вода питательным насосом 7, приводимым в действие электродвигателем или специальной паровой турбиной, подается в группу подогревателей высокого давления (ПВД) 18.
Регенеративный подогрев конденсата в ПНД 3 и ПВД 18 - это основной и очень выгодный способ повышения КПД ТЭС. Пар, который расширился в турбине от входа до трубопровода отбора, выработал определенную мощность, а поступив в регенеративный подогреватель, передал свое тепло конденсации питательной воде (а не охлаждающей как в прототипе), повысив ее температуру и тем самым сэкономив расход топлива в котле. Температура питательной воды котла за ПВД, т.е. перед поступлением в котел, составляет в зависимости от начальных параметров 240÷280°С. Таким образом замыкается технологический пароводяной цикл преобразования химической энергии топлива в механическую энергию вращения ротора турбоагрегата. Газообразные продукты сгорания топлива, отдав свою основную теплоту питательной воде, поступают на трубы экономайзера 24 и в воздухоподогреватель 25, в которых они охлаждаются до температуры 140÷160°С и направляются с помощью дымососа 27 к дымовой трубе 26.
Конденсационная паротурбинная электростанция работает следующим образом.
В паровой турбинной установке (ПТУ) над рабочим телом совершается непрерывный цикл преобразования химической энергии сжигаемого топлива в электрическую энергию. Кроме перечисленных элементов, реальная ПТУ дополнительно содержит большое число насосов, теплообменников и других аппаратов, необходимых для повышения ее эффективности.
Газ для работы котла подается от газораспределительной станции 1, подключенной к магистральному газопроводу (не показан). Давление газа в газораспределительной станции 1 снижается до нескольких атмосфер и газ подается к горелкам 2, расположенным в поде котла (в случае применения горелок подовых). Котел представляет собой, например (как вариант), П-образную конструкцию с газоходами прямоугольного сечения, причем левая часть является топкой. Внутренняя часть топки свободна, и в ней происходит горение топлива, в рассматриваемом случае - газа. К горелкам 2 специальным дутьевым вентилятором 28 непрерывно подается горячий воздух, нагреваемый в воздухоподогревателе 25, например вращающимся воздухоподогревателе, теплоаккумулирующая набивка которого на первой половине оборота обогревается уходящими дымовыми газами, а на второй половине оборота нагревает поступающий из атмосферы воздух. Для повышения температуры воздуха используется рециркуляция: часть дымовых газов, уходящих из котла, специальным вентилятором рециркуляции 29 подается к основному воздуху и смешивается с ним. Горячий воздух смешивается с газом и через горелки 2 котла подается в его топку - камеру, в которой происходит горение топлива. При горении образуется факел, представляющий собой мощный источник лучистой энергии. Таким образом, при горении топлива его химическая энергия превращается в тепловую и лучистую энергию факела.
Сухой насыщенный пар поступает в основной пароперегреватель, состоящий из потолочного 20, ширмового 21 и конвективного 22 элементов. В основном пароперегревателе повышается его температура и, следовательно, потенциальная энергия. Полученный на выходе из конвективного пароперегревателя пар высоких параметров покидает котел и поступает по паропроводу к паровому турбоагрегату, в котором, расширяясь в турбине, пар вращает ее ротор, соединенный с ротором электрического генератора 14, в статорных обмотках 13 которого образуется электрический ток. Трансформатор повышает его напряжение для уменьшения потерь в линиях электропередачи, передает часть выработанной энергии на питание собственных нужд ТЭС, а остальную электроэнергию отпускает в энергосистему по ЛЭП.
Пар, покидающий ЦНД турбины, поступает в конденсатор 12, представляющий собой теплообменник, по трубкам которого непрерывно протекает охлаждающая вода, подаваемая циркуляционным насосом 9 из аванкамеры 10 градирни 11 (а также возможна схема подачи из водохранилища или реки). Градирня 11 выполнена с системой оборотного водоснабжения, которая имеет раздельные гидравлические контуры приготовления и потребления воды для градирни (возможен вариант с несколькими параллельно соединенными градирнями - не показано). Наряду с оборотной, используют прямоточное водоснабжение, при котором охлаждающая вода поступает в конденсатор 12 прямо из реки и сбрасывается в нее ниже по течению (не показано).
Пар, поступающий из турбины в межтрубное пространство конденсатора 12, конденсируется и стекает вниз; образующийся конденсат конденсатным насосом 6 подается через фильтр 5, гидроаккумулятор 4 и группу регенеративных подогревателей низкого давления (ПНД) 3 - в деаэратор 8. В ПНД температура конденсата повышается за счет теплоты конденсации пара, отбираемого из турбины. Это позволяет уменьшить расход топлива в котле и повысить экономичность электростанции. В деаэраторе 8 происходит деаэрация - удаление из конденсата растворенных в нем газов, нарушающих работу котла. Одновременно бак деаэратора представляет собой емкость для питательной воды котла. Из деаэратора питательная вода питательным насосом 7, приводимым в действие электродвигателем или специальной паровой турбиной, подается в группу подогревателей высокого давления (ПВД) 18.
Газообразные продукты сгорания топлива, отдав свою основную теплоту питательной воде, поступают на трубы экономайзера 24 и в воздухоподогреватель 25, в которых они охлаждаются до температуры 140÷160°С и направляются с помощью дымососа 27 к дымовой трубе 26. Дымовая труба создает разрежение в топке и газоходах котла; кроме того, она рассеивает вредные продукты сгорания в верхних слоях атмосферы, не допуская их высокой концентрации в нижних слоях.

Claims (1)

  1. Конденсационная паротурбинная электростанция, содержащая котельную установку, производящую пар высоких параметров, паротурбинную установку, преобразующую теплоту пара в механическую энергию, и электрические устройства, обеспечивающие выработку электроэнергии потребителю, основным элементом котельной установки является газовый котел, газ для работы которого подается от газораспределительной станции к горелкам, расположенным в поде котла, а котел представляет собой П-образную конструкцию с газоходами прямоугольного сечения, причем левая часть является топкой, внутренняя часть которой свободна, и в которой происходит горение топлива, при этом к горелкам специальным дутьевым вентилятором непрерывно подается горячий воздух, нагреваемый в воздухоподогревателе, при этом часть дымовых газов, уходящих из котла, специальным вентилятором рециркуляции подается к основному воздуху и смешивается с ним, причем стены топки облицованы экранами, представляющими собой трубы, к которым подается питательная вода из экономайзера, а пространство за топкой котла заполнено трубами, внутри которых движется пар или вода, причем снаружи эти трубы омываются горячими дымовыми газами, постепенно остывающими при движении к дымовой трубе, при этом основной пароперегреватель состоит из потолочного, ширмового и конвективного элементов, а паровая турбина турбоагрегата состоит из нескольких отдельных турбин - цилиндров: цилиндра высокого давления, цилиндра среднего давления и одного или нескольких одинаковых цилиндров низкого давления, из которых пар поступает в конденсатор, представляющий собой теплообменник, по трубкам которого непрерывно протекает охлаждающая вода, подаваемая циркуляционным насосом из аванкамеры градирни, отличающаяся тем, что градирня выполнена с системой оборотного водоснабжения, которая имеет раздельные гидравлические контуры приготовления и потребления воды для градирни и содержит два бака для сбора воды с системой подпитки воды, затрачиваемой на испарение, причем баки соединены между собой компенсационной трубой, обеспечивающей гидравлическую независимость контуров приготовления рабочей воды и ее потребления, при этом образующийся в конденсаторе конденсат конденсатным насосом подается через фильтр, гидроаккумулятор и группу регенеративных подогревателей низкого давления в деаэратор, из которого питательная вода питательным насосом, приводимым в действие электродвигателем или специальной паровой турбиной, подается в группу подогревателей высокого давления, а газообразные продукты сгорания топлива, отдав свою основную теплоту питательной воде, поступают на трубы экономайзера и в воздухоподогреватель, в которых они охлаждаются до температуры 140-160°С и направляются с помощью дымососа к дымовой трубе.
RU2011106833/06A 2011-02-24 2011-02-24 Конденсационная паротурбинная электростанция RU2463460C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011106833/06A RU2463460C1 (ru) 2011-02-24 2011-02-24 Конденсационная паротурбинная электростанция

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011106833/06A RU2463460C1 (ru) 2011-02-24 2011-02-24 Конденсационная паротурбинная электростанция

Publications (2)

Publication Number Publication Date
RU2011106833A RU2011106833A (ru) 2012-08-27
RU2463460C1 true RU2463460C1 (ru) 2012-10-10

Family

ID=46937433

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011106833/06A RU2463460C1 (ru) 2011-02-24 2011-02-24 Конденсационная паротурбинная электростанция

Country Status (1)

Country Link
RU (1) RU2463460C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2539696C1 (ru) * 2013-10-31 2015-01-27 Олег Савельевич Кочетов Конденсационная паротурбинная электростанция кочетова
RU2576698C1 (ru) * 2015-01-20 2016-03-10 Олег Савельевич Кочетов Конденсационная паротурбинная электростанция кочетова
RU2682228C2 (ru) * 2013-10-11 2019-03-15 Риэкшн Энджинс Лимитед Вращательный механизм
RU2717181C1 (ru) * 2016-11-29 2020-03-18 Висдри Сити Инвайронмент Протекшн Инжиниринг Ко., Лтд Система выработки электроэнергии и способ выработки электроэнергии из каменноугольного газа с низкой теплотворной способностью

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2239393A1 (de) * 1972-08-10 1974-02-21 Brandi Ingenieure Gmbh Verfahren und vorrichtung zum betrieb eines rueckkuehlwerkes zur verminderung von nebelbildung u. dgl
SU1506252A1 (ru) * 1987-08-31 1989-09-07 Всесоюзный Теплотехнический Научно-Исследовательский Институт Им.Ф.Э.Дзержинского Система оборотного водоснабжени
RU2236517C2 (ru) * 2002-02-26 2004-09-20 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Устройство для оборотного водоснабжения электростанции с градирнями
JP2006200849A (ja) * 2005-01-21 2006-08-03 Miura Co Ltd 冷却塔、冷却塔における循環水の冷却方法および冷却塔における循環水冷却用散布水の冷却方法
RU2350760C2 (ru) * 2007-03-22 2009-03-27 Государственное образовательное учреждение высшего профессионального образования Самарский государственный техничекий университет Тепловая электрическая станция

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2239393A1 (de) * 1972-08-10 1974-02-21 Brandi Ingenieure Gmbh Verfahren und vorrichtung zum betrieb eines rueckkuehlwerkes zur verminderung von nebelbildung u. dgl
SU1506252A1 (ru) * 1987-08-31 1989-09-07 Всесоюзный Теплотехнический Научно-Исследовательский Институт Им.Ф.Э.Дзержинского Система оборотного водоснабжени
RU2236517C2 (ru) * 2002-02-26 2004-09-20 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Устройство для оборотного водоснабжения электростанции с градирнями
JP2006200849A (ja) * 2005-01-21 2006-08-03 Miura Co Ltd 冷却塔、冷却塔における循環水の冷却方法および冷却塔における循環水冷却用散布水の冷却方法
RU2350760C2 (ru) * 2007-03-22 2009-03-27 Государственное образовательное учреждение высшего профессионального образования Самарский государственный техничекий университет Тепловая электрическая станция

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ТРУХНИЙ А.Д. и др. Теплофикационные паровые турбины и турбоустановки. - М.: Издательство МЭИ, 2002, с.11-15, рис.1.1. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2682228C2 (ru) * 2013-10-11 2019-03-15 Риэкшн Энджинс Лимитед Вращательный механизм
RU2539696C1 (ru) * 2013-10-31 2015-01-27 Олег Савельевич Кочетов Конденсационная паротурбинная электростанция кочетова
RU2576698C1 (ru) * 2015-01-20 2016-03-10 Олег Савельевич Кочетов Конденсационная паротурбинная электростанция кочетова
RU2717181C1 (ru) * 2016-11-29 2020-03-18 Висдри Сити Инвайронмент Протекшн Инжиниринг Ко., Лтд Система выработки электроэнергии и способ выработки электроэнергии из каменноугольного газа с низкой теплотворной способностью

Also Published As

Publication number Publication date
RU2011106833A (ru) 2012-08-27

Similar Documents

Publication Publication Date Title
US10823015B2 (en) Gas-steam combined cycle centralized heat supply device and heat supply method
CN104963776B (zh) 一种太阳能热互补联合循环发电***
EP2846008B1 (en) Steam turbine plant
US6244033B1 (en) Process for generating electric power
EP2253807A1 (en) Gas turbine cycle or combined steam-gas cycle for production of power from solid fuels and waste heat
CN103353239A (zh) 改进型石灰窑废气余热发电***及其发电方法
RU2463460C1 (ru) Конденсационная паротурбинная электростанция
RU2584745C2 (ru) Высокотемпературная паросиловая установка докритического давления и высокотемпературный прямоточный котел докритического давления, работающий при переменном давлении
CN114909193A (zh) 一种基于熔盐储热的火电机组灵活运行***
RU2539696C1 (ru) Конденсационная паротурбинная электростанция кочетова
Eze et al. Advancements in Energy Efficiency Technologies for Thermal Systems: A Comprehensive Review
CZ26344U1 (cs) Zařízení pro výrobu elektřiny z pevných paliv, využívající plynovou turbínu
Özbek et al. District heating and power generation based flue gas waste heat recovery
Zaryankin et al. Super powerful steam superheaters and turbines for hybrid nuclear power plants
CN105781642B (zh) 一种带发电功能的蒸汽锅炉***及其工作方法
CN205279773U (zh) 烧结环冷机的余热发电***
CN103147806B (zh) 蒸汽朗肯-有机朗肯联合循环发电装置
CN103089355A (zh) 蒸汽朗肯-低沸点工质朗肯联合循环发电装置
CN108072026A (zh) 一种新型超临界直流三压再热余热锅炉
RU2623005C1 (ru) Конденсационная паротурбинная электростанция кочетова
CN114641452A (zh) 用于发电和海水淡化的热电联产涡轮机
CN207006100U (zh) 一种环冷机废气与烧结大烟道烟气余热综合利用***
CN109098797B (zh) 一种燃煤气发电***
CN206593491U (zh) 一种矿热炉烟气余热回收发电***
RU2774553C1 (ru) Система производства экологически чистого топлива на тэц с паровым котлом